Properties

Label 27.6.a.b
Level $27$
Weight $6$
Character orbit 27.a
Self dual yes
Analytic conductor $4.330$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,6,Mod(1,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.33036313495\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + 3\sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 4) q^{2} + (9 \beta + 22) q^{4} + (10 \beta - 41) q^{5} + ( - 18 \beta + 5) q^{7} + ( - 35 \beta - 302) q^{8} + ( - 9 \beta - 216) q^{10} + (32 \beta - 277) q^{11} + ( - 72 \beta - 316) q^{13}+ \cdots + (3750 \beta + 12408) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{2} + 53 q^{4} - 72 q^{5} - 8 q^{7} - 639 q^{8} - 441 q^{10} - 522 q^{11} - 704 q^{13} + 1413 q^{14} + 3857 q^{16} - 216 q^{17} - 2840 q^{19} + 4977 q^{20} - 99 q^{22} + 36 q^{23} + 3992 q^{25}+ \cdots + 28566 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−10.6847 0 82.1619 25.8466 0 −115.324 −535.963 0 −276.162
1.2 1.68466 0 −29.1619 −97.8466 0 107.324 −103.037 0 −164.838
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.6.a.b 2
3.b odd 2 1 27.6.a.d yes 2
4.b odd 2 1 432.6.a.k 2
5.b even 2 1 675.6.a.n 2
9.c even 3 2 81.6.c.h 4
9.d odd 6 2 81.6.c.d 4
12.b even 2 1 432.6.a.v 2
15.d odd 2 1 675.6.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.6.a.b 2 1.a even 1 1 trivial
27.6.a.d yes 2 3.b odd 2 1
81.6.c.d 4 9.d odd 6 2
81.6.c.h 4 9.c even 3 2
432.6.a.k 2 4.b odd 2 1
432.6.a.v 2 12.b even 2 1
675.6.a.f 2 15.d odd 2 1
675.6.a.n 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 9T_{2} - 18 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(27))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 9T - 18 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 72T - 2529 \) Copy content Toggle raw display
$7$ \( T^{2} + 8T - 12377 \) Copy content Toggle raw display
$11$ \( T^{2} + 522T + 28953 \) Copy content Toggle raw display
$13$ \( T^{2} + 704T - 74384 \) Copy content Toggle raw display
$17$ \( T^{2} + 216 T - 1067904 \) Copy content Toggle raw display
$19$ \( T^{2} + 2840 T + 1570252 \) Copy content Toggle raw display
$23$ \( T^{2} - 36T - 60876 \) Copy content Toggle raw display
$29$ \( T^{2} + 12240 T + 36322812 \) Copy content Toggle raw display
$31$ \( T^{2} + 1064 T - 10139489 \) Copy content Toggle raw display
$37$ \( T^{2} - 9004 T - 24346796 \) Copy content Toggle raw display
$41$ \( T^{2} + 5688 T - 155492532 \) Copy content Toggle raw display
$43$ \( T^{2} - 784 T - 91504964 \) Copy content Toggle raw display
$47$ \( T^{2} + 1116 T - 387461628 \) Copy content Toggle raw display
$53$ \( T^{2} + 4536 T - 176302089 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1089039312 \) Copy content Toggle raw display
$61$ \( T^{2} + 49904 T + 419555392 \) Copy content Toggle raw display
$67$ \( T^{2} + 42176 T - 655844228 \) Copy content Toggle raw display
$71$ \( T^{2} - 43848 T - 374378112 \) Copy content Toggle raw display
$73$ \( T^{2} - 47218 T + 300403633 \) Copy content Toggle raw display
$79$ \( T^{2} + 49616 T + 612264256 \) Copy content Toggle raw display
$83$ \( T^{2} - 102294 T + 969980409 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 3686257188 \) Copy content Toggle raw display
$97$ \( T^{2} - 169966 T + 63913489 \) Copy content Toggle raw display
show more
show less