Defining parameters
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(27))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 7 | 11 |
Cusp forms | 12 | 7 | 5 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(3\) |
\(-\) | \(4\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(27))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
27.6.a.a | $1$ | $4.330$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-211\) | $+$ | \(q-2^{5}q^{4}-211q^{7}-775q^{13}+2^{10}q^{16}+\cdots\) | |
27.6.a.b | $2$ | $4.330$ | \(\Q(\sqrt{17}) \) | None | \(-9\) | \(0\) | \(-72\) | \(-8\) | $+$ | \(q+(-4-\beta )q^{2}+(22+9\beta )q^{4}+(-41+\cdots)q^{5}+\cdots\) | |
27.6.a.c | $2$ | $4.330$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(0\) | \(334\) | $-$ | \(q+\beta q^{2}+22q^{4}+8\beta q^{5}+167q^{7}+\cdots\) | |
27.6.a.d | $2$ | $4.330$ | \(\Q(\sqrt{17}) \) | None | \(9\) | \(0\) | \(72\) | \(-8\) | $-$ | \(q+(4+\beta )q^{2}+(22+9\beta )q^{4}+(41-10\beta )q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(27))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(27)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)