Properties

Label 27.6.a
Level $27$
Weight $6$
Character orbit 27.a
Rep. character $\chi_{27}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $4$
Sturm bound $18$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(18\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(27))\).

Total New Old
Modular forms 18 7 11
Cusp forms 12 7 5
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(3\)
\(-\)\(4\)

Trace form

\( 7 q + 118 q^{4} + 107 q^{7} - 18 q^{10} - 2653 q^{13} + 6250 q^{16} + 185 q^{19} - 11430 q^{22} + 5521 q^{25} - 11110 q^{28} - 5452 q^{31} + 30240 q^{34} + 34349 q^{37} - 16182 q^{40} - 1576 q^{43} - 41868 q^{46}+ \cdots + 197387 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(27))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
27.6.a.a 27.a 1.a $1$ $4.330$ \(\Q\) \(\Q(\sqrt{-3}) \) 27.6.a.a \(0\) \(0\) \(0\) \(-211\) $+$ $N(\mathrm{U}(1))$ \(q-2^{5}q^{4}-211q^{7}-775q^{13}+2^{10}q^{16}+\cdots\)
27.6.a.b 27.a 1.a $2$ $4.330$ \(\Q(\sqrt{17}) \) None 27.6.a.b \(-9\) \(0\) \(-72\) \(-8\) $+$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{2}+(22+9\beta )q^{4}+(-41+\cdots)q^{5}+\cdots\)
27.6.a.c 27.a 1.a $2$ $4.330$ \(\Q(\sqrt{6}) \) None 27.6.a.c \(0\) \(0\) \(0\) \(334\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+22q^{4}+8\beta q^{5}+167q^{7}+\cdots\)
27.6.a.d 27.a 1.a $2$ $4.330$ \(\Q(\sqrt{17}) \) None 27.6.a.b \(9\) \(0\) \(72\) \(-8\) $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{2}+(22+9\beta )q^{4}+(41-10\beta )q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(27))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(27)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)