Defining parameters
| Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 27.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(18\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(27))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 18 | 7 | 11 |
| Cusp forms | 12 | 7 | 5 |
| Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(8\) | \(3\) | \(5\) | \(5\) | \(3\) | \(2\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(10\) | \(4\) | \(6\) | \(7\) | \(4\) | \(3\) | \(3\) | \(0\) | \(3\) | |||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(27))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
| 27.6.a.a | $1$ | $4.330$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-211\) | $+$ | \(q-2^{5}q^{4}-211q^{7}-775q^{13}+2^{10}q^{16}+\cdots\) | |
| 27.6.a.b | $2$ | $4.330$ | \(\Q(\sqrt{17}) \) | None | \(-9\) | \(0\) | \(-72\) | \(-8\) | $+$ | \(q+(-4-\beta )q^{2}+(22+9\beta )q^{4}+(-41+\cdots)q^{5}+\cdots\) | |
| 27.6.a.c | $2$ | $4.330$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(0\) | \(334\) | $-$ | \(q+\beta q^{2}+22q^{4}+8\beta q^{5}+167q^{7}+\cdots\) | |
| 27.6.a.d | $2$ | $4.330$ | \(\Q(\sqrt{17}) \) | None | \(9\) | \(0\) | \(72\) | \(-8\) | $-$ | \(q+(4+\beta )q^{2}+(22+9\beta )q^{4}+(41-10\beta )q^{5}+\cdots\) | |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(27))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(27)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)