Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [27,5,Mod(2,27)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("27.2");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.f (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.79098900326\) |
Analytic rank: | \(0\) |
Dimension: | \(66\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −7.11993 | − | 1.25544i | 6.30423 | − | 6.42314i | 34.0822 | + | 12.4049i | −16.3502 | − | 19.4854i | −52.9495 | + | 37.8177i | −60.7132 | + | 22.0978i | −126.911 | − | 73.2722i | −1.51338 | − | 80.9859i | 91.9496 | + | 159.261i |
2.2 | −6.19782 | − | 1.09284i | −7.35835 | + | 5.18216i | 22.1836 | + | 8.07418i | −7.06026 | − | 8.41408i | 51.2690 | − | 24.0766i | 62.3269 | − | 22.6852i | −41.4621 | − | 23.9381i | 27.2905 | − | 76.2642i | 34.5629 | + | 59.8648i |
2.3 | −4.35935 | − | 0.768672i | −5.98497 | − | 6.72162i | 3.37802 | + | 1.22950i | 27.2417 | + | 32.4654i | 20.9239 | + | 33.9024i | −49.1081 | + | 17.8739i | 47.5559 | + | 27.4564i | −9.36028 | + | 80.4573i | −93.8009 | − | 162.468i |
2.4 | −3.58910 | − | 0.632855i | 8.76651 | + | 2.03673i | −2.55397 | − | 0.929568i | 12.8585 | + | 15.3241i | −30.1749 | − | 12.8580i | 75.5885 | − | 27.5120i | 59.0773 | + | 34.1083i | 72.7034 | + | 35.7101i | −36.4523 | − | 63.1373i |
2.5 | −2.38785 | − | 0.421042i | 1.69434 | + | 8.83907i | −9.51055 | − | 3.46156i | −12.2061 | − | 14.5467i | −0.324205 | − | 21.8197i | −77.2633 | + | 28.1215i | 54.8497 | + | 31.6675i | −75.2584 | + | 29.9528i | 23.0216 | + | 39.8746i |
2.6 | −0.185922 | − | 0.0327832i | 3.20767 | − | 8.40898i | −15.0016 | − | 5.46013i | −10.5929 | − | 12.6241i | −0.872050 | + | 1.45826i | 26.3432 | − | 9.58813i | 5.22609 | + | 3.01729i | −60.4218 | − | 53.9464i | 1.55560 | + | 2.69438i |
2.7 | 1.18141 | + | 0.208314i | −8.94516 | − | 0.991988i | −13.6827 | − | 4.98011i | −12.1061 | − | 14.4275i | −10.3613 | − | 3.03535i | 0.372391 | − | 0.135539i | −31.7501 | − | 18.3309i | 79.0319 | + | 17.7470i | −11.2968 | − | 19.5667i |
2.8 | 2.89555 | + | 0.510564i | −3.30987 | + | 8.36927i | −6.91152 | − | 2.51559i | 31.8237 | + | 37.9260i | −13.8570 | + | 22.5438i | 28.2667 | − | 10.2882i | −59.4692 | − | 34.3346i | −59.0895 | − | 55.4025i | 72.7837 | + | 126.065i |
2.9 | 4.49504 | + | 0.792597i | 8.84760 | + | 1.64926i | 4.54211 | + | 1.65319i | −3.40574 | − | 4.05880i | 38.4631 | + | 14.4261i | −28.7185 | + | 10.4527i | −44.1393 | − | 25.4838i | 75.5599 | + | 29.1840i | −12.0919 | − | 20.9439i |
2.10 | 5.98494 | + | 1.05531i | −1.69482 | − | 8.83898i | 19.6707 | + | 7.15955i | 10.5942 | + | 12.6257i | −0.815584 | − | 54.6893i | 7.09675 | − | 2.58301i | 25.9633 | + | 14.9899i | −75.2551 | + | 29.9610i | 50.0816 | + | 86.7438i |
2.11 | 7.34334 | + | 1.29483i | −4.72310 | + | 7.66109i | 37.2130 | + | 13.5444i | −22.9421 | − | 27.3414i | −44.6032 | + | 50.1424i | 14.0427 | − | 5.11111i | 152.408 | + | 87.9929i | −36.3846 | − | 72.3682i | −133.070 | − | 230.483i |
5.1 | −5.07357 | − | 6.04645i | 4.83746 | + | 7.58940i | −8.04003 | + | 45.5973i | 2.20171 | + | 6.04914i | 21.3457 | − | 67.7548i | 3.89095 | + | 22.0667i | 207.124 | − | 119.583i | −34.1980 | + | 73.4268i | 25.4053 | − | 44.0033i |
5.2 | −3.69447 | − | 4.40289i | −2.23464 | − | 8.71817i | −2.95802 | + | 16.7758i | −4.30375 | − | 11.8244i | −30.1294 | + | 42.0478i | 8.03917 | + | 45.5924i | 5.14963 | − | 2.97314i | −71.0128 | + | 38.9638i | −36.1617 | + | 62.6340i |
5.3 | −2.66286 | − | 3.17348i | −8.41268 | + | 3.19794i | −0.201747 | + | 1.14416i | 12.7013 | + | 34.8965i | 32.5504 | + | 18.1818i | 4.71194 | + | 26.7227i | −53.2345 | + | 30.7349i | 60.5463 | − | 53.8065i | 76.9216 | − | 133.232i |
5.4 | −2.46212 | − | 2.93424i | 8.40252 | − | 3.22453i | 0.230635 | − | 1.30800i | 3.23200 | + | 8.87984i | −30.1496 | − | 16.7158i | −13.4127 | − | 76.0673i | −57.4812 | + | 33.1868i | 60.2048 | − | 54.1884i | 18.0980 | − | 31.3467i |
5.5 | −1.73231 | − | 2.06448i | −2.55344 | + | 8.63017i | 1.51717 | − | 8.60428i | −14.6121 | − | 40.1465i | 22.2402 | − | 9.67858i | −2.26393 | − | 12.8394i | −57.7345 | + | 33.3330i | −67.9598 | − | 44.0734i | −57.5690 | + | 99.7125i |
5.6 | 0.712681 | + | 0.849340i | 5.75088 | + | 6.92296i | 2.56491 | − | 14.5463i | 9.60722 | + | 26.3956i | −1.78140 | + | 9.81832i | 2.66962 | + | 15.1401i | 29.5458 | − | 17.0583i | −14.8546 | + | 79.6262i | −15.5720 | + | 26.9714i |
5.7 | 0.868224 | + | 1.03471i | −7.41018 | − | 5.10776i | 2.46156 | − | 13.9602i | −3.20330 | − | 8.80100i | −1.14866 | − | 12.1021i | −7.41386 | − | 42.0461i | 35.2980 | − | 20.3793i | 28.8216 | + | 75.6988i | 6.32529 | − | 10.9557i |
5.8 | 1.32398 | + | 1.57786i | 6.23064 | − | 6.49455i | 2.04165 | − | 11.5788i | −6.36554 | − | 17.4892i | 18.4968 | + | 1.23241i | 14.2733 | + | 80.9481i | 49.5136 | − | 28.5867i | −3.35832 | − | 80.9304i | 19.1677 | − | 33.1993i |
5.9 | 3.59971 | + | 4.28997i | −7.31429 | + | 5.24416i | −2.66754 | + | 15.1284i | 2.69449 | + | 7.40305i | −48.8266 | − | 12.5006i | 7.02945 | + | 39.8660i | 3.09545 | − | 1.78716i | 25.9976 | − | 76.7146i | −22.0595 | + | 38.2081i |
See all 66 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 27.5.f.a | ✓ | 66 |
3.b | odd | 2 | 1 | 81.5.f.a | 66 | ||
27.e | even | 9 | 1 | 81.5.f.a | 66 | ||
27.f | odd | 18 | 1 | inner | 27.5.f.a | ✓ | 66 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.5.f.a | ✓ | 66 | 1.a | even | 1 | 1 | trivial |
27.5.f.a | ✓ | 66 | 27.f | odd | 18 | 1 | inner |
81.5.f.a | 66 | 3.b | odd | 2 | 1 | ||
81.5.f.a | 66 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(27, [\chi])\).