Properties

Label 27.5.d.a.17.2
Level $27$
Weight $5$
Character 27.17
Analytic conductor $2.791$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,5,Mod(8,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.79098900326\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.39400128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Root \(-0.102534 + 0.177594i\) of defining polynomial
Character \(\chi\) \(=\) 27.17
Dual form 27.5.d.a.8.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.307601 + 0.177594i) q^{2} +(-7.93692 + 13.7472i) q^{4} +(30.0804 + 17.3669i) q^{5} +(15.6054 + 27.0294i) q^{7} -11.3212i q^{8} -12.3370 q^{10} +(-49.9968 + 28.8657i) q^{11} +(36.6478 - 63.4758i) q^{13} +(-9.60051 - 5.54285i) q^{14} +(-124.980 - 216.472i) q^{16} -386.985i q^{17} +115.791 q^{19} +(-477.491 + 275.679i) q^{20} +(10.2527 - 17.7583i) q^{22} +(474.852 + 274.156i) q^{23} +(290.719 + 503.539i) q^{25} +26.0337i q^{26} -495.436 q^{28} +(680.082 - 392.645i) q^{29} +(-272.367 + 471.753i) q^{31} +(233.759 + 134.961i) q^{32} +(68.7261 + 119.037i) q^{34} +1084.07i q^{35} +898.827 q^{37} +(-35.6175 + 20.5637i) q^{38} +(196.614 - 340.546i) q^{40} +(-2242.01 - 1294.43i) q^{41} +(-1000.05 - 1732.14i) q^{43} -916.419i q^{44} -194.753 q^{46} +(702.646 - 405.673i) q^{47} +(713.441 - 1235.72i) q^{49} +(-178.851 - 103.260i) q^{50} +(581.741 + 1007.61i) q^{52} +2221.00i q^{53} -2005.23 q^{55} +(306.005 - 176.672i) q^{56} +(-139.463 + 241.557i) q^{58} +(-1309.65 - 756.128i) q^{59} +(951.281 + 1647.67i) q^{61} -193.483i q^{62} +3903.49 q^{64} +(2204.76 - 1272.92i) q^{65} +(-2253.55 + 3903.26i) q^{67} +(5319.94 + 3071.47i) q^{68} +(-192.524 - 333.462i) q^{70} +3993.54i q^{71} -3436.70 q^{73} +(-276.480 + 159.626i) q^{74} +(-919.023 + 1591.80i) q^{76} +(-1560.44 - 900.923i) q^{77} +(-601.388 - 1041.63i) q^{79} -8682.07i q^{80} +919.529 q^{82} +(-8016.22 + 4628.17i) q^{83} +(6720.72 - 11640.6i) q^{85} +(615.236 + 355.207i) q^{86} +(326.794 + 566.024i) q^{88} -8929.99i q^{89} +2287.62 q^{91} +(-7537.72 + 4351.91i) q^{92} +(-144.090 + 249.571i) q^{94} +(3483.03 + 2010.93i) q^{95} +(-3335.14 - 5776.64i) q^{97} +506.811i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 15 q^{4} + 12 q^{5} + 12 q^{7} - 36 q^{10} - 483 q^{11} - 6 q^{13} + 1146 q^{14} + 15 q^{16} - 258 q^{19} - 1614 q^{20} - 369 q^{22} + 282 q^{23} - 273 q^{25} + 1308 q^{28} + 1056 q^{29}+ \cdots - 28959 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.307601 + 0.177594i −0.0769004 + 0.0443984i −0.537957 0.842972i \(-0.680804\pi\)
0.461057 + 0.887371i \(0.347470\pi\)
\(3\) 0 0
\(4\) −7.93692 + 13.7472i −0.496058 + 0.859197i
\(5\) 30.0804 + 17.3669i 1.20321 + 0.694676i 0.961268 0.275614i \(-0.0888811\pi\)
0.241946 + 0.970290i \(0.422214\pi\)
\(6\) 0 0
\(7\) 15.6054 + 27.0294i 0.318478 + 0.551620i 0.980171 0.198155i \(-0.0634949\pi\)
−0.661693 + 0.749775i \(0.730162\pi\)
\(8\) 11.3212i 0.176894i
\(9\) 0 0
\(10\) −12.3370 −0.123370
\(11\) −49.9968 + 28.8657i −0.413197 + 0.238559i −0.692162 0.721742i \(-0.743342\pi\)
0.278965 + 0.960301i \(0.410009\pi\)
\(12\) 0 0
\(13\) 36.6478 63.4758i 0.216851 0.375597i −0.736993 0.675901i \(-0.763755\pi\)
0.953844 + 0.300304i \(0.0970882\pi\)
\(14\) −9.60051 5.54285i −0.0489822 0.0282799i
\(15\) 0 0
\(16\) −124.980 216.472i −0.488204 0.845594i
\(17\) 386.985i 1.33905i −0.742791 0.669524i \(-0.766498\pi\)
0.742791 0.669524i \(-0.233502\pi\)
\(18\) 0 0
\(19\) 115.791 0.320750 0.160375 0.987056i \(-0.448730\pi\)
0.160375 + 0.987056i \(0.448730\pi\)
\(20\) −477.491 + 275.679i −1.19373 + 0.689199i
\(21\) 0 0
\(22\) 10.2527 17.7583i 0.0211833 0.0366906i
\(23\) 474.852 + 274.156i 0.897641 + 0.518253i 0.876434 0.481522i \(-0.159916\pi\)
0.0212066 + 0.999775i \(0.493249\pi\)
\(24\) 0 0
\(25\) 290.719 + 503.539i 0.465150 + 0.805663i
\(26\) 26.0337i 0.0385113i
\(27\) 0 0
\(28\) −495.436 −0.631934
\(29\) 680.082 392.645i 0.808658 0.466879i −0.0378313 0.999284i \(-0.512045\pi\)
0.846490 + 0.532405i \(0.178712\pi\)
\(30\) 0 0
\(31\) −272.367 + 471.753i −0.283420 + 0.490898i −0.972225 0.234049i \(-0.924802\pi\)
0.688805 + 0.724947i \(0.258136\pi\)
\(32\) 233.759 + 134.961i 0.228280 + 0.131798i
\(33\) 0 0
\(34\) 68.7261 + 119.037i 0.0594516 + 0.102973i
\(35\) 1084.07i 0.884957i
\(36\) 0 0
\(37\) 898.827 0.656557 0.328279 0.944581i \(-0.393532\pi\)
0.328279 + 0.944581i \(0.393532\pi\)
\(38\) −35.6175 + 20.5637i −0.0246658 + 0.0142408i
\(39\) 0 0
\(40\) 196.614 340.546i 0.122884 0.212841i
\(41\) −2242.01 1294.43i −1.33374 0.770034i −0.347867 0.937544i \(-0.613094\pi\)
−0.985870 + 0.167510i \(0.946427\pi\)
\(42\) 0 0
\(43\) −1000.05 1732.14i −0.540862 0.936801i −0.998855 0.0478447i \(-0.984765\pi\)
0.457993 0.888956i \(-0.348569\pi\)
\(44\) 916.419i 0.473357i
\(45\) 0 0
\(46\) −194.753 −0.0920385
\(47\) 702.646 405.673i 0.318083 0.183645i −0.332455 0.943119i \(-0.607877\pi\)
0.650538 + 0.759474i \(0.274544\pi\)
\(48\) 0 0
\(49\) 713.441 1235.72i 0.297143 0.514667i
\(50\) −178.851 103.260i −0.0715404 0.0413039i
\(51\) 0 0
\(52\) 581.741 + 1007.61i 0.215141 + 0.372635i
\(53\) 2221.00i 0.790672i 0.918537 + 0.395336i \(0.129372\pi\)
−0.918537 + 0.395336i \(0.870628\pi\)
\(54\) 0 0
\(55\) −2005.23 −0.662886
\(56\) 306.005 176.672i 0.0975781 0.0563368i
\(57\) 0 0
\(58\) −139.463 + 241.557i −0.0414574 + 0.0718064i
\(59\) −1309.65 756.128i −0.376229 0.217216i 0.299947 0.953956i \(-0.403031\pi\)
−0.676176 + 0.736740i \(0.736364\pi\)
\(60\) 0 0
\(61\) 951.281 + 1647.67i 0.255652 + 0.442802i 0.965072 0.261983i \(-0.0843765\pi\)
−0.709420 + 0.704786i \(0.751043\pi\)
\(62\) 193.483i 0.0503337i
\(63\) 0 0
\(64\) 3903.49 0.953001
\(65\) 2204.76 1272.92i 0.521836 0.301282i
\(66\) 0 0
\(67\) −2253.55 + 3903.26i −0.502015 + 0.869516i 0.497982 + 0.867187i \(0.334075\pi\)
−0.999997 + 0.00232883i \(0.999259\pi\)
\(68\) 5319.94 + 3071.47i 1.15051 + 0.664244i
\(69\) 0 0
\(70\) −192.524 333.462i −0.0392907 0.0680535i
\(71\) 3993.54i 0.792213i 0.918205 + 0.396106i \(0.129639\pi\)
−0.918205 + 0.396106i \(0.870361\pi\)
\(72\) 0 0
\(73\) −3436.70 −0.644905 −0.322452 0.946586i \(-0.604507\pi\)
−0.322452 + 0.946586i \(0.604507\pi\)
\(74\) −276.480 + 159.626i −0.0504895 + 0.0291501i
\(75\) 0 0
\(76\) −919.023 + 1591.80i −0.159111 + 0.275588i
\(77\) −1560.44 900.923i −0.263188 0.151952i
\(78\) 0 0
\(79\) −601.388 1041.63i −0.0963608 0.166902i 0.813815 0.581124i \(-0.197387\pi\)
−0.910176 + 0.414222i \(0.864054\pi\)
\(80\) 8682.07i 1.35657i
\(81\) 0 0
\(82\) 919.529 0.136753
\(83\) −8016.22 + 4628.17i −1.16363 + 0.671820i −0.952170 0.305567i \(-0.901154\pi\)
−0.211456 + 0.977387i \(0.567821\pi\)
\(84\) 0 0
\(85\) 6720.72 11640.6i 0.930204 1.61116i
\(86\) 615.236 + 355.207i 0.0831850 + 0.0480269i
\(87\) 0 0
\(88\) 326.794 + 566.024i 0.0421996 + 0.0730919i
\(89\) 8929.99i 1.12738i −0.825986 0.563691i \(-0.809381\pi\)
0.825986 0.563691i \(-0.190619\pi\)
\(90\) 0 0
\(91\) 2287.62 0.276249
\(92\) −7537.72 + 4351.91i −0.890563 + 0.514167i
\(93\) 0 0
\(94\) −144.090 + 249.571i −0.0163071 + 0.0282448i
\(95\) 3483.03 + 2010.93i 0.385932 + 0.222818i
\(96\) 0 0
\(97\) −3335.14 5776.64i −0.354463 0.613948i 0.632563 0.774509i \(-0.282003\pi\)
−0.987026 + 0.160561i \(0.948670\pi\)
\(98\) 506.811i 0.0527708i
\(99\) 0 0
\(100\) −9229.64 −0.922964
\(101\) 7924.19 4575.03i 0.776805 0.448489i −0.0584918 0.998288i \(-0.518629\pi\)
0.835297 + 0.549799i \(0.185296\pi\)
\(102\) 0 0
\(103\) −7656.20 + 13260.9i −0.721670 + 1.24997i 0.238660 + 0.971103i \(0.423292\pi\)
−0.960330 + 0.278866i \(0.910041\pi\)
\(104\) −718.622 414.897i −0.0664406 0.0383595i
\(105\) 0 0
\(106\) −394.435 683.182i −0.0351046 0.0608029i
\(107\) 6099.28i 0.532735i 0.963872 + 0.266367i \(0.0858234\pi\)
−0.963872 + 0.266367i \(0.914177\pi\)
\(108\) 0 0
\(109\) 15169.5 1.27679 0.638393 0.769710i \(-0.279599\pi\)
0.638393 + 0.769710i \(0.279599\pi\)
\(110\) 616.812 356.116i 0.0509762 0.0294311i
\(111\) 0 0
\(112\) 3900.74 6756.28i 0.310964 0.538606i
\(113\) 1189.11 + 686.532i 0.0931246 + 0.0537655i 0.545839 0.837890i \(-0.316211\pi\)
−0.452714 + 0.891656i \(0.649544\pi\)
\(114\) 0 0
\(115\) 9522.48 + 16493.4i 0.720036 + 1.24714i
\(116\) 12465.6i 0.926396i
\(117\) 0 0
\(118\) 537.135 0.0385762
\(119\) 10460.0 6039.06i 0.738646 0.426457i
\(120\) 0 0
\(121\) −5654.04 + 9793.09i −0.386179 + 0.668881i
\(122\) −585.231 337.883i −0.0393195 0.0227011i
\(123\) 0 0
\(124\) −4323.51 7488.53i −0.281185 0.487027i
\(125\) 1513.10i 0.0968386i
\(126\) 0 0
\(127\) −19152.4 −1.18745 −0.593726 0.804667i \(-0.702344\pi\)
−0.593726 + 0.804667i \(0.702344\pi\)
\(128\) −4940.87 + 2852.61i −0.301567 + 0.174110i
\(129\) 0 0
\(130\) −452.124 + 783.102i −0.0267529 + 0.0463374i
\(131\) 2615.39 + 1510.00i 0.152403 + 0.0879902i 0.574262 0.818671i \(-0.305289\pi\)
−0.421859 + 0.906661i \(0.638622\pi\)
\(132\) 0 0
\(133\) 1806.97 + 3129.76i 0.102152 + 0.176932i
\(134\) 1600.86i 0.0891548i
\(135\) 0 0
\(136\) −4381.13 −0.236869
\(137\) 8788.30 5073.93i 0.468235 0.270336i −0.247266 0.968948i \(-0.579532\pi\)
0.715501 + 0.698612i \(0.246199\pi\)
\(138\) 0 0
\(139\) 17563.2 30420.3i 0.909021 1.57447i 0.0935938 0.995610i \(-0.470165\pi\)
0.815427 0.578860i \(-0.196502\pi\)
\(140\) −14902.9 8604.19i −0.760352 0.438989i
\(141\) 0 0
\(142\) −709.229 1228.42i −0.0351730 0.0609214i
\(143\) 4231.45i 0.206927i
\(144\) 0 0
\(145\) 27276.1 1.29732
\(146\) 1057.13 610.336i 0.0495934 0.0286328i
\(147\) 0 0
\(148\) −7133.92 + 12356.3i −0.325690 + 0.564112i
\(149\) −32373.7 18691.0i −1.45821 0.841899i −0.459288 0.888288i \(-0.651895\pi\)
−0.998923 + 0.0463890i \(0.985229\pi\)
\(150\) 0 0
\(151\) −16635.0 28812.7i −0.729573 1.26366i −0.957064 0.289878i \(-0.906385\pi\)
0.227490 0.973780i \(-0.426948\pi\)
\(152\) 1310.89i 0.0567387i
\(153\) 0 0
\(154\) 639.993 0.0269857
\(155\) −16385.8 + 9460.33i −0.682030 + 0.393770i
\(156\) 0 0
\(157\) −4040.16 + 6997.77i −0.163908 + 0.283897i −0.936267 0.351289i \(-0.885743\pi\)
0.772359 + 0.635186i \(0.219077\pi\)
\(158\) 369.975 + 213.605i 0.0148204 + 0.00855654i
\(159\) 0 0
\(160\) 4687.71 + 8119.35i 0.183114 + 0.317162i
\(161\) 17113.3i 0.660209i
\(162\) 0 0
\(163\) −25427.1 −0.957022 −0.478511 0.878081i \(-0.658823\pi\)
−0.478511 + 0.878081i \(0.658823\pi\)
\(164\) 35589.4 20547.5i 1.32322 0.763962i
\(165\) 0 0
\(166\) 1643.87 2847.26i 0.0596555 0.103326i
\(167\) 30356.6 + 17526.4i 1.08848 + 0.628434i 0.933171 0.359432i \(-0.117029\pi\)
0.155309 + 0.987866i \(0.450363\pi\)
\(168\) 0 0
\(169\) 11594.4 + 20082.1i 0.405951 + 0.703129i
\(170\) 4774.24i 0.165198i
\(171\) 0 0
\(172\) 31749.4 1.07319
\(173\) −12731.0 + 7350.23i −0.425372 + 0.245589i −0.697373 0.716708i \(-0.745648\pi\)
0.272001 + 0.962297i \(0.412315\pi\)
\(174\) 0 0
\(175\) −9073.58 + 15715.9i −0.296280 + 0.513172i
\(176\) 12497.2 + 7215.28i 0.403449 + 0.232931i
\(177\) 0 0
\(178\) 1585.91 + 2746.88i 0.0500540 + 0.0866960i
\(179\) 37052.5i 1.15641i −0.815892 0.578205i \(-0.803753\pi\)
0.815892 0.578205i \(-0.196247\pi\)
\(180\) 0 0
\(181\) −39664.7 −1.21073 −0.605365 0.795948i \(-0.706973\pi\)
−0.605365 + 0.795948i \(0.706973\pi\)
\(182\) −703.674 + 406.267i −0.0212436 + 0.0122650i
\(183\) 0 0
\(184\) 3103.77 5375.89i 0.0916757 0.158787i
\(185\) 27037.0 + 15609.8i 0.789979 + 0.456094i
\(186\) 0 0
\(187\) 11170.6 + 19348.0i 0.319442 + 0.553290i
\(188\) 12879.2i 0.364395i
\(189\) 0 0
\(190\) −1428.51 −0.0395710
\(191\) −49915.1 + 28818.5i −1.36825 + 0.789959i −0.990704 0.136032i \(-0.956565\pi\)
−0.377545 + 0.925991i \(0.623232\pi\)
\(192\) 0 0
\(193\) −2089.81 + 3619.67i −0.0561039 + 0.0971748i −0.892713 0.450625i \(-0.851201\pi\)
0.836609 + 0.547800i \(0.184534\pi\)
\(194\) 2051.79 + 1184.60i 0.0545167 + 0.0314752i
\(195\) 0 0
\(196\) 11325.1 + 19615.6i 0.294800 + 0.510609i
\(197\) 22191.5i 0.571812i −0.958258 0.285906i \(-0.907705\pi\)
0.958258 0.285906i \(-0.0922945\pi\)
\(198\) 0 0
\(199\) 50608.7 1.27797 0.638983 0.769221i \(-0.279355\pi\)
0.638983 + 0.769221i \(0.279355\pi\)
\(200\) 5700.67 3291.28i 0.142517 0.0822820i
\(201\) 0 0
\(202\) −1624.99 + 2814.57i −0.0398244 + 0.0689779i
\(203\) 21225.9 + 12254.8i 0.515080 + 0.297382i
\(204\) 0 0
\(205\) −44960.4 77873.6i −1.06985 1.85303i
\(206\) 5438.77i 0.128164i
\(207\) 0 0
\(208\) −18321.0 −0.423469
\(209\) −5789.18 + 3342.38i −0.132533 + 0.0765180i
\(210\) 0 0
\(211\) 4459.02 7723.26i 0.100156 0.173474i −0.811593 0.584223i \(-0.801399\pi\)
0.911749 + 0.410749i \(0.134733\pi\)
\(212\) −30532.4 17627.9i −0.679343 0.392219i
\(213\) 0 0
\(214\) −1083.19 1876.15i −0.0236526 0.0409675i
\(215\) 69471.4i 1.50290i
\(216\) 0 0
\(217\) −17001.6 −0.361052
\(218\) −4666.16 + 2694.01i −0.0981853 + 0.0566873i
\(219\) 0 0
\(220\) 15915.4 27566.2i 0.328830 0.569550i
\(221\) −24564.2 14182.1i −0.502941 0.290373i
\(222\) 0 0
\(223\) 4248.76 + 7359.07i 0.0854384 + 0.147984i 0.905578 0.424180i \(-0.139438\pi\)
−0.820140 + 0.572164i \(0.806104\pi\)
\(224\) 8424.49i 0.167899i
\(225\) 0 0
\(226\) −487.695 −0.00954842
\(227\) −16543.5 + 9551.40i −0.321052 + 0.185360i −0.651862 0.758338i \(-0.726012\pi\)
0.330809 + 0.943698i \(0.392678\pi\)
\(228\) 0 0
\(229\) 5361.51 9286.40i 0.102239 0.177083i −0.810368 0.585921i \(-0.800733\pi\)
0.912607 + 0.408839i \(0.134066\pi\)
\(230\) −5858.25 3382.26i −0.110742 0.0639370i
\(231\) 0 0
\(232\) −4445.21 7699.34i −0.0825880 0.143047i
\(233\) 102200.i 1.88251i 0.337694 + 0.941256i \(0.390353\pi\)
−0.337694 + 0.941256i \(0.609647\pi\)
\(234\) 0 0
\(235\) 28181.1 0.510296
\(236\) 20789.2 12002.7i 0.373262 0.215503i
\(237\) 0 0
\(238\) −2145.00 + 3715.25i −0.0378681 + 0.0655894i
\(239\) −13440.9 7760.09i −0.235305 0.135854i 0.377712 0.925923i \(-0.376711\pi\)
−0.613017 + 0.790070i \(0.710044\pi\)
\(240\) 0 0
\(241\) 35978.9 + 62317.3i 0.619461 + 1.07294i 0.989584 + 0.143955i \(0.0459820\pi\)
−0.370123 + 0.928983i \(0.620685\pi\)
\(242\) 4016.49i 0.0685830i
\(243\) 0 0
\(244\) −30201.0 −0.507272
\(245\) 42921.1 24780.5i 0.715054 0.412837i
\(246\) 0 0
\(247\) 4243.48 7349.92i 0.0695550 0.120473i
\(248\) 5340.81 + 3083.52i 0.0868368 + 0.0501352i
\(249\) 0 0
\(250\) 268.718 + 465.433i 0.00429948 + 0.00744692i
\(251\) 41487.8i 0.658526i −0.944238 0.329263i \(-0.893200\pi\)
0.944238 0.329263i \(-0.106800\pi\)
\(252\) 0 0
\(253\) −31654.8 −0.494537
\(254\) 5891.31 3401.35i 0.0913155 0.0527210i
\(255\) 0 0
\(256\) −30214.7 + 52333.4i −0.461040 + 0.798545i
\(257\) 62812.2 + 36264.6i 0.950994 + 0.549057i 0.893390 0.449283i \(-0.148320\pi\)
0.0576045 + 0.998339i \(0.481654\pi\)
\(258\) 0 0
\(259\) 14026.6 + 24294.7i 0.209099 + 0.362170i
\(260\) 40412.2i 0.597813i
\(261\) 0 0
\(262\) −1072.67 −0.0156265
\(263\) 74383.1 42945.1i 1.07538 0.620872i 0.145735 0.989324i \(-0.453445\pi\)
0.929647 + 0.368451i \(0.120112\pi\)
\(264\) 0 0
\(265\) −38571.8 + 66808.4i −0.549261 + 0.951347i
\(266\) −1111.65 641.812i −0.0157111 0.00907078i
\(267\) 0 0
\(268\) −35772.5 61959.7i −0.498057 0.862660i
\(269\) 88967.6i 1.22950i 0.788724 + 0.614748i \(0.210742\pi\)
−0.788724 + 0.614748i \(0.789258\pi\)
\(270\) 0 0
\(271\) 96541.6 1.31455 0.657273 0.753652i \(-0.271710\pi\)
0.657273 + 0.753652i \(0.271710\pi\)
\(272\) −83771.3 + 48365.4i −1.13229 + 0.653728i
\(273\) 0 0
\(274\) −1802.20 + 3121.49i −0.0240050 + 0.0415778i
\(275\) −29070.0 16783.6i −0.384397 0.221932i
\(276\) 0 0
\(277\) 11770.8 + 20387.6i 0.153407 + 0.265710i 0.932478 0.361227i \(-0.117642\pi\)
−0.779071 + 0.626936i \(0.784309\pi\)
\(278\) 12476.5i 0.161436i
\(279\) 0 0
\(280\) 12273.0 0.156543
\(281\) 50584.4 29204.9i 0.640626 0.369865i −0.144230 0.989544i \(-0.546070\pi\)
0.784855 + 0.619679i \(0.212737\pi\)
\(282\) 0 0
\(283\) 38058.6 65919.5i 0.475204 0.823078i −0.524393 0.851477i \(-0.675708\pi\)
0.999597 + 0.0283989i \(0.00904087\pi\)
\(284\) −54899.9 31696.4i −0.680667 0.392983i
\(285\) 0 0
\(286\) −751.480 1301.60i −0.00918724 0.0159128i
\(287\) 80800.3i 0.980956i
\(288\) 0 0
\(289\) −66236.1 −0.793047
\(290\) −8390.18 + 4844.07i −0.0997643 + 0.0575990i
\(291\) 0 0
\(292\) 27276.8 47244.8i 0.319910 0.554100i
\(293\) −121166. 69955.5i −1.41139 0.814866i −0.415871 0.909424i \(-0.636523\pi\)
−0.995519 + 0.0945573i \(0.969856\pi\)
\(294\) 0 0
\(295\) −26263.2 45489.2i −0.301789 0.522714i
\(296\) 10175.8i 0.116141i
\(297\) 0 0
\(298\) 13277.6 0.149516
\(299\) 34804.5 20094.4i 0.389308 0.224767i
\(300\) 0 0
\(301\) 31212.5 54061.7i 0.344505 0.596701i
\(302\) 10233.9 + 5908.55i 0.112209 + 0.0647838i
\(303\) 0 0
\(304\) −14471.6 25065.5i −0.156592 0.271225i
\(305\) 66083.2i 0.710381i
\(306\) 0 0
\(307\) −81796.8 −0.867880 −0.433940 0.900942i \(-0.642877\pi\)
−0.433940 + 0.900942i \(0.642877\pi\)
\(308\) 24770.2 14301.1i 0.261113 0.150754i
\(309\) 0 0
\(310\) 3360.19 5820.03i 0.0349656 0.0605622i
\(311\) 1474.59 + 851.354i 0.0152458 + 0.00880216i 0.507604 0.861591i \(-0.330531\pi\)
−0.492358 + 0.870393i \(0.663865\pi\)
\(312\) 0 0
\(313\) 34980.1 + 60587.3i 0.357052 + 0.618433i 0.987467 0.157826i \(-0.0504484\pi\)
−0.630415 + 0.776259i \(0.717115\pi\)
\(314\) 2870.03i 0.0291090i
\(315\) 0 0
\(316\) 19092.7 0.191202
\(317\) −101004. + 58314.7i −1.00512 + 0.580309i −0.909760 0.415134i \(-0.863735\pi\)
−0.0953639 + 0.995442i \(0.530401\pi\)
\(318\) 0 0
\(319\) −22668.0 + 39262.1i −0.222757 + 0.385826i
\(320\) 117418. + 67791.6i 1.14666 + 0.662027i
\(321\) 0 0
\(322\) −3039.21 5264.07i −0.0293123 0.0507703i
\(323\) 44809.3i 0.429500i
\(324\) 0 0
\(325\) 42616.8 0.403472
\(326\) 7821.42 4515.70i 0.0735954 0.0424903i
\(327\) 0 0
\(328\) −14654.5 + 25382.3i −0.136214 + 0.235930i
\(329\) 21930.2 + 12661.4i 0.202605 + 0.116974i
\(330\) 0 0
\(331\) −50418.1 87326.8i −0.460183 0.797061i 0.538787 0.842442i \(-0.318883\pi\)
−0.998970 + 0.0453817i \(0.985550\pi\)
\(332\) 146934.i 1.33305i
\(333\) 0 0
\(334\) −12450.3 −0.111606
\(335\) −135575. + 78274.3i −1.20806 + 0.697476i
\(336\) 0 0
\(337\) −20047.2 + 34722.8i −0.176520 + 0.305742i −0.940686 0.339277i \(-0.889817\pi\)
0.764166 + 0.645020i \(0.223151\pi\)
\(338\) −7132.90 4118.18i −0.0624356 0.0360472i
\(339\) 0 0
\(340\) 106684. + 184782.i 0.922869 + 1.59846i
\(341\) 31448.2i 0.270450i
\(342\) 0 0
\(343\) 119471. 1.01549
\(344\) −19609.9 + 11321.8i −0.165714 + 0.0956751i
\(345\) 0 0
\(346\) 2610.71 4521.88i 0.0218075 0.0377717i
\(347\) 196035. + 113181.i 1.62808 + 0.939971i 0.984666 + 0.174451i \(0.0558150\pi\)
0.643412 + 0.765520i \(0.277518\pi\)
\(348\) 0 0
\(349\) −39799.1 68934.1i −0.326755 0.565957i 0.655111 0.755533i \(-0.272622\pi\)
−0.981866 + 0.189576i \(0.939289\pi\)
\(350\) 6445.64i 0.0526175i
\(351\) 0 0
\(352\) −15583.0 −0.125766
\(353\) 121173. 69959.4i 0.972427 0.561431i 0.0724520 0.997372i \(-0.476918\pi\)
0.899975 + 0.435941i \(0.143584\pi\)
\(354\) 0 0
\(355\) −69355.5 + 120127.i −0.550331 + 0.953202i
\(356\) 122762. + 70876.6i 0.968642 + 0.559246i
\(357\) 0 0
\(358\) 6580.30 + 11397.4i 0.0513428 + 0.0889283i
\(359\) 211616.i 1.64195i 0.570963 + 0.820976i \(0.306570\pi\)
−0.570963 + 0.820976i \(0.693430\pi\)
\(360\) 0 0
\(361\) −116913. −0.897119
\(362\) 12200.9 7044.20i 0.0931055 0.0537545i
\(363\) 0 0
\(364\) −18156.6 + 31448.2i −0.137035 + 0.237352i
\(365\) −103377. 59684.8i −0.775959 0.448000i
\(366\) 0 0
\(367\) 15996.8 + 27707.3i 0.118769 + 0.205713i 0.919280 0.393604i \(-0.128772\pi\)
−0.800511 + 0.599318i \(0.795439\pi\)
\(368\) 137056.i 1.01205i
\(369\) 0 0
\(370\) −11088.8 −0.0809995
\(371\) −60032.2 + 34659.6i −0.436151 + 0.251812i
\(372\) 0 0
\(373\) 61573.9 106649.i 0.442567 0.766548i −0.555312 0.831642i \(-0.687401\pi\)
0.997879 + 0.0650938i \(0.0207347\pi\)
\(374\) −6872.17 3967.65i −0.0491305 0.0283655i
\(375\) 0 0
\(376\) −4592.70 7954.79i −0.0324857 0.0562669i
\(377\) 57558.3i 0.404972i
\(378\) 0 0
\(379\) −116524. −0.811218 −0.405609 0.914047i \(-0.632941\pi\)
−0.405609 + 0.914047i \(0.632941\pi\)
\(380\) −55289.1 + 31921.2i −0.382889 + 0.221061i
\(381\) 0 0
\(382\) 10236.0 17729.2i 0.0701459 0.121496i
\(383\) −156848. 90556.2i −1.06925 0.617334i −0.141277 0.989970i \(-0.545121\pi\)
−0.927978 + 0.372636i \(0.878454\pi\)
\(384\) 0 0
\(385\) −31292.5 54200.2i −0.211115 0.365661i
\(386\) 1484.55i 0.00996371i
\(387\) 0 0
\(388\) 105883. 0.703336
\(389\) 44017.9 25413.7i 0.290891 0.167946i −0.347453 0.937697i \(-0.612953\pi\)
0.638343 + 0.769752i \(0.279620\pi\)
\(390\) 0 0
\(391\) 106094. 183760.i 0.693965 1.20198i
\(392\) −13989.8 8077.01i −0.0910414 0.0525628i
\(393\) 0 0
\(394\) 3941.06 + 6826.12i 0.0253876 + 0.0439726i
\(395\) 41777.0i 0.267758i
\(396\) 0 0
\(397\) 228710. 1.45112 0.725561 0.688158i \(-0.241580\pi\)
0.725561 + 0.688158i \(0.241580\pi\)
\(398\) −15567.3 + 8987.80i −0.0982761 + 0.0567397i
\(399\) 0 0
\(400\) 72668.1 125865.i 0.454176 0.786655i
\(401\) −163618. 94464.9i −1.01752 0.587465i −0.104134 0.994563i \(-0.533207\pi\)
−0.913384 + 0.407099i \(0.866541\pi\)
\(402\) 0 0
\(403\) 19963.3 + 34577.4i 0.122920 + 0.212903i
\(404\) 145247.i 0.889904i
\(405\) 0 0
\(406\) −8705.50 −0.0528131
\(407\) −44938.5 + 25945.2i −0.271287 + 0.156628i
\(408\) 0 0
\(409\) −138713. + 240258.i −0.829223 + 1.43626i 0.0694256 + 0.997587i \(0.477883\pi\)
−0.898649 + 0.438669i \(0.855450\pi\)
\(410\) 27659.7 + 15969.4i 0.164543 + 0.0949992i
\(411\) 0 0
\(412\) −121533. 210502.i −0.715980 1.24011i
\(413\) 47198.8i 0.276714i
\(414\) 0 0
\(415\) −321508. −1.86679
\(416\) 17133.5 9892.04i 0.0990056 0.0571609i
\(417\) 0 0
\(418\) 1187.17 2056.24i 0.00679456 0.0117685i
\(419\) 88699.9 + 51210.9i 0.505237 + 0.291699i 0.730874 0.682513i \(-0.239113\pi\)
−0.225637 + 0.974212i \(0.572446\pi\)
\(420\) 0 0
\(421\) −23567.9 40820.8i −0.132971 0.230312i 0.791850 0.610716i \(-0.209118\pi\)
−0.924821 + 0.380404i \(0.875785\pi\)
\(422\) 3167.58i 0.0177870i
\(423\) 0 0
\(424\) 25144.3 0.139865
\(425\) 194862. 112504.i 1.07882 0.622857i
\(426\) 0 0
\(427\) −29690.3 + 51425.1i −0.162839 + 0.282046i
\(428\) −83847.7 48409.5i −0.457724 0.264267i
\(429\) 0 0
\(430\) 12337.7 + 21369.5i 0.0667262 + 0.115573i
\(431\) 45556.1i 0.245240i 0.992454 + 0.122620i \(0.0391297\pi\)
−0.992454 + 0.122620i \(0.960870\pi\)
\(432\) 0 0
\(433\) 209599. 1.11793 0.558965 0.829192i \(-0.311199\pi\)
0.558965 + 0.829192i \(0.311199\pi\)
\(434\) 5229.72 3019.38i 0.0277651 0.0160302i
\(435\) 0 0
\(436\) −120399. + 208537.i −0.633360 + 1.09701i
\(437\) 54983.5 + 31744.8i 0.287919 + 0.166230i
\(438\) 0 0
\(439\) 91842.1 + 159075.i 0.476555 + 0.825417i 0.999639 0.0268637i \(-0.00855202\pi\)
−0.523084 + 0.852281i \(0.675219\pi\)
\(440\) 22701.6i 0.117260i
\(441\) 0 0
\(442\) 10074.6 0.0515685
\(443\) 100410. 57971.5i 0.511644 0.295398i −0.221865 0.975077i \(-0.571215\pi\)
0.733509 + 0.679680i \(0.237881\pi\)
\(444\) 0 0
\(445\) 155086. 268617.i 0.783165 1.35648i
\(446\) −2613.85 1509.11i −0.0131405 0.00758666i
\(447\) 0 0
\(448\) 60915.7 + 105509.i 0.303510 + 0.525695i
\(449\) 328940.i 1.63164i 0.578305 + 0.815820i \(0.303714\pi\)
−0.578305 + 0.815820i \(0.696286\pi\)
\(450\) 0 0
\(451\) 149458. 0.734795
\(452\) −18875.7 + 10897.9i −0.0923903 + 0.0533416i
\(453\) 0 0
\(454\) 3392.54 5876.05i 0.0164594 0.0285084i
\(455\) 68812.3 + 39728.8i 0.332387 + 0.191904i
\(456\) 0 0
\(457\) 106369. + 184236.i 0.509308 + 0.882148i 0.999942 + 0.0107819i \(0.00343204\pi\)
−0.490634 + 0.871366i \(0.663235\pi\)
\(458\) 3808.68i 0.0181570i
\(459\) 0 0
\(460\) −302317. −1.42872
\(461\) 41957.2 24224.0i 0.197426 0.113984i −0.398028 0.917373i \(-0.630305\pi\)
0.595454 + 0.803389i \(0.296972\pi\)
\(462\) 0 0
\(463\) −84550.6 + 146446.i −0.394416 + 0.683149i −0.993026 0.117892i \(-0.962386\pi\)
0.598610 + 0.801040i \(0.295720\pi\)
\(464\) −169993. 98145.8i −0.789580 0.455864i
\(465\) 0 0
\(466\) −18150.0 31436.8i −0.0835806 0.144766i
\(467\) 54646.4i 0.250569i −0.992121 0.125285i \(-0.960016\pi\)
0.992121 0.125285i \(-0.0399844\pi\)
\(468\) 0 0
\(469\) −140670. −0.639524
\(470\) −8668.55 + 5004.79i −0.0392420 + 0.0226564i
\(471\) 0 0
\(472\) −8560.28 + 14826.8i −0.0384241 + 0.0665525i
\(473\) 99999.1 + 57734.5i 0.446965 + 0.258055i
\(474\) 0 0
\(475\) 33662.6 + 58305.3i 0.149197 + 0.258417i
\(476\) 191726.i 0.846189i
\(477\) 0 0
\(478\) 5512.58 0.0241268
\(479\) 120011. 69288.6i 0.523060 0.301989i −0.215126 0.976586i \(-0.569016\pi\)
0.738186 + 0.674597i \(0.235683\pi\)
\(480\) 0 0
\(481\) 32940.0 57053.7i 0.142375 0.246601i
\(482\) −22134.3 12779.3i −0.0952735 0.0550062i
\(483\) 0 0
\(484\) −89751.4 155454.i −0.383134 0.663607i
\(485\) 231684.i 0.984948i
\(486\) 0 0
\(487\) 23464.1 0.0989340 0.0494670 0.998776i \(-0.484248\pi\)
0.0494670 + 0.998776i \(0.484248\pi\)
\(488\) 18653.6 10769.6i 0.0783289 0.0452232i
\(489\) 0 0
\(490\) −8801.74 + 15245.1i −0.0366586 + 0.0634946i
\(491\) −64368.8 37163.4i −0.267001 0.154153i 0.360523 0.932750i \(-0.382598\pi\)
−0.627524 + 0.778597i \(0.715932\pi\)
\(492\) 0 0
\(493\) −151948. 263181.i −0.625173 1.08283i
\(494\) 3014.46i 0.0123525i
\(495\) 0 0
\(496\) 136162. 0.553467
\(497\) −107943. + 62321.0i −0.437001 + 0.252302i
\(498\) 0 0
\(499\) 9486.01 16430.2i 0.0380963 0.0659847i −0.846349 0.532629i \(-0.821204\pi\)
0.884445 + 0.466645i \(0.154537\pi\)
\(500\) 20800.9 + 12009.4i 0.0832034 + 0.0480375i
\(501\) 0 0
\(502\) 7367.97 + 12761.7i 0.0292375 + 0.0506409i
\(503\) 117856.i 0.465818i −0.972498 0.232909i \(-0.925175\pi\)
0.972498 0.232909i \(-0.0748245\pi\)
\(504\) 0 0
\(505\) 317816. 1.24622
\(506\) 9737.06 5621.69i 0.0380300 0.0219567i
\(507\) 0 0
\(508\) 152011. 263291.i 0.589045 1.02026i
\(509\) −158881. 91730.2i −0.613250 0.354060i 0.160986 0.986957i \(-0.448532\pi\)
−0.774236 + 0.632897i \(0.781866\pi\)
\(510\) 0 0
\(511\) −53631.2 92891.9i −0.205388 0.355743i
\(512\) 112747.i 0.430097i
\(513\) 0 0
\(514\) −25761.5 −0.0975091
\(515\) −460602. + 265929.i −1.73665 + 1.00265i
\(516\) 0 0
\(517\) −23420.0 + 40564.7i −0.0876207 + 0.151763i
\(518\) −8629.19 4982.06i −0.0321596 0.0185673i
\(519\) 0 0
\(520\) −14410.9 24960.5i −0.0532949 0.0923094i
\(521\) 409498.i 1.50861i −0.656526 0.754303i \(-0.727975\pi\)
0.656526 0.754303i \(-0.272025\pi\)
\(522\) 0 0
\(523\) −211852. −0.774513 −0.387256 0.921972i \(-0.626577\pi\)
−0.387256 + 0.921972i \(0.626577\pi\)
\(524\) −41516.4 + 23969.5i −0.151202 + 0.0872964i
\(525\) 0 0
\(526\) −15253.6 + 26420.0i −0.0551315 + 0.0954906i
\(527\) 182561. + 105402.i 0.657336 + 0.379513i
\(528\) 0 0
\(529\) 10402.4 + 18017.4i 0.0371724 + 0.0643845i
\(530\) 27400.5i 0.0975453i
\(531\) 0 0
\(532\) −57367.0 −0.202693
\(533\) −164330. + 94875.7i −0.578444 + 0.333965i
\(534\) 0 0
\(535\) −105926. + 183468.i −0.370078 + 0.640994i
\(536\) 44189.5 + 25512.8i 0.153812 + 0.0888033i
\(537\) 0 0
\(538\) −15800.1 27366.6i −0.0545877 0.0945487i
\(539\) 82375.9i 0.283545i
\(540\) 0 0
\(541\) 44016.5 0.150391 0.0751954 0.997169i \(-0.476042\pi\)
0.0751954 + 0.997169i \(0.476042\pi\)
\(542\) −29696.3 + 17145.2i −0.101089 + 0.0583638i
\(543\) 0 0
\(544\) 52227.8 90461.2i 0.176483 0.305678i
\(545\) 456304. + 263447.i 1.53625 + 0.886953i
\(546\) 0 0
\(547\) 21429.6 + 37117.1i 0.0716207 + 0.124051i 0.899612 0.436691i \(-0.143850\pi\)
−0.827991 + 0.560741i \(0.810516\pi\)
\(548\) 161085.i 0.536408i
\(549\) 0 0
\(550\) 11922.6 0.0394137
\(551\) 78747.3 45464.8i 0.259378 0.149752i
\(552\) 0 0
\(553\) 18769.8 32510.3i 0.0613776 0.106309i
\(554\) −7241.43 4180.84i −0.0235942 0.0136221i
\(555\) 0 0
\(556\) 278795. + 482888.i 0.901853 + 1.56206i
\(557\) 311007.i 1.00244i −0.865319 0.501222i \(-0.832884\pi\)
0.865319 0.501222i \(-0.167116\pi\)
\(558\) 0 0
\(559\) −146599. −0.469145
\(560\) 234671. 135487.i 0.748314 0.432039i
\(561\) 0 0
\(562\) −10373.2 + 17967.0i −0.0328429 + 0.0568856i
\(563\) 247482. + 142884.i 0.780777 + 0.450782i 0.836705 0.547653i \(-0.184479\pi\)
−0.0559288 + 0.998435i \(0.517812\pi\)
\(564\) 0 0
\(565\) 23845.9 + 41302.2i 0.0746992 + 0.129383i
\(566\) 27035.9i 0.0843933i
\(567\) 0 0
\(568\) 45211.7 0.140137
\(569\) 118371. 68341.3i 0.365611 0.211086i −0.305928 0.952055i \(-0.598967\pi\)
0.671539 + 0.740969i \(0.265633\pi\)
\(570\) 0 0
\(571\) 14255.0 24690.4i 0.0437215 0.0757279i −0.843337 0.537386i \(-0.819412\pi\)
0.887058 + 0.461658i \(0.152745\pi\)
\(572\) −58170.4 33584.7i −0.177791 0.102648i
\(573\) 0 0
\(574\) 14349.6 + 24854.3i 0.0435529 + 0.0754358i
\(575\) 318809.i 0.964261i
\(576\) 0 0
\(577\) −293742. −0.882297 −0.441149 0.897434i \(-0.645429\pi\)
−0.441149 + 0.897434i \(0.645429\pi\)
\(578\) 20374.3 11763.1i 0.0609856 0.0352101i
\(579\) 0 0
\(580\) −216489. + 374969.i −0.643545 + 1.11465i
\(581\) −250193. 144449.i −0.741179 0.427920i
\(582\) 0 0
\(583\) −64110.6 111043.i −0.188622 0.326703i
\(584\) 38907.5i 0.114080i
\(585\) 0 0
\(586\) 49694.6 0.144715
\(587\) −334334. + 193028.i −0.970295 + 0.560200i −0.899326 0.437279i \(-0.855942\pi\)
−0.0709687 + 0.997479i \(0.522609\pi\)
\(588\) 0 0
\(589\) −31537.6 + 54624.7i −0.0909072 + 0.157456i
\(590\) 16157.2 + 9328.37i 0.0464154 + 0.0267980i
\(591\) 0 0
\(592\) −112335. 194571.i −0.320534 0.555180i
\(593\) 305581.i 0.868995i 0.900673 + 0.434497i \(0.143074\pi\)
−0.900673 + 0.434497i \(0.856926\pi\)
\(594\) 0 0
\(595\) 419519. 1.18500
\(596\) 513896. 296698.i 1.44671 0.835260i
\(597\) 0 0
\(598\) −7137.28 + 12362.1i −0.0199586 + 0.0345693i
\(599\) −229270. 132369.i −0.638988 0.368920i 0.145236 0.989397i \(-0.453606\pi\)
−0.784225 + 0.620477i \(0.786939\pi\)
\(600\) 0 0
\(601\) 66101.5 + 114491.i 0.183005 + 0.316973i 0.942902 0.333069i \(-0.108084\pi\)
−0.759898 + 0.650043i \(0.774751\pi\)
\(602\) 22172.6i 0.0611820i
\(603\) 0 0
\(604\) 528123. 1.44764
\(605\) −340151. + 196386.i −0.929312 + 0.536538i
\(606\) 0 0
\(607\) 127073. 220097.i 0.344886 0.597360i −0.640447 0.768002i \(-0.721251\pi\)
0.985333 + 0.170642i \(0.0545843\pi\)
\(608\) 27067.2 + 15627.3i 0.0732211 + 0.0422742i
\(609\) 0 0
\(610\) −11736.0 20327.3i −0.0315398 0.0546286i
\(611\) 59468.0i 0.159295i
\(612\) 0 0
\(613\) −492878. −1.31165 −0.655826 0.754912i \(-0.727680\pi\)
−0.655826 + 0.754912i \(0.727680\pi\)
\(614\) 25160.8 14526.6i 0.0667403 0.0385325i
\(615\) 0 0
\(616\) −10199.5 + 17666.1i −0.0268793 + 0.0465564i
\(617\) 105029. + 60638.8i 0.275893 + 0.159287i 0.631563 0.775325i \(-0.282414\pi\)
−0.355670 + 0.934612i \(0.615747\pi\)
\(618\) 0 0
\(619\) −153682. 266185.i −0.401090 0.694709i 0.592768 0.805374i \(-0.298035\pi\)
−0.993858 + 0.110665i \(0.964702\pi\)
\(620\) 300344.i 0.781331i
\(621\) 0 0
\(622\) −604.780 −0.00156321
\(623\) 241372. 139356.i 0.621886 0.359046i
\(624\) 0 0
\(625\) 207977. 360227.i 0.532421 0.922181i
\(626\) −21519.8 12424.5i −0.0549149 0.0317051i
\(627\) 0 0
\(628\) −64132.9 111081.i −0.162615 0.281658i
\(629\) 347832.i 0.879161i
\(630\) 0 0
\(631\) −254196. −0.638425 −0.319212 0.947683i \(-0.603418\pi\)
−0.319212 + 0.947683i \(0.603418\pi\)
\(632\) −11792.5 + 6808.43i −0.0295239 + 0.0170456i
\(633\) 0 0
\(634\) 20712.6 35875.3i 0.0515296 0.0892519i
\(635\) −576112. 332618.i −1.42876 0.824895i
\(636\) 0 0
\(637\) −52292.1 90572.5i −0.128872 0.223212i
\(638\) 16102.8i 0.0395602i
\(639\) 0 0
\(640\) −198164. −0.483799
\(641\) −316954. + 182993.i −0.771400 + 0.445368i −0.833374 0.552710i \(-0.813594\pi\)
0.0619737 + 0.998078i \(0.480261\pi\)
\(642\) 0 0
\(643\) −115391. + 199864.i −0.279094 + 0.483406i −0.971160 0.238429i \(-0.923368\pi\)
0.692066 + 0.721835i \(0.256701\pi\)
\(644\) −235259. 135827.i −0.567250 0.327502i
\(645\) 0 0
\(646\) 7957.85 + 13783.4i 0.0190691 + 0.0330287i
\(647\) 278596.i 0.665529i 0.943010 + 0.332764i \(0.107981\pi\)
−0.943010 + 0.332764i \(0.892019\pi\)
\(648\) 0 0
\(649\) 87304.7 0.207276
\(650\) −13109.0 + 7568.47i −0.0310272 + 0.0179135i
\(651\) 0 0
\(652\) 201813. 349551.i 0.474738 0.822271i
\(653\) 67988.8 + 39253.4i 0.159445 + 0.0920557i 0.577600 0.816320i \(-0.303990\pi\)
−0.418154 + 0.908376i \(0.637323\pi\)
\(654\) 0 0
\(655\) 52448.0 + 90842.6i 0.122249 + 0.211742i
\(656\) 647111.i 1.50373i
\(657\) 0 0
\(658\) −8994.34 −0.0207739
\(659\) 742420. 428637.i 1.70954 0.987003i 0.774418 0.632675i \(-0.218043\pi\)
0.935121 0.354328i \(-0.115290\pi\)
\(660\) 0 0
\(661\) −11172.0 + 19350.4i −0.0255698 + 0.0442882i −0.878527 0.477692i \(-0.841473\pi\)
0.852957 + 0.521981i \(0.174807\pi\)
\(662\) 31017.4 + 17907.9i 0.0707765 + 0.0408628i
\(663\) 0 0
\(664\) 52396.4 + 90753.2i 0.118841 + 0.205838i
\(665\) 125526.i 0.283850i
\(666\) 0 0
\(667\) 430584. 0.967846
\(668\) −481876. + 278211.i −1.07990 + 0.623479i
\(669\) 0 0
\(670\) 27802.0 48154.6i 0.0619337 0.107272i
\(671\) −95122.1 54918.8i −0.211269 0.121976i
\(672\) 0 0
\(673\) 331739. + 574588.i 0.732430 + 1.26861i 0.955842 + 0.293882i \(0.0949472\pi\)
−0.223412 + 0.974724i \(0.571719\pi\)
\(674\) 14241.1i 0.0313489i
\(675\) 0 0
\(676\) −368095. −0.805501
\(677\) 197558. 114060.i 0.431040 0.248861i −0.268749 0.963210i \(-0.586610\pi\)
0.699790 + 0.714349i \(0.253277\pi\)
\(678\) 0 0
\(679\) 104093. 180294.i 0.225777 0.391058i
\(680\) −131786. 76086.6i −0.285004 0.164547i
\(681\) 0 0
\(682\) 5585.01 + 9673.52i 0.0120076 + 0.0207977i
\(683\) 53606.6i 0.114915i 0.998348 + 0.0574575i \(0.0182994\pi\)
−0.998348 + 0.0574575i \(0.981701\pi\)
\(684\) 0 0
\(685\) 352474. 0.751182
\(686\) −36749.6 + 21217.4i −0.0780916 + 0.0450862i
\(687\) 0 0
\(688\) −249974. + 432967.i −0.528102 + 0.914699i
\(689\) 140980. + 81394.6i 0.296974 + 0.171458i
\(690\) 0 0
\(691\) −378663. 655863.i −0.793043 1.37359i −0.924074 0.382213i \(-0.875162\pi\)
0.131031 0.991378i \(-0.458171\pi\)
\(692\) 233353.i 0.487305i
\(693\) 0 0
\(694\) −80400.9 −0.166933
\(695\) 1.05661e6 610036.i 2.18749 1.26295i
\(696\) 0 0
\(697\) −500923. + 867624.i −1.03111 + 1.78594i
\(698\) 24484.5 + 14136.2i 0.0502552 + 0.0290149i
\(699\) 0 0
\(700\) −144033. 249472.i −0.293944 0.509126i
\(701\) 506359.i 1.03044i 0.857058 + 0.515220i \(0.172290\pi\)
−0.857058 + 0.515220i \(0.827710\pi\)
\(702\) 0 0
\(703\) 104076. 0.210591
\(704\) −195162. + 112677.i −0.393777 + 0.227347i
\(705\) 0 0
\(706\) −24848.7 + 43039.2i −0.0498534 + 0.0863485i
\(707\) 247321. + 142791.i 0.494791 + 0.285668i
\(708\) 0 0
\(709\) 325622. + 563993.i 0.647770 + 1.12197i 0.983654 + 0.180067i \(0.0576314\pi\)
−0.335885 + 0.941903i \(0.609035\pi\)
\(710\) 49268.4i 0.0977354i
\(711\) 0 0
\(712\) −101098. −0.199427
\(713\) −258668. + 149342.i −0.508819 + 0.293767i
\(714\) 0 0
\(715\) −73487.2 + 127284.i −0.143747 + 0.248978i
\(716\) 509367. + 294083.i 0.993584 + 0.573646i
\(717\) 0 0
\(718\) −37581.8 65093.5i −0.0729001 0.126267i
\(719\) 69724.6i 0.134874i −0.997724 0.0674370i \(-0.978518\pi\)
0.997724 0.0674370i \(-0.0214822\pi\)
\(720\) 0 0
\(721\) −477913. −0.919345
\(722\) 35962.8 20763.1i 0.0689888 0.0398307i
\(723\) 0 0
\(724\) 314816. 545277.i 0.600591 1.04025i
\(725\) 395425. + 228299.i 0.752294 + 0.434337i
\(726\) 0 0
\(727\) 373864. + 647552.i 0.707367 + 1.22520i 0.965830 + 0.259175i \(0.0834506\pi\)
−0.258463 + 0.966021i \(0.583216\pi\)
\(728\) 25898.6i 0.0488667i
\(729\) 0 0
\(730\) 42398.6 0.0795620
\(731\) −670313. + 387006.i −1.25442 + 0.724240i
\(732\) 0 0
\(733\) −32869.3 + 56931.2i −0.0611761 + 0.105960i −0.894991 0.446083i \(-0.852818\pi\)
0.833815 + 0.552044i \(0.186152\pi\)
\(734\) −9841.29 5681.87i −0.0182667 0.0105463i
\(735\) 0 0
\(736\) 74000.7 + 128173.i 0.136609 + 0.236614i
\(737\) 260201.i 0.479042i
\(738\) 0 0
\(739\) 977921. 1.79067 0.895334 0.445395i \(-0.146937\pi\)
0.895334 + 0.445395i \(0.146937\pi\)
\(740\) −429181. + 247788.i −0.783750 + 0.452498i
\(741\) 0 0
\(742\) 12310.7 21322.7i 0.0223601 0.0387288i
\(743\) −437233. 252437.i −0.792019 0.457272i 0.0486539 0.998816i \(-0.484507\pi\)
−0.840673 + 0.541543i \(0.817840\pi\)
\(744\) 0 0
\(745\) −649209. 1.12446e6i −1.16969 2.02597i
\(746\) 43740.5i 0.0785971i
\(747\) 0 0
\(748\) −354640. −0.633847
\(749\) −164860. + 95181.9i −0.293867 + 0.169664i
\(750\) 0 0
\(751\) 266395. 461411.i 0.472332 0.818102i −0.527167 0.849762i \(-0.676746\pi\)
0.999499 + 0.0316593i \(0.0100792\pi\)
\(752\) −175634. 101402.i −0.310579 0.179313i
\(753\) 0 0
\(754\) 10222.0 + 17705.0i 0.0179801 + 0.0311425i
\(755\) 1.15559e6i 2.02727i
\(756\) 0 0
\(757\) −293571. −0.512297 −0.256148 0.966637i \(-0.582454\pi\)
−0.256148 + 0.966637i \(0.582454\pi\)
\(758\) 35843.0 20694.0i 0.0623830 0.0360168i
\(759\) 0 0
\(760\) 22766.1 39432.1i 0.0394150 0.0682688i
\(761\) 22249.2 + 12845.6i 0.0384190 + 0.0221812i 0.519086 0.854722i \(-0.326272\pi\)
−0.480667 + 0.876903i \(0.659606\pi\)
\(762\) 0 0
\(763\) 236727. + 410022.i 0.406629 + 0.704301i
\(764\) 914920.i 1.56746i
\(765\) 0 0
\(766\) 64328.9 0.109635
\(767\) −95991.7 + 55420.9i −0.163171 + 0.0942069i
\(768\) 0 0
\(769\) 323572. 560443.i 0.547165 0.947717i −0.451302 0.892371i \(-0.649040\pi\)
0.998467 0.0553463i \(-0.0176263\pi\)
\(770\) 19251.2 + 11114.7i 0.0324696 + 0.0187463i
\(771\) 0 0
\(772\) −33173.4 57458.0i −0.0556615 0.0964086i
\(773\) 610238.i 1.02127i 0.859798 + 0.510634i \(0.170589\pi\)
−0.859798 + 0.510634i \(0.829411\pi\)
\(774\) 0 0
\(775\) −316728. −0.527331
\(776\) −65398.4 + 37757.8i −0.108604 + 0.0627023i
\(777\) 0 0
\(778\) −9026.64 + 15634.6i −0.0149131 + 0.0258302i
\(779\) −259605. 149883.i −0.427797 0.246989i
\(780\) 0 0
\(781\) −115276. 199665.i −0.188990 0.327340i
\(782\) 75366.6i 0.123244i
\(783\) 0 0
\(784\) −356664. −0.580266
\(785\) −243059. + 140330.i −0.394432 + 0.227726i
\(786\) 0 0
\(787\) 290160. 502572.i 0.468477 0.811427i −0.530874 0.847451i \(-0.678136\pi\)
0.999351 + 0.0360244i \(0.0114694\pi\)
\(788\) 305069. + 176132.i 0.491299 + 0.283652i
\(789\) 0 0
\(790\) 7419.33 + 12850.7i 0.0118880 + 0.0205907i
\(791\) 42854.5i 0.0684926i
\(792\) 0 0
\(793\) 139449. 0.221753
\(794\) −70351.5 + 40617.4i −0.111592 + 0.0644276i
\(795\) 0 0
\(796\) −401678. + 695726.i −0.633945 + 1.09802i
\(797\) 915508. + 528569.i 1.44127 + 0.832118i 0.997935 0.0642373i \(-0.0204615\pi\)
0.443336 + 0.896355i \(0.353795\pi\)
\(798\) 0 0
\(799\) −156989. 271913.i −0.245910 0.425928i
\(800\) 156943.i 0.245223i
\(801\) 0 0
\(802\) 67105.5 0.104330
\(803\) 171824. 99202.7i 0.266473 0.153848i
\(804\) 0 0
\(805\) −297205. + 514774.i −0.458631 + 0.794373i
\(806\) −12281.5 7090.71i −0.0189051 0.0109149i
\(807\) 0 0
\(808\) −51794.8 89711.2i −0.0793348 0.137412i
\(809\) 355969.i 0.543895i −0.962312 0.271947i \(-0.912332\pi\)
0.962312 0.271947i \(-0.0876677\pi\)
\(810\) 0 0
\(811\) −136417. −0.207409 −0.103704 0.994608i \(-0.533070\pi\)
−0.103704 + 0.994608i \(0.533070\pi\)
\(812\) −336937. + 194531.i −0.511019 + 0.295037i
\(813\) 0 0
\(814\) 9215.43 15961.6i 0.0139081 0.0240895i
\(815\) −764857. 441590.i −1.15150 0.664820i
\(816\) 0 0
\(817\) −115797. 200567.i −0.173482 0.300479i
\(818\) 98538.4i 0.147265i
\(819\) 0 0
\(820\) 1.42739e6 2.12282
\(821\) 394889. 227989.i 0.585854 0.338243i −0.177603 0.984102i \(-0.556834\pi\)
0.763456 + 0.645860i \(0.223501\pi\)
\(822\) 0 0
\(823\) −251795. + 436122.i −0.371747 + 0.643885i −0.989834 0.142225i \(-0.954574\pi\)
0.618087 + 0.786109i \(0.287908\pi\)
\(824\) 150129. + 86677.3i 0.221112 + 0.127659i
\(825\) 0 0
\(826\) 8382.22 + 14518.4i 0.0122857 + 0.0212794i
\(827\) 551861.i 0.806898i 0.915002 + 0.403449i \(0.132189\pi\)
−0.915002 + 0.403449i \(0.867811\pi\)
\(828\) 0 0
\(829\) −182308. −0.265275 −0.132638 0.991165i \(-0.542345\pi\)
−0.132638 + 0.991165i \(0.542345\pi\)
\(830\) 98896.3 57097.8i 0.143557 0.0828826i
\(831\) 0 0
\(832\) 143054. 247777.i 0.206659 0.357944i
\(833\) −478203. 276091.i −0.689164 0.397889i
\(834\) 0 0
\(835\) 608759. + 1.05440e6i 0.873117 + 1.51228i
\(836\) 106113.i 0.151829i
\(837\) 0 0
\(838\) −36379.0 −0.0518039
\(839\) 359993. 207842.i 0.511410 0.295263i −0.222003 0.975046i \(-0.571259\pi\)
0.733413 + 0.679783i \(0.237926\pi\)
\(840\) 0 0
\(841\) −45299.7 + 78461.4i −0.0640477 + 0.110934i
\(842\) 14499.0 + 8371.03i 0.0204510 + 0.0118074i
\(843\) 0 0
\(844\) 70781.8 + 122598.i 0.0993658 + 0.172107i
\(845\) 805434.i 1.12802i
\(846\) 0 0
\(847\) −352935. −0.491958
\(848\) 480784. 277581.i 0.668587 0.386009i
\(849\) 0 0
\(850\) −39959.9 + 69212.6i −0.0553078 + 0.0957959i
\(851\) 426809. + 246419.i 0.589352 + 0.340263i
\(852\) 0 0
\(853\) −75135.3 130138.i −0.103263 0.178857i 0.809764 0.586756i \(-0.199595\pi\)
−0.913027 + 0.407898i \(0.866262\pi\)
\(854\) 21091.3i 0.0289192i
\(855\) 0 0
\(856\) 69051.1 0.0942374
\(857\) −125373. + 72383.9i −0.170703 + 0.0985554i −0.582917 0.812532i \(-0.698089\pi\)
0.412214 + 0.911087i \(0.364755\pi\)
\(858\) 0 0
\(859\) −166948. + 289163.i −0.226254 + 0.391883i −0.956695 0.291093i \(-0.905981\pi\)
0.730441 + 0.682976i \(0.239315\pi\)
\(860\) 955033. + 551389.i 1.29128 + 0.745523i
\(861\) 0 0
\(862\) −8090.47 14013.1i −0.0108883 0.0188591i
\(863\) 1.13280e6i 1.52101i 0.649330 + 0.760507i \(0.275049\pi\)
−0.649330 + 0.760507i \(0.724951\pi\)
\(864\) 0 0
\(865\) −510603. −0.682418
\(866\) −64473.1 + 37223.6i −0.0859692 + 0.0496343i
\(867\) 0 0
\(868\) 134940. 233724.i 0.179103 0.310215i
\(869\) 60135.0 + 34718.9i 0.0796320 + 0.0459755i
\(870\) 0 0
\(871\) 165175. + 286092.i 0.217725 + 0.377111i
\(872\) 171737.i 0.225855i
\(873\) 0 0
\(874\) −22550.7 −0.0295214
\(875\) 40898.3 23612.6i 0.0534181 0.0308410i
\(876\) 0 0
\(877\) −248271. + 430017.i −0.322795 + 0.559097i −0.981064 0.193686i \(-0.937956\pi\)
0.658269 + 0.752783i \(0.271289\pi\)
\(878\) −56501.5 32621.2i −0.0732945 0.0423166i
\(879\) 0 0
\(880\) 250614. + 434076.i 0.323623 + 0.560532i
\(881\) 1.21533e6i 1.56583i −0.622131 0.782913i \(-0.713733\pi\)
0.622131 0.782913i \(-0.286267\pi\)
\(882\) 0 0
\(883\) −999070. −1.28137 −0.640685 0.767804i \(-0.721349\pi\)
−0.640685 + 0.767804i \(0.721349\pi\)
\(884\) 389928. 225125.i 0.498976 0.288084i
\(885\) 0 0
\(886\) −20590.8 + 35664.2i −0.0262304 + 0.0454324i
\(887\) −938048. 541582.i −1.19228 0.688362i −0.233456 0.972367i \(-0.575003\pi\)
−0.958823 + 0.284005i \(0.908337\pi\)
\(888\) 0 0
\(889\) −298882. 517678.i −0.378178 0.655023i
\(890\) 110169.i 0.139085i
\(891\) 0 0
\(892\) −134888. −0.169529
\(893\) 81360.0 46973.2i 0.102025 0.0589044i
\(894\) 0 0
\(895\) 643488. 1.11455e6i 0.803330 1.39141i
\(896\) −154209. 89032.4i −0.192085 0.110900i
\(897\) 0 0
\(898\) −58417.8 101183.i −0.0724423 0.125474i
\(899\) 427774.i 0.529292i
\(900\) 0 0
\(901\) 859491. 1.05875
\(902\) −45973.5 + 26542.8i −0.0565060 + 0.0326238i
\(903\) 0 0
\(904\) 7772.36 13462.1i 0.00951078 0.0164731i
\(905\) −1.19313e6 688853.i −1.45677 0.841065i
\(906\) 0 0
\(907\) −638426. 1.10579e6i −0.776061 1.34418i −0.934196 0.356760i \(-0.883882\pi\)
0.158135 0.987417i \(-0.449452\pi\)
\(908\) 303235.i 0.367796i
\(909\) 0 0
\(910\) −28222.4 −0.0340809
\(911\) −236846. + 136743.i −0.285383 + 0.164766i −0.635858 0.771806i \(-0.719354\pi\)
0.350475 + 0.936572i \(0.386020\pi\)
\(912\) 0 0
\(913\) 267191. 462788.i 0.320538 0.555188i
\(914\) −65438.2 37780.8i −0.0783320 0.0452250i
\(915\) 0 0
\(916\) 85107.7 + 147411.i 0.101433 + 0.175687i
\(917\) 94256.7i 0.112092i
\(918\) 0 0
\(919\) 1.15882e6 1.37210 0.686051 0.727553i \(-0.259343\pi\)
0.686051 + 0.727553i \(0.259343\pi\)
\(920\) 186725. 107806.i 0.220611 0.127370i
\(921\) 0 0
\(922\) −8604.07 + 14902.7i −0.0101214 + 0.0175308i
\(923\) 253493. + 146355.i 0.297552 + 0.171792i
\(924\) 0 0
\(925\) 261306. + 452595.i 0.305397 + 0.528964i
\(926\) 60062.6i 0.0700459i
\(927\) 0 0
\(928\) 211967. 0.246135
\(929\) −738465. + 426353.i −0.855655 + 0.494012i −0.862555 0.505964i \(-0.831137\pi\)
0.00690018 + 0.999976i \(0.497804\pi\)
\(930\) 0 0
\(931\) 82610.0 143085.i 0.0953089 0.165080i
\(932\) −1.40495e6 811151.i −1.61745 0.933834i
\(933\) 0 0
\(934\) 9704.86 + 16809.3i 0.0111249 + 0.0192689i
\(935\) 775993.i 0.887636i
\(936\) 0 0
\(937\) 629989. 0.717552 0.358776 0.933424i \(-0.383194\pi\)
0.358776 + 0.933424i \(0.383194\pi\)
\(938\) 43270.4 24982.2i 0.0491796 0.0283939i
\(939\) 0 0
\(940\) −223671. + 387410.i −0.253136 + 0.438445i
\(941\) 366547. + 211626.i 0.413953 + 0.238996i 0.692487 0.721431i \(-0.256515\pi\)
−0.278534 + 0.960426i \(0.589848\pi\)
\(942\) 0 0
\(943\) −709749. 1.22932e6i −0.798145 1.38243i
\(944\) 378004.i 0.424182i
\(945\) 0 0
\(946\) −41013.1 −0.0458290
\(947\) 1.20762e6 697219.i 1.34657 0.777444i 0.358810 0.933411i \(-0.383183\pi\)
0.987762 + 0.155967i \(0.0498493\pi\)
\(948\) 0 0
\(949\) −125947. + 218147.i −0.139848 + 0.242224i
\(950\) −20709.3 11956.5i −0.0229466 0.0132482i
\(951\) 0 0
\(952\) −68369.4 118419.i −0.0754376 0.130662i
\(953\) 24001.0i 0.0264267i 0.999913 + 0.0132134i \(0.00420607\pi\)
−0.999913 + 0.0132134i \(0.995794\pi\)
\(954\) 0 0
\(955\) −2.00195e6 −2.19506
\(956\) 213358. 123183.i 0.233450 0.134782i
\(957\) 0 0
\(958\) −24610.5 + 42626.6i −0.0268157 + 0.0464461i
\(959\) 274290. + 158362.i 0.298245 + 0.172192i
\(960\) 0 0
\(961\) 313393. + 542813.i 0.339346 + 0.587765i
\(962\) 23399.8i 0.0252849i
\(963\) 0 0
\(964\) −1.14225e6 −1.22915
\(965\) −125725. + 72587.2i −0.135010 + 0.0779481i
\(966\) 0 0
\(967\) −522031. + 904183.i −0.558268 + 0.966949i 0.439373 + 0.898305i \(0.355201\pi\)
−0.997641 + 0.0686443i \(0.978133\pi\)
\(968\) 110869. + 64010.5i 0.118321 + 0.0683126i
\(969\) 0 0
\(970\) 41145.7 + 71266.5i 0.0437302 + 0.0757429i
\(971\) 605213.i 0.641904i −0.947096 0.320952i \(-0.895997\pi\)
0.947096 0.320952i \(-0.104003\pi\)
\(972\) 0 0
\(973\) 1.09632e6 1.15801
\(974\) −7217.58 + 4167.07i −0.00760806 + 0.00439251i
\(975\) 0 0
\(976\) 237783. 411851.i 0.249621 0.432355i
\(977\) −41660.2 24052.5i −0.0436448 0.0251983i 0.478019 0.878350i \(-0.341355\pi\)
−0.521664 + 0.853151i \(0.674688\pi\)
\(978\) 0 0
\(979\) 257770. + 446471.i 0.268947 + 0.465831i
\(980\) 786724.i 0.819163i
\(981\) 0 0
\(982\) 26399.9 0.0273766
\(983\) 107286. 61941.5i 0.111029 0.0641024i −0.443457 0.896295i \(-0.646248\pi\)
0.554486 + 0.832193i \(0.312915\pi\)
\(984\) 0 0
\(985\) 385397. 667527.i 0.397224 0.688012i
\(986\) 93478.7 + 53969.9i 0.0961521 + 0.0555134i
\(987\) 0 0
\(988\) 67360.3 + 116672.i 0.0690066 + 0.119523i
\(989\) 1.09668e6i 1.12121i
\(990\) 0 0
\(991\) 851418. 0.866953 0.433477 0.901165i \(-0.357287\pi\)
0.433477 + 0.901165i \(0.357287\pi\)
\(992\) −127336. + 73517.8i −0.129399 + 0.0747083i
\(993\) 0 0
\(994\) 22135.6 38340.0i 0.0224037 0.0388043i
\(995\) 1.52233e6 + 878917.i 1.53767 + 0.887773i
\(996\) 0 0
\(997\) 801524. + 1.38828e6i 0.806355 + 1.39665i 0.915373 + 0.402607i \(0.131896\pi\)
−0.109018 + 0.994040i \(0.534771\pi\)
\(998\) 6738.62i 0.00676566i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.5.d.a.17.2 6
3.2 odd 2 9.5.d.a.5.2 yes 6
4.3 odd 2 432.5.q.a.17.3 6
9.2 odd 6 inner 27.5.d.a.8.2 6
9.4 even 3 81.5.b.a.80.3 6
9.5 odd 6 81.5.b.a.80.4 6
9.7 even 3 9.5.d.a.2.2 6
12.11 even 2 144.5.q.a.113.1 6
36.7 odd 6 144.5.q.a.65.1 6
36.11 even 6 432.5.q.a.305.3 6
36.23 even 6 1296.5.e.c.161.6 6
36.31 odd 6 1296.5.e.c.161.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.5.d.a.2.2 6 9.7 even 3
9.5.d.a.5.2 yes 6 3.2 odd 2
27.5.d.a.8.2 6 9.2 odd 6 inner
27.5.d.a.17.2 6 1.1 even 1 trivial
81.5.b.a.80.3 6 9.4 even 3
81.5.b.a.80.4 6 9.5 odd 6
144.5.q.a.65.1 6 36.7 odd 6
144.5.q.a.113.1 6 12.11 even 2
432.5.q.a.17.3 6 4.3 odd 2
432.5.q.a.305.3 6 36.11 even 6
1296.5.e.c.161.1 6 36.31 odd 6
1296.5.e.c.161.6 6 36.23 even 6