Properties

Label 27.5.d.a.17.1
Level $27$
Weight $5$
Character 27.17
Analytic conductor $2.791$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,5,Mod(8,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.8"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.79098900326\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.39400128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Root \(-1.28901 + 2.23263i\) of defining polynomial
Character \(\chi\) \(=\) 27.17
Dual form 27.5.d.a.8.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.86703 + 2.23263i) q^{2} +(1.96929 - 3.41090i) q^{4} +(-13.8760 - 8.01130i) q^{5} +(-36.2418 - 62.7727i) q^{7} -53.8574i q^{8} +71.5451 q^{10} +(-83.2749 + 48.0788i) q^{11} +(-76.9530 + 133.286i) q^{13} +(280.297 + 161.829i) q^{14} +(151.752 + 262.843i) q^{16} -72.7905i q^{17} -190.660 q^{19} +(-54.6515 + 31.5531i) q^{20} +(214.684 - 371.844i) q^{22} +(12.5186 + 7.22762i) q^{23} +(-184.138 - 318.937i) q^{25} -687.231i q^{26} -285.482 q^{28} +(-620.301 + 358.131i) q^{29} +(151.284 - 262.031i) q^{31} +(-427.392 - 246.755i) q^{32} +(162.514 + 281.483i) q^{34} +1161.38i q^{35} +826.277 q^{37} +(737.289 - 425.674i) q^{38} +(-431.468 + 747.325i) q^{40} +(-481.613 - 278.059i) q^{41} +(-446.340 - 773.084i) q^{43} +378.723i q^{44} -64.5464 q^{46} +(3425.50 - 1977.72i) q^{47} +(-1426.44 + 2470.67i) q^{49} +(1424.14 + 822.225i) q^{50} +(303.085 + 524.958i) q^{52} +1966.96i q^{53} +1540.69 q^{55} +(-3380.78 + 1951.89i) q^{56} +(1599.15 - 2769.81i) q^{58} +(-4689.48 - 2707.47i) q^{59} +(856.210 + 1483.00i) q^{61} +1351.04i q^{62} -2652.43 q^{64} +(2135.60 - 1232.99i) q^{65} +(2317.24 - 4013.58i) q^{67} +(-248.281 - 143.345i) q^{68} +(-2592.93 - 4491.08i) q^{70} -6697.12i q^{71} -4823.86 q^{73} +(-3195.24 + 1844.77i) q^{74} +(-375.464 + 650.324i) q^{76} +(6036.07 + 3484.93i) q^{77} +(2864.40 + 4961.28i) q^{79} -4862.94i q^{80} +2483.22 q^{82} +(-2452.78 + 1416.12i) q^{83} +(-583.147 + 1010.04i) q^{85} +(3452.02 + 1993.03i) q^{86} +(2589.40 + 4484.97i) q^{88} +14277.7i q^{89} +11155.7 q^{91} +(49.3054 - 28.4665i) q^{92} +(-8831.02 + 15295.8i) q^{94} +(2645.60 + 1527.44i) q^{95} +(-3582.65 - 6205.34i) q^{97} -12738.9i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 15 q^{4} + 12 q^{5} + 12 q^{7} - 36 q^{10} - 483 q^{11} - 6 q^{13} + 1146 q^{14} + 15 q^{16} - 258 q^{19} - 1614 q^{20} - 369 q^{22} + 282 q^{23} - 273 q^{25} + 1308 q^{28} + 1056 q^{29}+ \cdots - 28959 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.86703 + 2.23263i −0.966758 + 0.558158i −0.898246 0.439492i \(-0.855158\pi\)
−0.0685115 + 0.997650i \(0.521825\pi\)
\(3\) 0 0
\(4\) 1.96929 3.41090i 0.123080 0.213181i
\(5\) −13.8760 8.01130i −0.555039 0.320452i 0.196113 0.980581i \(-0.437168\pi\)
−0.751152 + 0.660129i \(0.770501\pi\)
\(6\) 0 0
\(7\) −36.2418 62.7727i −0.739630 1.28108i −0.952662 0.304031i \(-0.901667\pi\)
0.213033 0.977045i \(-0.431666\pi\)
\(8\) 53.8574i 0.841523i
\(9\) 0 0
\(10\) 71.5451 0.715451
\(11\) −83.2749 + 48.0788i −0.688222 + 0.397345i −0.802946 0.596052i \(-0.796735\pi\)
0.114723 + 0.993397i \(0.463402\pi\)
\(12\) 0 0
\(13\) −76.9530 + 133.286i −0.455343 + 0.788677i −0.998708 0.0508193i \(-0.983817\pi\)
0.543365 + 0.839497i \(0.317150\pi\)
\(14\) 280.297 + 161.829i 1.43009 + 0.825660i
\(15\) 0 0
\(16\) 151.752 + 262.843i 0.592783 + 1.02673i
\(17\) 72.7905i 0.251870i −0.992038 0.125935i \(-0.959807\pi\)
0.992038 0.125935i \(-0.0401931\pi\)
\(18\) 0 0
\(19\) −190.660 −0.528145 −0.264072 0.964503i \(-0.585066\pi\)
−0.264072 + 0.964503i \(0.585066\pi\)
\(20\) −54.6515 + 31.5531i −0.136629 + 0.0788827i
\(21\) 0 0
\(22\) 214.684 371.844i 0.443563 0.768273i
\(23\) 12.5186 + 7.22762i 0.0236647 + 0.0136628i 0.511786 0.859113i \(-0.328984\pi\)
−0.488121 + 0.872776i \(0.662318\pi\)
\(24\) 0 0
\(25\) −184.138 318.937i −0.294621 0.510298i
\(26\) 687.231i 1.01661i
\(27\) 0 0
\(28\) −285.482 −0.364135
\(29\) −620.301 + 358.131i −0.737575 + 0.425839i −0.821187 0.570659i \(-0.806688\pi\)
0.0836117 + 0.996498i \(0.473354\pi\)
\(30\) 0 0
\(31\) 151.284 262.031i 0.157423 0.272665i −0.776515 0.630098i \(-0.783015\pi\)
0.933939 + 0.357433i \(0.116348\pi\)
\(32\) −427.392 246.755i −0.417375 0.240971i
\(33\) 0 0
\(34\) 162.514 + 281.483i 0.140583 + 0.243498i
\(35\) 1161.38i 0.948063i
\(36\) 0 0
\(37\) 826.277 0.603562 0.301781 0.953377i \(-0.402419\pi\)
0.301781 + 0.953377i \(0.402419\pi\)
\(38\) 737.289 425.674i 0.510588 0.294788i
\(39\) 0 0
\(40\) −431.468 + 747.325i −0.269668 + 0.467078i
\(41\) −481.613 278.059i −0.286504 0.165413i 0.349860 0.936802i \(-0.386229\pi\)
−0.636364 + 0.771389i \(0.719562\pi\)
\(42\) 0 0
\(43\) −446.340 773.084i −0.241395 0.418109i 0.719717 0.694268i \(-0.244272\pi\)
−0.961112 + 0.276159i \(0.910938\pi\)
\(44\) 378.723i 0.195622i
\(45\) 0 0
\(46\) −64.5464 −0.0305040
\(47\) 3425.50 1977.72i 1.55070 0.895299i 0.552619 0.833434i \(-0.313628\pi\)
0.998085 0.0618654i \(-0.0197050\pi\)
\(48\) 0 0
\(49\) −1426.44 + 2470.67i −0.594104 + 1.02902i
\(50\) 1424.14 + 822.225i 0.569654 + 0.328890i
\(51\) 0 0
\(52\) 303.085 + 524.958i 0.112088 + 0.194141i
\(53\) 1966.96i 0.700234i 0.936706 + 0.350117i \(0.113858\pi\)
−0.936706 + 0.350117i \(0.886142\pi\)
\(54\) 0 0
\(55\) 1540.69 0.509320
\(56\) −3380.78 + 1951.89i −1.07805 + 0.622415i
\(57\) 0 0
\(58\) 1599.15 2769.81i 0.475371 0.823367i
\(59\) −4689.48 2707.47i −1.34716 0.777785i −0.359316 0.933216i \(-0.616990\pi\)
−0.987847 + 0.155431i \(0.950323\pi\)
\(60\) 0 0
\(61\) 856.210 + 1483.00i 0.230102 + 0.398549i 0.957838 0.287309i \(-0.0927606\pi\)
−0.727736 + 0.685858i \(0.759427\pi\)
\(62\) 1351.04i 0.351468i
\(63\) 0 0
\(64\) −2652.43 −0.647565
\(65\) 2135.60 1232.99i 0.505467 0.291831i
\(66\) 0 0
\(67\) 2317.24 4013.58i 0.516205 0.894093i −0.483618 0.875279i \(-0.660678\pi\)
0.999823 0.0188141i \(-0.00598907\pi\)
\(68\) −248.281 143.345i −0.0536941 0.0310003i
\(69\) 0 0
\(70\) −2592.93 4491.08i −0.529169 0.916547i
\(71\) 6697.12i 1.32853i −0.747497 0.664265i \(-0.768744\pi\)
0.747497 0.664265i \(-0.231256\pi\)
\(72\) 0 0
\(73\) −4823.86 −0.905208 −0.452604 0.891712i \(-0.649505\pi\)
−0.452604 + 0.891712i \(0.649505\pi\)
\(74\) −3195.24 + 1844.77i −0.583499 + 0.336883i
\(75\) 0 0
\(76\) −375.464 + 650.324i −0.0650042 + 0.112591i
\(77\) 6036.07 + 3484.93i 1.01806 + 0.587777i
\(78\) 0 0
\(79\) 2864.40 + 4961.28i 0.458964 + 0.794950i 0.998907 0.0467524i \(-0.0148872\pi\)
−0.539942 + 0.841702i \(0.681554\pi\)
\(80\) 4862.94i 0.759834i
\(81\) 0 0
\(82\) 2483.22 0.369307
\(83\) −2452.78 + 1416.12i −0.356044 + 0.205562i −0.667344 0.744750i \(-0.732569\pi\)
0.311300 + 0.950312i \(0.399235\pi\)
\(84\) 0 0
\(85\) −583.147 + 1010.04i −0.0807124 + 0.139798i
\(86\) 3452.02 + 1993.03i 0.466742 + 0.269474i
\(87\) 0 0
\(88\) 2589.40 + 4484.97i 0.334375 + 0.579155i
\(89\) 14277.7i 1.80251i 0.433290 + 0.901255i \(0.357353\pi\)
−0.433290 + 0.901255i \(0.642647\pi\)
\(90\) 0 0
\(91\) 11155.7 1.34714
\(92\) 49.3054 28.4665i 0.00582531 0.00336324i
\(93\) 0 0
\(94\) −8831.02 + 15295.8i −0.999437 + 1.73107i
\(95\) 2645.60 + 1527.44i 0.293141 + 0.169245i
\(96\) 0 0
\(97\) −3582.65 6205.34i −0.380769 0.659511i 0.610403 0.792091i \(-0.291007\pi\)
−0.991172 + 0.132580i \(0.957674\pi\)
\(98\) 12738.9i 1.32641i
\(99\) 0 0
\(100\) −1450.48 −0.145048
\(101\) 1696.72 979.600i 0.166328 0.0960298i −0.414525 0.910038i \(-0.636052\pi\)
0.580853 + 0.814008i \(0.302719\pi\)
\(102\) 0 0
\(103\) 2577.74 4464.77i 0.242976 0.420848i −0.718584 0.695440i \(-0.755210\pi\)
0.961561 + 0.274592i \(0.0885429\pi\)
\(104\) 7178.47 + 4144.49i 0.663690 + 0.383182i
\(105\) 0 0
\(106\) −4391.49 7606.29i −0.390841 0.676957i
\(107\) 9117.08i 0.796321i −0.917316 0.398161i \(-0.869649\pi\)
0.917316 0.398161i \(-0.130351\pi\)
\(108\) 0 0
\(109\) −16161.1 −1.36024 −0.680122 0.733099i \(-0.738073\pi\)
−0.680122 + 0.733099i \(0.738073\pi\)
\(110\) −5957.91 + 3439.80i −0.492389 + 0.284281i
\(111\) 0 0
\(112\) 10999.6 19051.8i 0.876879 1.51880i
\(113\) −18272.5 10549.6i −1.43100 0.826189i −0.433804 0.901007i \(-0.642829\pi\)
−0.997197 + 0.0748185i \(0.976162\pi\)
\(114\) 0 0
\(115\) −115.805 200.581i −0.00875654 0.0151668i
\(116\) 2821.05i 0.209650i
\(117\) 0 0
\(118\) 24179.1 1.73651
\(119\) −4569.26 + 2638.06i −0.322665 + 0.186291i
\(120\) 0 0
\(121\) −2697.36 + 4671.97i −0.184233 + 0.319102i
\(122\) −6621.98 3823.20i −0.444906 0.256867i
\(123\) 0 0
\(124\) −595.842 1032.03i −0.0387514 0.0671195i
\(125\) 15914.9i 1.01855i
\(126\) 0 0
\(127\) −20660.9 −1.28098 −0.640489 0.767968i \(-0.721268\pi\)
−0.640489 + 0.767968i \(0.721268\pi\)
\(128\) 17095.3 9869.97i 1.04341 0.602415i
\(129\) 0 0
\(130\) −5505.61 + 9536.00i −0.325776 + 0.564260i
\(131\) −2772.53 1600.72i −0.161560 0.0932768i 0.417040 0.908888i \(-0.363067\pi\)
−0.578600 + 0.815611i \(0.696401\pi\)
\(132\) 0 0
\(133\) 6909.88 + 11968.3i 0.390631 + 0.676594i
\(134\) 20694.2i 1.15250i
\(135\) 0 0
\(136\) −3920.31 −0.211955
\(137\) 3353.18 1935.96i 0.178655 0.103147i −0.408005 0.912980i \(-0.633776\pi\)
0.586661 + 0.809833i \(0.300442\pi\)
\(138\) 0 0
\(139\) 5839.62 10114.5i 0.302242 0.523499i −0.674401 0.738365i \(-0.735598\pi\)
0.976644 + 0.214866i \(0.0689315\pi\)
\(140\) 3961.35 + 2287.08i 0.202109 + 0.116688i
\(141\) 0 0
\(142\) 14952.2 + 25898.0i 0.741530 + 1.28437i
\(143\) 14799.2i 0.723714i
\(144\) 0 0
\(145\) 11476.4 0.545844
\(146\) 18654.0 10769.9i 0.875117 0.505249i
\(147\) 0 0
\(148\) 1627.18 2818.35i 0.0742867 0.128668i
\(149\) 13069.8 + 7545.88i 0.588705 + 0.339889i 0.764585 0.644522i \(-0.222944\pi\)
−0.175880 + 0.984412i \(0.556277\pi\)
\(150\) 0 0
\(151\) −15127.7 26201.9i −0.663465 1.14915i −0.979699 0.200474i \(-0.935752\pi\)
0.316234 0.948681i \(-0.397581\pi\)
\(152\) 10268.5i 0.444446i
\(153\) 0 0
\(154\) −31122.2 −1.31229
\(155\) −4198.42 + 2423.96i −0.174752 + 0.100893i
\(156\) 0 0
\(157\) −10311.4 + 17859.8i −0.418328 + 0.724565i −0.995771 0.0918653i \(-0.970717\pi\)
0.577443 + 0.816431i \(0.304050\pi\)
\(158\) −22153.4 12790.3i −0.887415 0.512349i
\(159\) 0 0
\(160\) 3953.65 + 6847.93i 0.154440 + 0.267497i
\(161\) 1047.77i 0.0404216i
\(162\) 0 0
\(163\) 39790.7 1.49764 0.748818 0.662776i \(-0.230622\pi\)
0.748818 + 0.662776i \(0.230622\pi\)
\(164\) −1896.87 + 1095.16i −0.0705260 + 0.0407182i
\(165\) 0 0
\(166\) 6323.33 10952.3i 0.229472 0.397457i
\(167\) 23773.0 + 13725.3i 0.852414 + 0.492141i 0.861465 0.507818i \(-0.169548\pi\)
−0.00905084 + 0.999959i \(0.502881\pi\)
\(168\) 0 0
\(169\) 2436.98 + 4220.97i 0.0853253 + 0.147788i
\(170\) 5207.81i 0.180201i
\(171\) 0 0
\(172\) −3515.89 −0.118844
\(173\) −8729.26 + 5039.84i −0.291666 + 0.168393i −0.638693 0.769462i \(-0.720525\pi\)
0.347027 + 0.937855i \(0.387191\pi\)
\(174\) 0 0
\(175\) −13347.0 + 23117.7i −0.435821 + 0.754864i
\(176\) −25274.3 14592.1i −0.815933 0.471079i
\(177\) 0 0
\(178\) −31876.8 55212.2i −1.00608 1.74259i
\(179\) 1215.45i 0.0379343i −0.999820 0.0189672i \(-0.993962\pi\)
0.999820 0.0189672i \(-0.00603779\pi\)
\(180\) 0 0
\(181\) 28359.9 0.865661 0.432831 0.901475i \(-0.357515\pi\)
0.432831 + 0.901475i \(0.357515\pi\)
\(182\) −43139.3 + 24906.5i −1.30236 + 0.751917i
\(183\) 0 0
\(184\) 389.261 674.220i 0.0114976 0.0199143i
\(185\) −11465.4 6619.55i −0.335001 0.193413i
\(186\) 0 0
\(187\) 3499.68 + 6061.62i 0.100079 + 0.173343i
\(188\) 15578.8i 0.440775i
\(189\) 0 0
\(190\) −13640.8 −0.377862
\(191\) 8445.34 4875.92i 0.231500 0.133656i −0.379764 0.925083i \(-0.623995\pi\)
0.611264 + 0.791427i \(0.290661\pi\)
\(192\) 0 0
\(193\) 26701.4 46248.2i 0.716836 1.24160i −0.245411 0.969419i \(-0.578923\pi\)
0.962247 0.272177i \(-0.0877436\pi\)
\(194\) 27708.5 + 15997.5i 0.736223 + 0.425058i
\(195\) 0 0
\(196\) 5618.15 + 9730.92i 0.146245 + 0.253304i
\(197\) 68537.7i 1.76603i −0.469349 0.883013i \(-0.655511\pi\)
0.469349 0.883013i \(-0.344489\pi\)
\(198\) 0 0
\(199\) −8237.42 −0.208010 −0.104005 0.994577i \(-0.533166\pi\)
−0.104005 + 0.994577i \(0.533166\pi\)
\(200\) −17177.1 + 9917.21i −0.429428 + 0.247930i
\(201\) 0 0
\(202\) −4374.17 + 7576.28i −0.107200 + 0.185675i
\(203\) 44961.7 + 25958.7i 1.09107 + 0.629927i
\(204\) 0 0
\(205\) 4455.24 + 7716.70i 0.106014 + 0.183622i
\(206\) 23020.6i 0.542477i
\(207\) 0 0
\(208\) −46711.2 −1.07968
\(209\) 15877.2 9166.71i 0.363481 0.209856i
\(210\) 0 0
\(211\) −20393.7 + 35322.9i −0.458069 + 0.793399i −0.998859 0.0477587i \(-0.984792\pi\)
0.540790 + 0.841158i \(0.318125\pi\)
\(212\) 6709.10 + 3873.50i 0.149277 + 0.0861851i
\(213\) 0 0
\(214\) 20355.1 + 35256.0i 0.444473 + 0.769850i
\(215\) 14303.1i 0.309423i
\(216\) 0 0
\(217\) −21931.2 −0.465740
\(218\) 62495.4 36081.7i 1.31503 0.759231i
\(219\) 0 0
\(220\) 3034.07 5255.16i 0.0626873 0.108578i
\(221\) 9701.99 + 5601.45i 0.198644 + 0.114687i
\(222\) 0 0
\(223\) 29959.8 + 51891.9i 0.602461 + 1.04349i 0.992447 + 0.122672i \(0.0391464\pi\)
−0.389986 + 0.920821i \(0.627520\pi\)
\(224\) 35771.4i 0.712918i
\(225\) 0 0
\(226\) 94213.5 1.84458
\(227\) −85572.3 + 49405.2i −1.66066 + 0.958785i −0.688265 + 0.725459i \(0.741627\pi\)
−0.972399 + 0.233325i \(0.925039\pi\)
\(228\) 0 0
\(229\) 2658.97 4605.47i 0.0507040 0.0878220i −0.839559 0.543268i \(-0.817187\pi\)
0.890263 + 0.455446i \(0.150520\pi\)
\(230\) 895.645 + 517.101i 0.0169309 + 0.00977506i
\(231\) 0 0
\(232\) 19288.0 + 33407.8i 0.358353 + 0.620686i
\(233\) 18467.8i 0.340176i 0.985429 + 0.170088i \(0.0544052\pi\)
−0.985429 + 0.170088i \(0.945595\pi\)
\(234\) 0 0
\(235\) −63376.3 −1.14760
\(236\) −18469.8 + 10663.6i −0.331619 + 0.191460i
\(237\) 0 0
\(238\) 11779.6 20402.9i 0.207959 0.360196i
\(239\) −22383.5 12923.1i −0.391861 0.226241i 0.291105 0.956691i \(-0.405977\pi\)
−0.682966 + 0.730450i \(0.739310\pi\)
\(240\) 0 0
\(241\) −41536.2 71942.7i −0.715142 1.23866i −0.962905 0.269841i \(-0.913029\pi\)
0.247763 0.968821i \(-0.420305\pi\)
\(242\) 24088.9i 0.411325i
\(243\) 0 0
\(244\) 6744.49 0.113284
\(245\) 39586.6 22855.3i 0.659502 0.380764i
\(246\) 0 0
\(247\) 14671.9 25412.4i 0.240487 0.416536i
\(248\) −14112.3 8147.76i −0.229454 0.132475i
\(249\) 0 0
\(250\) −35532.0 61543.3i −0.568513 0.984693i
\(251\) 49051.6i 0.778585i −0.921114 0.389292i \(-0.872720\pi\)
0.921114 0.389292i \(-0.127280\pi\)
\(252\) 0 0
\(253\) −1389.98 −0.0217154
\(254\) 79896.3 46128.1i 1.23839 0.714988i
\(255\) 0 0
\(256\) −22852.6 + 39581.8i −0.348703 + 0.603971i
\(257\) −84096.0 48552.9i −1.27324 0.735104i −0.297641 0.954678i \(-0.596200\pi\)
−0.975596 + 0.219574i \(0.929533\pi\)
\(258\) 0 0
\(259\) −29945.8 51867.7i −0.446413 0.773209i
\(260\) 9712.41i 0.143675i
\(261\) 0 0
\(262\) 14295.3 0.208253
\(263\) −35921.0 + 20739.0i −0.519323 + 0.299831i −0.736658 0.676266i \(-0.763597\pi\)
0.217335 + 0.976097i \(0.430264\pi\)
\(264\) 0 0
\(265\) 15757.9 27293.5i 0.224391 0.388657i
\(266\) −53441.4 30854.4i −0.755292 0.436068i
\(267\) 0 0
\(268\) −9126.63 15807.8i −0.127069 0.220091i
\(269\) 115737.i 1.59944i 0.600370 + 0.799722i \(0.295020\pi\)
−0.600370 + 0.799722i \(0.704980\pi\)
\(270\) 0 0
\(271\) −5077.71 −0.0691400 −0.0345700 0.999402i \(-0.511006\pi\)
−0.0345700 + 0.999402i \(0.511006\pi\)
\(272\) 19132.5 11046.1i 0.258603 0.149304i
\(273\) 0 0
\(274\) −8644.57 + 14972.8i −0.115144 + 0.199436i
\(275\) 30668.2 + 17706.3i 0.405529 + 0.234133i
\(276\) 0 0
\(277\) 21192.9 + 36707.2i 0.276205 + 0.478401i 0.970438 0.241349i \(-0.0775899\pi\)
−0.694234 + 0.719750i \(0.744257\pi\)
\(278\) 52150.9i 0.674795i
\(279\) 0 0
\(280\) 62548.8 0.797817
\(281\) 35902.5 20728.3i 0.454687 0.262513i −0.255121 0.966909i \(-0.582115\pi\)
0.709807 + 0.704396i \(0.248782\pi\)
\(282\) 0 0
\(283\) −19194.0 + 33245.0i −0.239658 + 0.415100i −0.960616 0.277879i \(-0.910369\pi\)
0.720958 + 0.692979i \(0.243702\pi\)
\(284\) −22843.2 13188.5i −0.283218 0.163516i
\(285\) 0 0
\(286\) 33041.2 + 57229.1i 0.403946 + 0.699656i
\(287\) 40309.6i 0.489378i
\(288\) 0 0
\(289\) 78222.5 0.936561
\(290\) −44379.5 + 25622.5i −0.527699 + 0.304667i
\(291\) 0 0
\(292\) −9499.55 + 16453.7i −0.111413 + 0.192974i
\(293\) 11239.5 + 6489.12i 0.130922 + 0.0755876i 0.564030 0.825754i \(-0.309250\pi\)
−0.433109 + 0.901342i \(0.642583\pi\)
\(294\) 0 0
\(295\) 43380.7 + 75137.6i 0.498486 + 0.863402i
\(296\) 44501.2i 0.507911i
\(297\) 0 0
\(298\) −67388.7 −0.758847
\(299\) −1926.69 + 1112.37i −0.0215511 + 0.0124425i
\(300\) 0 0
\(301\) −32352.4 + 56036.0i −0.357086 + 0.618492i
\(302\) 116998. + 67549.0i 1.28282 + 0.740636i
\(303\) 0 0
\(304\) −28933.2 50113.7i −0.313075 0.542262i
\(305\) 27437.4i 0.294947i
\(306\) 0 0
\(307\) −126105. −1.33799 −0.668997 0.743265i \(-0.733276\pi\)
−0.668997 + 0.743265i \(0.733276\pi\)
\(308\) 23773.5 13725.6i 0.250606 0.144688i
\(309\) 0 0
\(310\) 10823.6 18747.1i 0.112629 0.195079i
\(311\) 86432.4 + 49901.7i 0.893626 + 0.515935i 0.875127 0.483894i \(-0.160778\pi\)
0.0184989 + 0.999829i \(0.494111\pi\)
\(312\) 0 0
\(313\) 1112.68 + 1927.21i 0.0113574 + 0.0196716i 0.871648 0.490132i \(-0.163051\pi\)
−0.860291 + 0.509804i \(0.829718\pi\)
\(314\) 92085.9i 0.933972i
\(315\) 0 0
\(316\) 22563.3 0.225958
\(317\) 145552. 84034.3i 1.44843 0.836254i 0.450046 0.893005i \(-0.351408\pi\)
0.998388 + 0.0567515i \(0.0180743\pi\)
\(318\) 0 0
\(319\) 34437.0 59646.6i 0.338410 0.586144i
\(320\) 36805.0 + 21249.4i 0.359424 + 0.207514i
\(321\) 0 0
\(322\) 2339.28 + 4051.76i 0.0225617 + 0.0390779i
\(323\) 13878.3i 0.133024i
\(324\) 0 0
\(325\) 56679.9 0.536615
\(326\) −153872. + 88837.9i −1.44785 + 0.835917i
\(327\) 0 0
\(328\) −14975.6 + 25938.5i −0.139199 + 0.241100i
\(329\) −248293. 143352.i −2.29389 1.32438i
\(330\) 0 0
\(331\) −3379.43 5853.34i −0.0308452 0.0534254i 0.850191 0.526475i \(-0.176487\pi\)
−0.881036 + 0.473049i \(0.843153\pi\)
\(332\) 11154.9i 0.101202i
\(333\) 0 0
\(334\) −122574. −1.09877
\(335\) −64308.1 + 37128.3i −0.573028 + 0.330838i
\(336\) 0 0
\(337\) 111046. 192338.i 0.977787 1.69358i 0.307375 0.951589i \(-0.400550\pi\)
0.670413 0.741988i \(-0.266117\pi\)
\(338\) −18847.7 10881.7i −0.164978 0.0952500i
\(339\) 0 0
\(340\) 2296.77 + 3978.11i 0.0198682 + 0.0344128i
\(341\) 29094.2i 0.250206i
\(342\) 0 0
\(343\) 32754.4 0.278408
\(344\) −41636.3 + 24038.7i −0.351848 + 0.203140i
\(345\) 0 0
\(346\) 22504.2 38978.4i 0.187980 0.325591i
\(347\) 140770. + 81273.8i 1.16910 + 0.674981i 0.953468 0.301494i \(-0.0974853\pi\)
0.215633 + 0.976475i \(0.430819\pi\)
\(348\) 0 0
\(349\) 36348.5 + 62957.4i 0.298425 + 0.516887i 0.975776 0.218773i \(-0.0702054\pi\)
−0.677351 + 0.735660i \(0.736872\pi\)
\(350\) 119196.i 0.973027i
\(351\) 0 0
\(352\) 47454.7 0.382995
\(353\) −111396. + 64314.6i −0.893966 + 0.516131i −0.875238 0.483693i \(-0.839295\pi\)
−0.0187281 + 0.999825i \(0.505962\pi\)
\(354\) 0 0
\(355\) −53652.7 + 92929.2i −0.425730 + 0.737387i
\(356\) 48699.8 + 28116.8i 0.384261 + 0.221853i
\(357\) 0 0
\(358\) 2713.66 + 4700.19i 0.0211733 + 0.0366733i
\(359\) 95302.8i 0.739463i −0.929139 0.369732i \(-0.879450\pi\)
0.929139 0.369732i \(-0.120550\pi\)
\(360\) 0 0
\(361\) −93969.7 −0.721063
\(362\) −109669. + 63317.3i −0.836885 + 0.483176i
\(363\) 0 0
\(364\) 21968.7 38050.9i 0.165807 0.287185i
\(365\) 66935.7 + 38645.4i 0.502426 + 0.290076i
\(366\) 0 0
\(367\) −52073.0 90193.1i −0.386616 0.669639i 0.605376 0.795940i \(-0.293023\pi\)
−0.991992 + 0.126301i \(0.959690\pi\)
\(368\) 4387.23i 0.0323963i
\(369\) 0 0
\(370\) 59116.1 0.431820
\(371\) 123471. 71286.2i 0.897053 0.517914i
\(372\) 0 0
\(373\) −122915. + 212896.i −0.883463 + 1.53020i −0.0359975 + 0.999352i \(0.511461\pi\)
−0.847465 + 0.530851i \(0.821872\pi\)
\(374\) −27066.7 15627.0i −0.193505 0.111720i
\(375\) 0 0
\(376\) −106515. 184489.i −0.753415 1.30495i
\(377\) 110237.i 0.775612i
\(378\) 0 0
\(379\) 200830. 1.39814 0.699070 0.715053i \(-0.253597\pi\)
0.699070 + 0.715053i \(0.253597\pi\)
\(380\) 10419.9 6015.92i 0.0721598 0.0416615i
\(381\) 0 0
\(382\) −21772.3 + 37710.7i −0.149203 + 0.258427i
\(383\) −117206. 67668.8i −0.799008 0.461308i 0.0441160 0.999026i \(-0.485953\pi\)
−0.843124 + 0.537719i \(0.819286\pi\)
\(384\) 0 0
\(385\) −55837.6 96713.6i −0.376708 0.652478i
\(386\) 238458.i 1.60043i
\(387\) 0 0
\(388\) −28221.1 −0.187461
\(389\) 175090. 101088.i 1.15708 0.668039i 0.206475 0.978452i \(-0.433801\pi\)
0.950602 + 0.310413i \(0.100467\pi\)
\(390\) 0 0
\(391\) 526.102 911.236i 0.00344125 0.00596043i
\(392\) 133064. + 76824.6i 0.865942 + 0.499952i
\(393\) 0 0
\(394\) 153019. + 265037.i 0.985721 + 1.70732i
\(395\) 91790.2i 0.588304i
\(396\) 0 0
\(397\) 102384. 0.649608 0.324804 0.945781i \(-0.394702\pi\)
0.324804 + 0.945781i \(0.394702\pi\)
\(398\) 31854.4 18391.1i 0.201096 0.116103i
\(399\) 0 0
\(400\) 55886.8 96798.8i 0.349292 0.604992i
\(401\) 78026.4 + 45048.6i 0.485236 + 0.280151i 0.722596 0.691271i \(-0.242949\pi\)
−0.237360 + 0.971422i \(0.576282\pi\)
\(402\) 0 0
\(403\) 23283.5 + 40328.2i 0.143363 + 0.248313i
\(404\) 7716.45i 0.0472775i
\(405\) 0 0
\(406\) −231824. −1.40639
\(407\) −68808.1 + 39726.4i −0.415385 + 0.239823i
\(408\) 0 0
\(409\) −74861.0 + 129663.i −0.447517 + 0.775122i −0.998224 0.0595770i \(-0.981025\pi\)
0.550707 + 0.834699i \(0.314358\pi\)
\(410\) −34457.1 19893.8i −0.204980 0.118345i
\(411\) 0 0
\(412\) −10152.6 17584.8i −0.0598113 0.103596i
\(413\) 392495.i 2.30109i
\(414\) 0 0
\(415\) 45379.7 0.263491
\(416\) 65778.1 37977.0i 0.380097 0.219449i
\(417\) 0 0
\(418\) −40931.8 + 70895.9i −0.234265 + 0.405759i
\(419\) −109423. 63175.3i −0.623276 0.359848i 0.154868 0.987935i \(-0.450505\pi\)
−0.778143 + 0.628087i \(0.783838\pi\)
\(420\) 0 0
\(421\) 107645. + 186446.i 0.607335 + 1.05194i 0.991678 + 0.128745i \(0.0410949\pi\)
−0.384342 + 0.923191i \(0.625572\pi\)
\(422\) 182126.i 1.02270i
\(423\) 0 0
\(424\) 105935. 0.589263
\(425\) −23215.6 + 13403.5i −0.128529 + 0.0742063i
\(426\) 0 0
\(427\) 62061.3 107493.i 0.340381 0.589557i
\(428\) −31097.5 17954.1i −0.169761 0.0980115i
\(429\) 0 0
\(430\) −31933.5 55310.4i −0.172707 0.299137i
\(431\) 121972.i 0.656607i 0.944572 + 0.328304i \(0.106477\pi\)
−0.944572 + 0.328304i \(0.893523\pi\)
\(432\) 0 0
\(433\) −152419. −0.812951 −0.406475 0.913662i \(-0.633242\pi\)
−0.406475 + 0.913662i \(0.633242\pi\)
\(434\) 84808.7 48964.3i 0.450258 0.259956i
\(435\) 0 0
\(436\) −31825.8 + 55123.8i −0.167419 + 0.289979i
\(437\) −2386.80 1378.02i −0.0124984 0.00721593i
\(438\) 0 0
\(439\) −115564. 200162.i −0.599643 1.03861i −0.992874 0.119173i \(-0.961976\pi\)
0.393230 0.919440i \(-0.371358\pi\)
\(440\) 82977.9i 0.428605i
\(441\) 0 0
\(442\) −50023.9 −0.256055
\(443\) 17481.4 10092.9i 0.0890774 0.0514289i −0.454800 0.890594i \(-0.650289\pi\)
0.543877 + 0.839165i \(0.316956\pi\)
\(444\) 0 0
\(445\) 114383. 198117.i 0.577618 1.00046i
\(446\) −231711. 133778.i −1.16487 0.672537i
\(447\) 0 0
\(448\) 96128.9 + 166500.i 0.478958 + 0.829580i
\(449\) 92962.8i 0.461123i 0.973058 + 0.230561i \(0.0740562\pi\)
−0.973058 + 0.230561i \(0.925944\pi\)
\(450\) 0 0
\(451\) 53475.0 0.262905
\(452\) −71967.4 + 41550.4i −0.352256 + 0.203375i
\(453\) 0 0
\(454\) 220607. 382103.i 1.07031 1.85383i
\(455\) −154796. 89371.5i −0.747716 0.431694i
\(456\) 0 0
\(457\) −110443. 191293.i −0.528819 0.915941i −0.999435 0.0336033i \(-0.989302\pi\)
0.470616 0.882338i \(-0.344032\pi\)
\(458\) 23746.0i 0.113203i
\(459\) 0 0
\(460\) −912.215 −0.00431103
\(461\) −91967.2 + 53097.3i −0.432744 + 0.249845i −0.700515 0.713638i \(-0.747046\pi\)
0.267771 + 0.963483i \(0.413713\pi\)
\(462\) 0 0
\(463\) 34090.0 59045.5i 0.159025 0.275439i −0.775493 0.631357i \(-0.782498\pi\)
0.934517 + 0.355918i \(0.115832\pi\)
\(464\) −188264. 108694.i −0.874444 0.504860i
\(465\) 0 0
\(466\) −41231.8 71415.6i −0.189872 0.328868i
\(467\) 224350.i 1.02871i −0.857578 0.514353i \(-0.828032\pi\)
0.857578 0.514353i \(-0.171968\pi\)
\(468\) 0 0
\(469\) −335925. −1.52720
\(470\) 245078. 141496.i 1.10945 0.640543i
\(471\) 0 0
\(472\) −145817. + 252563.i −0.654524 + 1.13367i
\(473\) 74337.9 + 42919.0i 0.332267 + 0.191835i
\(474\) 0 0
\(475\) 35107.8 + 60808.5i 0.155603 + 0.269511i
\(476\) 20780.4i 0.0917149i
\(477\) 0 0
\(478\) 115410. 0.505113
\(479\) 94542.7 54584.3i 0.412057 0.237901i −0.279616 0.960112i \(-0.590207\pi\)
0.691673 + 0.722211i \(0.256874\pi\)
\(480\) 0 0
\(481\) −63584.5 + 110132.i −0.274828 + 0.476016i
\(482\) 321243. + 185470.i 1.38274 + 0.798324i
\(483\) 0 0
\(484\) 10623.8 + 18400.9i 0.0453510 + 0.0785503i
\(485\) 114807.i 0.488073i
\(486\) 0 0
\(487\) 106309. 0.448240 0.224120 0.974562i \(-0.428049\pi\)
0.224120 + 0.974562i \(0.428049\pi\)
\(488\) 79870.6 46113.3i 0.335388 0.193636i
\(489\) 0 0
\(490\) −102055. + 176765.i −0.425052 + 0.736212i
\(491\) 64472.7 + 37223.3i 0.267432 + 0.154402i 0.627720 0.778439i \(-0.283988\pi\)
−0.360288 + 0.932841i \(0.617322\pi\)
\(492\) 0 0
\(493\) 26068.5 + 45152.0i 0.107256 + 0.185773i
\(494\) 131028.i 0.536919i
\(495\) 0 0
\(496\) 91830.8 0.373271
\(497\) −420397. + 242716.i −1.70195 + 0.982621i
\(498\) 0 0
\(499\) 55603.4 96308.0i 0.223306 0.386777i −0.732504 0.680763i \(-0.761648\pi\)
0.955810 + 0.293985i \(0.0949817\pi\)
\(500\) 54284.1 + 31340.9i 0.217136 + 0.125364i
\(501\) 0 0
\(502\) 109514. + 189684.i 0.434573 + 0.752703i
\(503\) 115897.i 0.458077i −0.973417 0.229038i \(-0.926442\pi\)
0.973417 0.229038i \(-0.0735581\pi\)
\(504\) 0 0
\(505\) −31391.5 −0.123092
\(506\) 5375.10 3103.31i 0.0209935 0.0121206i
\(507\) 0 0
\(508\) −40687.2 + 70472.3i −0.157663 + 0.273081i
\(509\) 170299. + 98322.1i 0.657319 + 0.379503i 0.791255 0.611487i \(-0.209428\pi\)
−0.133936 + 0.990990i \(0.542762\pi\)
\(510\) 0 0
\(511\) 174825. + 302807.i 0.669519 + 1.15964i
\(512\) 111753.i 0.426305i
\(513\) 0 0
\(514\) 433603. 1.64122
\(515\) −71537.3 + 41302.1i −0.269723 + 0.155725i
\(516\) 0 0
\(517\) −190172. + 329388.i −0.711486 + 1.23233i
\(518\) 231603. + 133716.i 0.863146 + 0.498337i
\(519\) 0 0
\(520\) −66405.5 115018.i −0.245583 0.425362i
\(521\) 299306.i 1.10266i −0.834289 0.551328i \(-0.814121\pi\)
0.834289 0.551328i \(-0.185879\pi\)
\(522\) 0 0
\(523\) −162892. −0.595520 −0.297760 0.954641i \(-0.596240\pi\)
−0.297760 + 0.954641i \(0.596240\pi\)
\(524\) −10919.8 + 6304.56i −0.0397698 + 0.0229611i
\(525\) 0 0
\(526\) 92605.2 160397.i 0.334706 0.579728i
\(527\) −19073.4 11012.0i −0.0686763 0.0396503i
\(528\) 0 0
\(529\) −139816. 242168.i −0.499627 0.865379i
\(530\) 140726.i 0.500983i
\(531\) 0 0
\(532\) 54430.1 0.192316
\(533\) 74123.1 42795.0i 0.260915 0.150639i
\(534\) 0 0
\(535\) −73039.7 + 126508.i −0.255183 + 0.441989i
\(536\) −216161. 124801.i −0.752400 0.434398i
\(537\) 0 0
\(538\) −258399. 447560.i −0.892742 1.54628i
\(539\) 274327.i 0.944257i
\(540\) 0 0
\(541\) −62918.7 −0.214974 −0.107487 0.994207i \(-0.534280\pi\)
−0.107487 + 0.994207i \(0.534280\pi\)
\(542\) 19635.7 11336.7i 0.0668416 0.0385910i
\(543\) 0 0
\(544\) −17961.4 + 31110.1i −0.0606936 + 0.105124i
\(545\) 224251. + 129471.i 0.754989 + 0.435893i
\(546\) 0 0
\(547\) 7403.57 + 12823.4i 0.0247438 + 0.0428575i 0.878132 0.478418i \(-0.158790\pi\)
−0.853388 + 0.521276i \(0.825456\pi\)
\(548\) 15249.8i 0.0507813i
\(549\) 0 0
\(550\) −158126. −0.522732
\(551\) 118267. 68281.3i 0.389547 0.224905i
\(552\) 0 0
\(553\) 207622. 359612.i 0.678927 1.17594i
\(554\) −163907. 94631.9i −0.534046 0.308332i
\(555\) 0 0
\(556\) −22999.8 39836.8i −0.0744002 0.128865i
\(557\) 254392.i 0.819962i −0.912094 0.409981i \(-0.865535\pi\)
0.912094 0.409981i \(-0.134465\pi\)
\(558\) 0 0
\(559\) 137389. 0.439671
\(560\) −305260. + 176242.i −0.973405 + 0.561996i
\(561\) 0 0
\(562\) −92557.4 + 160314.i −0.293048 + 0.507574i
\(563\) −80806.7 46653.8i −0.254936 0.147187i 0.367087 0.930187i \(-0.380355\pi\)
−0.622022 + 0.783000i \(0.713689\pi\)
\(564\) 0 0
\(565\) 169032. + 292772.i 0.529508 + 0.917134i
\(566\) 171412.i 0.535068i
\(567\) 0 0
\(568\) −360690. −1.11799
\(569\) 136853. 79012.1i 0.422698 0.244045i −0.273533 0.961863i \(-0.588192\pi\)
0.696231 + 0.717818i \(0.254859\pi\)
\(570\) 0 0
\(571\) 219188. 379644.i 0.672270 1.16441i −0.304988 0.952356i \(-0.598653\pi\)
0.977259 0.212050i \(-0.0680141\pi\)
\(572\) −50478.7 29143.9i −0.154282 0.0890749i
\(573\) 0 0
\(574\) −89996.4 155878.i −0.273150 0.473110i
\(575\) 5323.52i 0.0161014i
\(576\) 0 0
\(577\) 214770. 0.645094 0.322547 0.946554i \(-0.395461\pi\)
0.322547 + 0.946554i \(0.395461\pi\)
\(578\) −302489. + 174642.i −0.905428 + 0.522749i
\(579\) 0 0
\(580\) 22600.3 39144.8i 0.0671827 0.116364i
\(581\) 177787. + 102645.i 0.526681 + 0.304079i
\(582\) 0 0
\(583\) −94568.9 163798.i −0.278235 0.481917i
\(584\) 259801.i 0.761753i
\(585\) 0 0
\(586\) −57951.3 −0.168759
\(587\) −568470. + 328206.i −1.64980 + 0.952512i −0.672649 + 0.739962i \(0.734843\pi\)
−0.977150 + 0.212550i \(0.931823\pi\)
\(588\) 0 0
\(589\) −28843.8 + 49959.0i −0.0831423 + 0.144007i
\(590\) −335509. 193706.i −0.963830 0.556467i
\(591\) 0 0
\(592\) 125390. + 217181.i 0.357781 + 0.619696i
\(593\) 118369.i 0.336612i 0.985735 + 0.168306i \(0.0538296\pi\)
−0.985735 + 0.168306i \(0.946170\pi\)
\(594\) 0 0
\(595\) 84537.3 0.238789
\(596\) 51476.5 29720.0i 0.144916 0.0836673i
\(597\) 0 0
\(598\) 4967.04 8603.17i 0.0138898 0.0240578i
\(599\) 306693. + 177069.i 0.854772 + 0.493503i 0.862258 0.506469i \(-0.169050\pi\)
−0.00748620 + 0.999972i \(0.502383\pi\)
\(600\) 0 0
\(601\) 297820. + 515839.i 0.824526 + 1.42812i 0.902281 + 0.431148i \(0.141891\pi\)
−0.0777554 + 0.996972i \(0.524775\pi\)
\(602\) 288924.i 0.797242i
\(603\) 0 0
\(604\) −119163. −0.326638
\(605\) 74857.1 43218.8i 0.204514 0.118076i
\(606\) 0 0
\(607\) −4860.81 + 8419.17i −0.0131926 + 0.0228503i −0.872546 0.488531i \(-0.837533\pi\)
0.859354 + 0.511382i \(0.170866\pi\)
\(608\) 81486.6 + 47046.3i 0.220434 + 0.127268i
\(609\) 0 0
\(610\) 61257.7 + 106101.i 0.164627 + 0.285142i
\(611\) 608765.i 1.63067i
\(612\) 0 0
\(613\) 194450. 0.517473 0.258736 0.965948i \(-0.416694\pi\)
0.258736 + 0.965948i \(0.416694\pi\)
\(614\) 487650. 281545.i 1.29352 0.746811i
\(615\) 0 0
\(616\) 187689. 325087.i 0.494627 0.856720i
\(617\) −422308. 243819.i −1.10932 0.640469i −0.170670 0.985328i \(-0.554593\pi\)
−0.938654 + 0.344860i \(0.887927\pi\)
\(618\) 0 0
\(619\) −8628.23 14944.5i −0.0225185 0.0390033i 0.854547 0.519375i \(-0.173835\pi\)
−0.877065 + 0.480372i \(0.840502\pi\)
\(620\) 19093.9i 0.0496719i
\(621\) 0 0
\(622\) −445649. −1.15189
\(623\) 896249. 517449.i 2.30915 1.33319i
\(624\) 0 0
\(625\) 12412.5 21499.1i 0.0317760 0.0550376i
\(626\) −8605.50 4968.39i −0.0219598 0.0126785i
\(627\) 0 0
\(628\) 40612.1 + 70342.1i 0.102976 + 0.178360i
\(629\) 60145.1i 0.152019i
\(630\) 0 0
\(631\) −429836. −1.07955 −0.539777 0.841808i \(-0.681491\pi\)
−0.539777 + 0.841808i \(0.681491\pi\)
\(632\) 267202. 154269.i 0.668968 0.386229i
\(633\) 0 0
\(634\) −375235. + 649927.i −0.933523 + 1.61691i
\(635\) 286690. + 165521.i 0.710993 + 0.410492i
\(636\) 0 0
\(637\) −219538. 380251.i −0.541042 0.937113i
\(638\) 307540.i 0.755546i
\(639\) 0 0
\(640\) −316285. −0.772181
\(641\) 27979.5 16154.0i 0.0680964 0.0393155i −0.465565 0.885014i \(-0.654149\pi\)
0.533662 + 0.845698i \(0.320816\pi\)
\(642\) 0 0
\(643\) −138524. + 239931.i −0.335045 + 0.580315i −0.983494 0.180943i \(-0.942085\pi\)
0.648448 + 0.761259i \(0.275418\pi\)
\(644\) −3573.84 2063.36i −0.00861714 0.00497511i
\(645\) 0 0
\(646\) −30985.0 53667.7i −0.0742484 0.128602i
\(647\) 125452.i 0.299689i 0.988710 + 0.149844i \(0.0478773\pi\)
−0.988710 + 0.149844i \(0.952123\pi\)
\(648\) 0 0
\(649\) 520687. 1.23620
\(650\) −219183. + 126545.i −0.518776 + 0.299516i
\(651\) 0 0
\(652\) 78359.2 135722.i 0.184330 0.319268i
\(653\) −245936. 141991.i −0.576760 0.332992i 0.183085 0.983097i \(-0.441392\pi\)
−0.759845 + 0.650105i \(0.774725\pi\)
\(654\) 0 0
\(655\) 25647.8 + 44423.2i 0.0597815 + 0.103545i
\(656\) 168785.i 0.392216i
\(657\) 0 0
\(658\) 1.28021e6 2.95685
\(659\) −311139. + 179636.i −0.716446 + 0.413640i −0.813443 0.581644i \(-0.802410\pi\)
0.0969973 + 0.995285i \(0.469076\pi\)
\(660\) 0 0
\(661\) −98902.1 + 171303.i −0.226362 + 0.392070i −0.956727 0.290987i \(-0.906016\pi\)
0.730366 + 0.683057i \(0.239350\pi\)
\(662\) 26136.7 + 15090.0i 0.0596396 + 0.0344330i
\(663\) 0 0
\(664\) 76268.4 + 132101.i 0.172985 + 0.299619i
\(665\) 221429.i 0.500715i
\(666\) 0 0
\(667\) −10353.7 −0.0232726
\(668\) 93631.5 54058.2i 0.209831 0.121146i
\(669\) 0 0
\(670\) 165788. 287152.i 0.369320 0.639680i
\(671\) −142602. 82331.1i −0.316723 0.182860i
\(672\) 0 0
\(673\) −119036. 206176.i −0.262814 0.455207i 0.704175 0.710027i \(-0.251317\pi\)
−0.966989 + 0.254820i \(0.917984\pi\)
\(674\) 991702.i 2.18304i
\(675\) 0 0
\(676\) 19196.4 0.0420075
\(677\) −216636. + 125075.i −0.472666 + 0.272894i −0.717355 0.696708i \(-0.754647\pi\)
0.244689 + 0.969602i \(0.421314\pi\)
\(678\) 0 0
\(679\) −259684. + 449786.i −0.563256 + 0.975588i
\(680\) 54398.2 + 31406.8i 0.117643 + 0.0679213i
\(681\) 0 0
\(682\) −64956.6 112508.i −0.139654 0.241888i
\(683\) 267358.i 0.573129i −0.958061 0.286564i \(-0.907487\pi\)
0.958061 0.286564i \(-0.0925132\pi\)
\(684\) 0 0
\(685\) −62038.2 −0.132214
\(686\) −126662. + 73128.5i −0.269153 + 0.155396i
\(687\) 0 0
\(688\) 135466. 234635.i 0.286190 0.495696i
\(689\) −262169. 151363.i −0.552259 0.318847i
\(690\) 0 0
\(691\) −168343. 291579.i −0.352565 0.610660i 0.634133 0.773224i \(-0.281357\pi\)
−0.986698 + 0.162564i \(0.948024\pi\)
\(692\) 39699.5i 0.0829036i
\(693\) 0 0
\(694\) −725817. −1.50698
\(695\) −162061. + 93565.9i −0.335513 + 0.193708i
\(696\) 0 0
\(697\) −20240.1 + 35056.9i −0.0416627 + 0.0721618i
\(698\) −281121. 162305.i −0.577009 0.333137i
\(699\) 0 0
\(700\) 52568.2 + 91050.7i 0.107282 + 0.185818i
\(701\) 635795.i 1.29384i −0.762557 0.646921i \(-0.776056\pi\)
0.762557 0.646921i \(-0.223944\pi\)
\(702\) 0 0
\(703\) −157538. −0.318768
\(704\) 220881. 127525.i 0.445669 0.257307i
\(705\) 0 0
\(706\) 287182. 497413.i 0.576165 0.997948i
\(707\) −122984. 71005.0i −0.246043 0.142053i
\(708\) 0 0
\(709\) −215513. 373280.i −0.428728 0.742578i 0.568033 0.823006i \(-0.307705\pi\)
−0.996760 + 0.0804279i \(0.974371\pi\)
\(710\) 479147.i 0.950499i
\(711\) 0 0
\(712\) 768959. 1.51685
\(713\) 3787.73 2186.84i 0.00745074 0.00430169i
\(714\) 0 0
\(715\) −118561. + 205354.i −0.231916 + 0.401690i
\(716\) −4145.79 2393.57i −0.00808689 0.00466897i
\(717\) 0 0
\(718\) 212776. + 368539.i 0.412737 + 0.714882i
\(719\) 798370.i 1.54435i 0.635409 + 0.772176i \(0.280832\pi\)
−0.635409 + 0.772176i \(0.719168\pi\)
\(720\) 0 0
\(721\) −373688. −0.718850
\(722\) 363384. 209800.i 0.697093 0.402467i
\(723\) 0 0
\(724\) 55848.8 96732.9i 0.106546 0.184543i
\(725\) 228442. + 131891.i 0.434610 + 0.250922i
\(726\) 0 0
\(727\) −158557. 274628.i −0.299996 0.519609i 0.676139 0.736775i \(-0.263652\pi\)
−0.976135 + 0.217166i \(0.930319\pi\)
\(728\) 600816.i 1.13365i
\(729\) 0 0
\(730\) −345123. −0.647632
\(731\) −56273.2 + 32489.3i −0.105309 + 0.0608004i
\(732\) 0 0
\(733\) 488922. 846837.i 0.909979 1.57613i 0.0958883 0.995392i \(-0.469431\pi\)
0.814091 0.580738i \(-0.197236\pi\)
\(734\) 402736. + 232520.i 0.747529 + 0.431586i
\(735\) 0 0
\(736\) −3566.90 6178.05i −0.00658469 0.0114050i
\(737\) 445641.i 0.820446i
\(738\) 0 0
\(739\) −392565. −0.718825 −0.359412 0.933179i \(-0.617023\pi\)
−0.359412 + 0.933179i \(0.617023\pi\)
\(740\) −45157.3 + 26071.6i −0.0824640 + 0.0476106i
\(741\) 0 0
\(742\) −318312. + 551332.i −0.578155 + 1.00139i
\(743\) −899450. 519298.i −1.62929 0.940673i −0.984304 0.176482i \(-0.943528\pi\)
−0.644990 0.764191i \(-0.723139\pi\)
\(744\) 0 0
\(745\) −120905. 209413.i −0.217836 0.377304i
\(746\) 1.09770e6i 1.97245i
\(747\) 0 0
\(748\) 27567.5 0.0492713
\(749\) −572304. + 330420.i −1.02015 + 0.588983i
\(750\) 0 0
\(751\) −159783. + 276752.i −0.283302 + 0.490694i −0.972196 0.234168i \(-0.924763\pi\)
0.688894 + 0.724862i \(0.258097\pi\)
\(752\) 1.03966e6 + 600246.i 1.83846 + 1.06144i
\(753\) 0 0
\(754\) 246118. + 426290.i 0.432914 + 0.749829i
\(755\) 484769.i 0.850435i
\(756\) 0 0
\(757\) 500321. 0.873085 0.436543 0.899684i \(-0.356203\pi\)
0.436543 + 0.899684i \(0.356203\pi\)
\(758\) −776617. + 448380.i −1.35166 + 0.780383i
\(759\) 0 0
\(760\) 82263.8 142485.i 0.142424 0.246685i
\(761\) 783645. + 452437.i 1.35316 + 0.781249i 0.988691 0.149966i \(-0.0479165\pi\)
0.364471 + 0.931215i \(0.381250\pi\)
\(762\) 0 0
\(763\) 585707. + 1.01447e6i 1.00608 + 1.74258i
\(764\) 38408.3i 0.0658019i
\(765\) 0 0
\(766\) 604318. 1.02993
\(767\) 721738. 416696.i 1.22684 0.708318i
\(768\) 0 0
\(769\) −71688.6 + 124168.i −0.121227 + 0.209970i −0.920252 0.391327i \(-0.872016\pi\)
0.799025 + 0.601298i \(0.205349\pi\)
\(770\) 431852. + 249330.i 0.728372 + 0.420526i
\(771\) 0 0
\(772\) −105165. 182152.i −0.176457 0.305632i
\(773\) 710063.i 1.18833i −0.804342 0.594166i \(-0.797482\pi\)
0.804342 0.594166i \(-0.202518\pi\)
\(774\) 0 0
\(775\) −111428. −0.185521
\(776\) −334204. + 192953.i −0.554993 + 0.320426i
\(777\) 0 0
\(778\) −451386. + 781823.i −0.745742 + 1.29166i
\(779\) 91824.5 + 53014.9i 0.151316 + 0.0873621i
\(780\) 0 0
\(781\) 321990. + 557702.i 0.527885 + 0.914324i
\(782\) 4698.37i 0.00768305i
\(783\) 0 0
\(784\) −865865. −1.40870
\(785\) 286161. 165215.i 0.464377 0.268108i
\(786\) 0 0
\(787\) 300855. 521097.i 0.485745 0.841335i −0.514121 0.857718i \(-0.671882\pi\)
0.999866 + 0.0163827i \(0.00521501\pi\)
\(788\) −233775. 134970.i −0.376484 0.217363i
\(789\) 0 0
\(790\) 204934. + 354956.i 0.328367 + 0.568748i
\(791\) 1.52935e6i 2.44429i
\(792\) 0 0
\(793\) −263552. −0.419102
\(794\) −395923. + 228586.i −0.628014 + 0.362584i
\(795\) 0 0
\(796\) −16221.8 + 28097.0i −0.0256020 + 0.0443439i
\(797\) 372227. + 214905.i 0.585991 + 0.338322i 0.763511 0.645795i \(-0.223474\pi\)
−0.177519 + 0.984117i \(0.556807\pi\)
\(798\) 0 0
\(799\) −143959. 249344.i −0.225499 0.390576i
\(800\) 181748.i 0.283981i
\(801\) 0 0
\(802\) −402308. −0.625474
\(803\) 401706. 231925.i 0.622984 0.359680i
\(804\) 0 0
\(805\) −8393.99 + 14538.8i −0.0129532 + 0.0224356i
\(806\) −180076. 103967.i −0.277195 0.160039i
\(807\) 0 0
\(808\) −52758.7 91380.8i −0.0808112 0.139969i
\(809\) 629639.i 0.962042i −0.876709 0.481021i \(-0.840266\pi\)
0.876709 0.481021i \(-0.159734\pi\)
\(810\) 0 0
\(811\) 577760. 0.878428 0.439214 0.898383i \(-0.355257\pi\)
0.439214 + 0.898383i \(0.355257\pi\)
\(812\) 177085. 102240.i 0.268577 0.155063i
\(813\) 0 0
\(814\) 177389. 307246.i 0.267718 0.463701i
\(815\) −552135. 318775.i −0.831246 0.479920i
\(816\) 0 0
\(817\) 85099.3 + 147396.i 0.127492 + 0.220822i
\(818\) 668548.i 0.999140i
\(819\) 0 0
\(820\) 35094.5 0.0521929
\(821\) −38728.3 + 22359.8i −0.0574569 + 0.0331727i −0.528453 0.848962i \(-0.677228\pi\)
0.470996 + 0.882135i \(0.343894\pi\)
\(822\) 0 0
\(823\) 146289. 253380.i 0.215979 0.374087i −0.737596 0.675242i \(-0.764039\pi\)
0.953575 + 0.301155i \(0.0973723\pi\)
\(824\) −240461. 138830.i −0.354153 0.204470i
\(825\) 0 0
\(826\) −876296. 1.51779e6i −1.28437 2.22460i
\(827\) 806491.i 1.17920i −0.807694 0.589601i \(-0.799285\pi\)
0.807694 0.589601i \(-0.200715\pi\)
\(828\) 0 0
\(829\) 204904. 0.298154 0.149077 0.988826i \(-0.452370\pi\)
0.149077 + 0.988826i \(0.452370\pi\)
\(830\) −175485. + 101316.i −0.254732 + 0.147069i
\(831\) 0 0
\(832\) 204112. 353533.i 0.294864 0.510720i
\(833\) 179842. + 103832.i 0.259179 + 0.149637i
\(834\) 0 0
\(835\) −219915. 380905.i −0.315415 0.546315i
\(836\) 72207.5i 0.103317i
\(837\) 0 0
\(838\) 564189. 0.803409
\(839\) −667796. + 385552.i −0.948681 + 0.547721i −0.892671 0.450709i \(-0.851171\pi\)
−0.0560100 + 0.998430i \(0.517838\pi\)
\(840\) 0 0
\(841\) −97125.1 + 168226.i −0.137322 + 0.237848i
\(842\) −832531. 480662.i −1.17429 0.677978i
\(843\) 0 0
\(844\) 80322.0 + 139122.i 0.112759 + 0.195304i
\(845\) 78093.4i 0.109371i
\(846\) 0 0
\(847\) 391030. 0.545058
\(848\) −517001. + 298491.i −0.718951 + 0.415087i
\(849\) 0 0
\(850\) 59850.2 103664.i 0.0828376 0.143479i
\(851\) 10343.8 + 5972.02i 0.0142831 + 0.00824635i
\(852\) 0 0
\(853\) −541184. 937358.i −0.743784 1.28827i −0.950761 0.309925i \(-0.899696\pi\)
0.206977 0.978346i \(-0.433637\pi\)
\(854\) 554240.i 0.759945i
\(855\) 0 0
\(856\) −491023. −0.670122
\(857\) 461890. 266672.i 0.628893 0.363092i −0.151430 0.988468i \(-0.548388\pi\)
0.780323 + 0.625376i \(0.215055\pi\)
\(858\) 0 0
\(859\) −565525. + 979517.i −0.766417 + 1.32747i 0.173077 + 0.984908i \(0.444629\pi\)
−0.939494 + 0.342565i \(0.888704\pi\)
\(860\) 48786.4 + 28166.8i 0.0659632 + 0.0380839i
\(861\) 0 0
\(862\) −272319. 471670.i −0.366490 0.634780i
\(863\) 110025.i 0.147730i 0.997268 + 0.0738649i \(0.0235334\pi\)
−0.997268 + 0.0738649i \(0.976467\pi\)
\(864\) 0 0
\(865\) 161503. 0.215848
\(866\) 589410. 340296.i 0.785926 0.453755i
\(867\) 0 0
\(868\) −43188.8 + 74805.3i −0.0573234 + 0.0992871i
\(869\) −477065. 275433.i −0.631739 0.364735i
\(870\) 0 0
\(871\) 356638. + 617715.i 0.470101 + 0.814238i
\(872\) 870394.i 1.14468i
\(873\) 0 0
\(874\) 12306.4 0.0161105
\(875\) 999020. 576784.i 1.30484 0.753351i
\(876\) 0 0
\(877\) 204377. 353991.i 0.265725 0.460249i −0.702028 0.712149i \(-0.747722\pi\)
0.967753 + 0.251900i \(0.0810554\pi\)
\(878\) 893778. + 516023.i 1.15942 + 0.669391i
\(879\) 0 0
\(880\) 233804. + 404960.i 0.301916 + 0.522935i
\(881\) 235809.i 0.303815i −0.988395 0.151907i \(-0.951458\pi\)
0.988395 0.151907i \(-0.0485416\pi\)
\(882\) 0 0
\(883\) −273719. −0.351061 −0.175531 0.984474i \(-0.556164\pi\)
−0.175531 + 0.984474i \(0.556164\pi\)
\(884\) 38212.0 22061.7i 0.0488985 0.0282315i
\(885\) 0 0
\(886\) −45067.3 + 78058.8i −0.0574109 + 0.0994385i
\(887\) −322071. 185948.i −0.409359 0.236344i 0.281155 0.959662i \(-0.409282\pi\)
−0.690514 + 0.723319i \(0.742616\pi\)
\(888\) 0 0
\(889\) 748789. + 1.29694e6i 0.947449 + 1.64103i
\(890\) 1.02150e6i 1.28961i
\(891\) 0 0
\(892\) 235997. 0.296604
\(893\) −653108. + 377072.i −0.818996 + 0.472848i
\(894\) 0 0
\(895\) −9737.36 + 16865.6i −0.0121561 + 0.0210550i
\(896\) −1.23913e6 715412.i −1.54348 0.891128i
\(897\) 0 0
\(898\) −207552. 359490.i −0.257379 0.445794i
\(899\) 216718.i 0.268148i
\(900\) 0 0
\(901\) 143176. 0.176368
\(902\) −206790. + 119390.i −0.254165 + 0.146742i
\(903\) 0 0
\(904\) −568175. + 984108.i −0.695257 + 1.20422i
\(905\) −393522. 227200.i −0.480476 0.277403i
\(906\) 0 0
\(907\) 71965.4 + 124648.i 0.0874801 + 0.151520i 0.906445 0.422323i \(-0.138785\pi\)
−0.818965 + 0.573843i \(0.805452\pi\)
\(908\) 389172.i 0.472030i
\(909\) 0 0
\(910\) 798134. 0.963814
\(911\) 772201. 445830.i 0.930451 0.537196i 0.0434969 0.999054i \(-0.486150\pi\)
0.886954 + 0.461857i \(0.152817\pi\)
\(912\) 0 0
\(913\) 136170. 235854.i 0.163358 0.282944i
\(914\) 854175. + 493158.i 1.02248 + 0.590329i
\(915\) 0 0
\(916\) −10472.5 18139.0i −0.0124813 0.0216183i
\(917\) 232053.i 0.275961i
\(918\) 0 0
\(919\) −582156. −0.689300 −0.344650 0.938731i \(-0.612002\pi\)
−0.344650 + 0.938731i \(0.612002\pi\)
\(920\) −10802.8 + 6236.98i −0.0127632 + 0.00736883i
\(921\) 0 0
\(922\) 237093. 410658.i 0.278906 0.483079i
\(923\) 892636. + 515364.i 1.04778 + 0.604937i
\(924\) 0 0
\(925\) −152149. 263530.i −0.177822 0.307997i
\(926\) 304441.i 0.355043i
\(927\) 0 0
\(928\) 353482. 0.410460
\(929\) 668027. 385685.i 0.774038 0.446891i −0.0602751 0.998182i \(-0.519198\pi\)
0.834313 + 0.551291i \(0.185864\pi\)
\(930\) 0 0
\(931\) 271966. 471059.i 0.313773 0.543470i
\(932\) 62991.9 + 36368.4i 0.0725192 + 0.0418690i
\(933\) 0 0
\(934\) 500890. + 867567.i 0.574181 + 0.994510i
\(935\) 112148.i 0.128283i
\(936\) 0 0
\(937\) −1.46097e6 −1.66403 −0.832015 0.554753i \(-0.812813\pi\)
−0.832015 + 0.554753i \(0.812813\pi\)
\(938\) 1.29903e6 749996.i 1.47643 0.852420i
\(939\) 0 0
\(940\) −124806. + 216170.i −0.141247 + 0.244647i
\(941\) −146658. 84673.2i −0.165626 0.0956240i 0.414896 0.909869i \(-0.363818\pi\)
−0.580522 + 0.814245i \(0.697151\pi\)
\(942\) 0 0
\(943\) −4019.42 6961.83i −0.00452001 0.00782889i
\(944\) 1.64346e6i 1.84423i
\(945\) 0 0
\(946\) −383289. −0.428296
\(947\) −514322. + 296944.i −0.573503 + 0.331112i −0.758547 0.651618i \(-0.774090\pi\)
0.185044 + 0.982730i \(0.440757\pi\)
\(948\) 0 0
\(949\) 371210. 642955.i 0.412180 0.713917i
\(950\) −271526. 156766.i −0.300860 0.173702i
\(951\) 0 0
\(952\) 142079. + 246089.i 0.156768 + 0.271530i
\(953\) 1.25477e6i 1.38159i 0.723050 + 0.690796i \(0.242740\pi\)
−0.723050 + 0.690796i \(0.757260\pi\)
\(954\) 0 0
\(955\) −156250. −0.171322
\(956\) −88159.0 + 50898.6i −0.0964608 + 0.0556917i
\(957\) 0 0
\(958\) −243733. + 422158.i −0.265573 + 0.459985i
\(959\) −243051. 140326.i −0.264278 0.152581i
\(960\) 0 0
\(961\) 415987. + 720510.i 0.450436 + 0.780178i
\(962\) 567843.i 0.613590i
\(963\) 0 0
\(964\) −327186. −0.352080
\(965\) −741017. + 427826.i −0.795744 + 0.459423i
\(966\) 0 0
\(967\) 528928. 916130.i 0.565645 0.979725i −0.431345 0.902187i \(-0.641961\pi\)
0.996989 0.0775381i \(-0.0247059\pi\)
\(968\) 251620. + 145273.i 0.268531 + 0.155037i
\(969\) 0 0
\(970\) −256321. 443962.i −0.272422 0.471848i
\(971\) 775745.i 0.822774i −0.911461 0.411387i \(-0.865044\pi\)
0.911461 0.411387i \(-0.134956\pi\)
\(972\) 0 0
\(973\) −846555. −0.894189
\(974\) −411099. + 237348.i −0.433339 + 0.250189i
\(975\) 0 0
\(976\) −259864. + 450098.i −0.272801 + 0.472506i
\(977\) 429995. + 248258.i 0.450479 + 0.260084i 0.708032 0.706180i \(-0.249583\pi\)
−0.257554 + 0.966264i \(0.582916\pi\)
\(978\) 0 0
\(979\) −686453. 1.18897e6i −0.716218 1.24053i
\(980\) 180035.i 0.187458i
\(981\) 0 0
\(982\) −332424. −0.344722
\(983\) −260643. + 150482.i −0.269736 + 0.155732i −0.628768 0.777593i \(-0.716440\pi\)
0.359032 + 0.933325i \(0.383107\pi\)
\(984\) 0 0
\(985\) −549076. + 951028.i −0.565927 + 0.980214i
\(986\) −201616. 116403.i −0.207382 0.119732i
\(987\) 0 0
\(988\) −57786.2 100089.i −0.0591985 0.102535i
\(989\) 12903.9i 0.0131925i
\(990\) 0 0
\(991\) 1.70094e6 1.73197 0.865987 0.500067i \(-0.166691\pi\)
0.865987 + 0.500067i \(0.166691\pi\)
\(992\) −129315. + 74660.0i −0.131409 + 0.0758691i
\(993\) 0 0
\(994\) 1.08379e6 1.87718e6i 1.09691 1.89991i
\(995\) 114302. + 65992.4i 0.115454 + 0.0666573i
\(996\) 0 0
\(997\) 312919. + 541991.i 0.314805 + 0.545258i 0.979396 0.201949i \(-0.0647276\pi\)
−0.664591 + 0.747207i \(0.731394\pi\)
\(998\) 496568.i 0.498560i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.5.d.a.17.1 6
3.2 odd 2 9.5.d.a.5.3 yes 6
4.3 odd 2 432.5.q.a.17.1 6
9.2 odd 6 inner 27.5.d.a.8.1 6
9.4 even 3 81.5.b.a.80.2 6
9.5 odd 6 81.5.b.a.80.5 6
9.7 even 3 9.5.d.a.2.3 6
12.11 even 2 144.5.q.a.113.3 6
36.7 odd 6 144.5.q.a.65.3 6
36.11 even 6 432.5.q.a.305.1 6
36.23 even 6 1296.5.e.c.161.2 6
36.31 odd 6 1296.5.e.c.161.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.5.d.a.2.3 6 9.7 even 3
9.5.d.a.5.3 yes 6 3.2 odd 2
27.5.d.a.8.1 6 9.2 odd 6 inner
27.5.d.a.17.1 6 1.1 even 1 trivial
81.5.b.a.80.2 6 9.4 even 3
81.5.b.a.80.5 6 9.5 odd 6
144.5.q.a.65.3 6 36.7 odd 6
144.5.q.a.113.3 6 12.11 even 2
432.5.q.a.17.1 6 4.3 odd 2
432.5.q.a.305.1 6 36.11 even 6
1296.5.e.c.161.2 6 36.23 even 6
1296.5.e.c.161.5 6 36.31 odd 6