Properties

Label 27.5.b.a
Level 27
Weight 5
Character orbit 27.b
Self dual Yes
Analytic conductor 2.791
Analytic rank 0
Dimension 1
CM disc. -3
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 5 \)
Character orbit: \([\chi]\) = 27.b (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(2.79098900326\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \( q + 16q^{4} + 71q^{7} + O(q^{10}) \) \( q + 16q^{4} + 71q^{7} - 337q^{13} + 256q^{16} - 601q^{19} + 625q^{25} + 1136q^{28} + 194q^{31} - 529q^{37} - 3214q^{43} + 2640q^{49} - 5392q^{52} + 7199q^{61} + 4096q^{64} + 2903q^{67} - 1249q^{73} - 9616q^{76} + 4679q^{79} - 23927q^{91} + 9071q^{97} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0
0 0 16.0000 0 0 71.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 CM by \(\Q(\sqrt{-3}) \) yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{5}^{\mathrm{new}}(27, [\chi])\).