Defining parameters
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(15\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(27, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15 | 5 | 10 |
Cusp forms | 9 | 5 | 4 |
Eisenstein series | 6 | 0 | 6 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(27, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
27.5.b.a | $1$ | $2.791$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(71\) | \(q+2^{4}q^{4}+71q^{7}-337q^{13}+2^{8}q^{16}+\cdots\) |
27.5.b.b | $2$ | $2.791$ | \(\Q(\sqrt{-6}) \) | None | \(0\) | \(0\) | \(0\) | \(34\) | \(q+\beta q^{2}-38q^{4}+2\beta q^{5}+17q^{7}-22\beta q^{8}+\cdots\) |
27.5.b.c | $2$ | $2.791$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(-38\) | \(q+\beta q^{2}+7 q^{4}+11\beta q^{5}-19 q^{7}+\cdots\) |
Decomposition of \(S_{5}^{\mathrm{old}}(27, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)