Properties

Label 27.5.b
Level $27$
Weight $5$
Character orbit 27.b
Rep. character $\chi_{27}(26,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $3$
Sturm bound $15$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(15\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(27, [\chi])\).

Total New Old
Modular forms 15 5 10
Cusp forms 9 5 4
Eisenstein series 6 0 6

Trace form

\( 5 q - 46 q^{4} + 67 q^{7} - 414 q^{10} + 457 q^{13} + 1226 q^{16} - 791 q^{19} - 1638 q^{22} + 515 q^{25} - 422 q^{28} + 2572 q^{31} - 2052 q^{34} - 1403 q^{37} + 198 q^{40} - 2318 q^{43} + 14544 q^{46}+ \cdots - 9581 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.5.b.a 27.b 3.b $1$ $2.791$ \(\Q\) \(\Q(\sqrt{-3}) \) 27.5.b.a \(0\) \(0\) \(0\) \(71\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{4}q^{4}+71q^{7}-337q^{13}+2^{8}q^{16}+\cdots\)
27.5.b.b 27.b 3.b $2$ $2.791$ \(\Q(\sqrt{-6}) \) None 27.5.b.b \(0\) \(0\) \(0\) \(34\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-38q^{4}+2\beta q^{5}+17q^{7}-22\beta q^{8}+\cdots\)
27.5.b.c 27.b 3.b $2$ $2.791$ \(\Q(\sqrt{-1}) \) None 27.5.b.c \(0\) \(0\) \(0\) \(-38\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+7 q^{4}+11\beta q^{5}-19 q^{7}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(27, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)