Properties

Label 27.4.e.a
Level 27
Weight 4
Character orbit 27.e
Analytic conductor 1.593
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 27.e (of order \(9\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(1.59305157016\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{9})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(48q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 6q^{3} \) \(\mathstrut -\mathstrut 6q^{4} \) \(\mathstrut +\mathstrut 6q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 75q^{8} \) \(\mathstrut -\mathstrut 54q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(48q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 6q^{3} \) \(\mathstrut -\mathstrut 6q^{4} \) \(\mathstrut +\mathstrut 6q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 75q^{8} \) \(\mathstrut -\mathstrut 54q^{9} \) \(\mathstrut -\mathstrut 3q^{10} \) \(\mathstrut +\mathstrut 57q^{11} \) \(\mathstrut +\mathstrut 147q^{12} \) \(\mathstrut -\mathstrut 6q^{13} \) \(\mathstrut +\mathstrut 51q^{14} \) \(\mathstrut -\mathstrut 36q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 207q^{17} \) \(\mathstrut -\mathstrut 639q^{18} \) \(\mathstrut -\mathstrut 3q^{19} \) \(\mathstrut -\mathstrut 597q^{20} \) \(\mathstrut -\mathstrut 138q^{21} \) \(\mathstrut -\mathstrut 60q^{22} \) \(\mathstrut +\mathstrut 402q^{23} \) \(\mathstrut +\mathstrut 1170q^{24} \) \(\mathstrut -\mathstrut 222q^{25} \) \(\mathstrut +\mathstrut 1914q^{26} \) \(\mathstrut +\mathstrut 1125q^{27} \) \(\mathstrut -\mathstrut 12q^{28} \) \(\mathstrut +\mathstrut 480q^{29} \) \(\mathstrut +\mathstrut 459q^{30} \) \(\mathstrut -\mathstrut 60q^{31} \) \(\mathstrut -\mathstrut 648q^{32} \) \(\mathstrut -\mathstrut 639q^{33} \) \(\mathstrut +\mathstrut 288q^{34} \) \(\mathstrut -\mathstrut 1257q^{35} \) \(\mathstrut -\mathstrut 2088q^{36} \) \(\mathstrut -\mathstrut 3q^{37} \) \(\mathstrut -\mathstrut 1524q^{38} \) \(\mathstrut -\mathstrut 768q^{39} \) \(\mathstrut +\mathstrut 561q^{40} \) \(\mathstrut -\mathstrut 1731q^{41} \) \(\mathstrut -\mathstrut 3078q^{42} \) \(\mathstrut +\mathstrut 507q^{43} \) \(\mathstrut -\mathstrut 2211q^{44} \) \(\mathstrut -\mathstrut 360q^{45} \) \(\mathstrut -\mathstrut 3q^{46} \) \(\mathstrut +\mathstrut 984q^{47} \) \(\mathstrut +\mathstrut 2289q^{48} \) \(\mathstrut -\mathstrut 600q^{49} \) \(\mathstrut +\mathstrut 4359q^{50} \) \(\mathstrut +\mathstrut 2655q^{51} \) \(\mathstrut -\mathstrut 1431q^{52} \) \(\mathstrut +\mathstrut 2736q^{53} \) \(\mathstrut +\mathstrut 5454q^{54} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut +\mathstrut 5907q^{56} \) \(\mathstrut +\mathstrut 3426q^{57} \) \(\mathstrut -\mathstrut 897q^{58} \) \(\mathstrut +\mathstrut 2238q^{59} \) \(\mathstrut +\mathstrut 1314q^{60} \) \(\mathstrut +\mathstrut 48q^{61} \) \(\mathstrut -\mathstrut 2118q^{62} \) \(\mathstrut -\mathstrut 2610q^{63} \) \(\mathstrut -\mathstrut 195q^{64} \) \(\mathstrut -\mathstrut 6990q^{65} \) \(\mathstrut -\mathstrut 11115q^{66} \) \(\mathstrut -\mathstrut 681q^{67} \) \(\mathstrut -\mathstrut 11169q^{68} \) \(\mathstrut -\mathstrut 6138q^{69} \) \(\mathstrut -\mathstrut 33q^{70} \) \(\mathstrut -\mathstrut 3105q^{71} \) \(\mathstrut -\mathstrut 36q^{72} \) \(\mathstrut -\mathstrut 219q^{73} \) \(\mathstrut +\mathstrut 3543q^{74} \) \(\mathstrut +\mathstrut 2604q^{75} \) \(\mathstrut +\mathstrut 3426q^{76} \) \(\mathstrut +\mathstrut 4722q^{77} \) \(\mathstrut +\mathstrut 6066q^{78} \) \(\mathstrut +\mathstrut 2802q^{79} \) \(\mathstrut +\mathstrut 9870q^{80} \) \(\mathstrut +\mathstrut 3438q^{81} \) \(\mathstrut -\mathstrut 12q^{82} \) \(\mathstrut +\mathstrut 3468q^{83} \) \(\mathstrut +\mathstrut 7674q^{84} \) \(\mathstrut +\mathstrut 2529q^{85} \) \(\mathstrut +\mathstrut 3624q^{86} \) \(\mathstrut +\mathstrut 2880q^{87} \) \(\mathstrut +\mathstrut 2850q^{88} \) \(\mathstrut -\mathstrut 5202q^{89} \) \(\mathstrut -\mathstrut 12510q^{90} \) \(\mathstrut +\mathstrut 267q^{91} \) \(\mathstrut -\mathstrut 18453q^{92} \) \(\mathstrut -\mathstrut 11802q^{93} \) \(\mathstrut -\mathstrut 1653q^{94} \) \(\mathstrut -\mathstrut 10113q^{95} \) \(\mathstrut -\mathstrut 14094q^{96} \) \(\mathstrut -\mathstrut 3381q^{97} \) \(\mathstrut -\mathstrut 4392q^{98} \) \(\mathstrut -\mathstrut 1242q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −4.97861 1.81207i −3.67671 3.67176i 15.3746 + 12.9008i −1.82513 + 10.3508i 11.6515 + 24.9427i −5.92244 + 4.96952i −31.9745 55.3815i 0.0364268 + 27.0000i 27.8430 48.2255i
4.2 −4.05233 1.47493i 4.37853 + 2.79794i 8.11761 + 6.81148i 3.22691 18.3007i −13.6165 17.7962i 14.4087 12.0903i −5.59920 9.69809i 11.3431 + 24.5017i −40.0687 + 69.4011i
4.3 −2.12171 0.772239i −0.789571 + 5.13581i −2.22306 1.86537i −3.33920 + 18.9376i 5.64131 10.2870i 0.500915 0.420318i 12.3077 + 21.3175i −25.7532 8.11018i 21.7091 37.6013i
4.4 −0.982993 0.357780i −5.19600 0.0395600i −5.29009 4.43891i 2.68017 15.2000i 5.09348 + 1.89791i −18.0349 + 15.1331i 7.79628 + 13.5036i 26.9969 + 0.411107i −8.07284 + 13.9826i
4.5 −0.932125 0.339266i 1.23404 5.04749i −5.37460 4.50982i 0.0250883 0.142283i −2.86272 + 4.28623i 19.4381 16.3105i 7.44756 + 12.8996i −23.9543 12.4576i −0.0716572 + 0.124114i
4.6 1.82340 + 0.663664i 5.12138 + 0.878355i −3.24401 2.72205i −0.470388 + 2.66770i 8.75540 + 5.00047i −9.12942 + 7.66050i −11.8703 20.5600i 25.4570 + 8.99678i −2.62817 + 4.55212i
4.7 3.53135 + 1.28531i −2.46998 + 4.57157i 4.69008 + 3.93544i 1.06026 6.01302i −14.5982 + 12.9691i 13.2194 11.0924i −3.52788 6.11047i −14.7984 22.5833i 11.4727 19.8713i
4.8 4.06758 + 1.48048i −1.65472 4.92564i 8.22505 + 6.90164i −0.745703 + 4.22909i 0.561612 22.4852i −15.6540 + 13.1353i 5.92381 + 10.2603i −21.5238 + 16.3011i −9.29428 + 16.0982i
7.1 −4.97861 + 1.81207i −3.67671 + 3.67176i 15.3746 12.9008i −1.82513 10.3508i 11.6515 24.9427i −5.92244 4.96952i −31.9745 + 55.3815i 0.0364268 27.0000i 27.8430 + 48.2255i
7.2 −4.05233 + 1.47493i 4.37853 2.79794i 8.11761 6.81148i 3.22691 + 18.3007i −13.6165 + 17.7962i 14.4087 + 12.0903i −5.59920 + 9.69809i 11.3431 24.5017i −40.0687 69.4011i
7.3 −2.12171 + 0.772239i −0.789571 5.13581i −2.22306 + 1.86537i −3.33920 18.9376i 5.64131 + 10.2870i 0.500915 + 0.420318i 12.3077 21.3175i −25.7532 + 8.11018i 21.7091 + 37.6013i
7.4 −0.982993 + 0.357780i −5.19600 + 0.0395600i −5.29009 + 4.43891i 2.68017 + 15.2000i 5.09348 1.89791i −18.0349 15.1331i 7.79628 13.5036i 26.9969 0.411107i −8.07284 13.9826i
7.5 −0.932125 + 0.339266i 1.23404 + 5.04749i −5.37460 + 4.50982i 0.0250883 + 0.142283i −2.86272 4.28623i 19.4381 + 16.3105i 7.44756 12.8996i −23.9543 + 12.4576i −0.0716572 0.124114i
7.6 1.82340 0.663664i 5.12138 0.878355i −3.24401 + 2.72205i −0.470388 2.66770i 8.75540 5.00047i −9.12942 7.66050i −11.8703 + 20.5600i 25.4570 8.99678i −2.62817 4.55212i
7.7 3.53135 1.28531i −2.46998 4.57157i 4.69008 3.93544i 1.06026 + 6.01302i −14.5982 12.9691i 13.2194 + 11.0924i −3.52788 + 6.11047i −14.7984 + 22.5833i 11.4727 + 19.8713i
7.8 4.06758 1.48048i −1.65472 + 4.92564i 8.22505 6.90164i −0.745703 4.22909i 0.561612 + 22.4852i −15.6540 13.1353i 5.92381 10.2603i −21.5238 16.3011i −9.29428 16.0982i
13.1 −0.874714 4.96075i 2.71299 4.43167i −16.3263 + 5.94230i 11.9326 + 10.0126i −24.3575 9.58200i −5.29732 1.92807i 23.6100 + 40.8938i −12.2794 24.0461i 39.2325 67.9527i
13.2 −0.592608 3.36085i −5.15968 0.614572i −3.42657 + 1.24717i −8.41296 7.05931i 0.992184 + 17.7051i 4.14024 + 1.50692i −7.42861 12.8667i 26.2446 + 6.34199i −18.7397 + 32.4581i
13.3 −0.404735 2.29536i 4.52897 + 2.54724i 2.41266 0.878135i −4.78113 4.01185i 4.01380 11.4266i 2.53990 + 0.924448i −12.3152 21.3306i 14.0232 + 23.0727i −7.27356 + 12.5982i
13.4 −0.0518956 0.294314i −2.82128 + 4.36353i 7.43361 2.70561i 15.3604 + 12.8889i 1.43066 + 0.603897i −20.1945 7.35018i −2.37749 4.11794i −11.0807 24.6215i 2.99626 5.18968i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 25.8
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

There are no other newforms in \(S_{4}^{\mathrm{new}}(27, [\chi])\).