Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [27,4,Mod(4,27)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("27.4");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.e (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.59305157015\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −4.97861 | − | 1.81207i | −3.67671 | − | 3.67176i | 15.3746 | + | 12.9008i | −1.82513 | + | 10.3508i | 11.6515 | + | 24.9427i | −5.92244 | + | 4.96952i | −31.9745 | − | 55.3815i | 0.0364268 | + | 27.0000i | 27.8430 | − | 48.2255i |
4.2 | −4.05233 | − | 1.47493i | 4.37853 | + | 2.79794i | 8.11761 | + | 6.81148i | 3.22691 | − | 18.3007i | −13.6165 | − | 17.7962i | 14.4087 | − | 12.0903i | −5.59920 | − | 9.69809i | 11.3431 | + | 24.5017i | −40.0687 | + | 69.4011i |
4.3 | −2.12171 | − | 0.772239i | −0.789571 | + | 5.13581i | −2.22306 | − | 1.86537i | −3.33920 | + | 18.9376i | 5.64131 | − | 10.2870i | 0.500915 | − | 0.420318i | 12.3077 | + | 21.3175i | −25.7532 | − | 8.11018i | 21.7091 | − | 37.6013i |
4.4 | −0.982993 | − | 0.357780i | −5.19600 | − | 0.0395600i | −5.29009 | − | 4.43891i | 2.68017 | − | 15.2000i | 5.09348 | + | 1.89791i | −18.0349 | + | 15.1331i | 7.79628 | + | 13.5036i | 26.9969 | + | 0.411107i | −8.07284 | + | 13.9826i |
4.5 | −0.932125 | − | 0.339266i | 1.23404 | − | 5.04749i | −5.37460 | − | 4.50982i | 0.0250883 | − | 0.142283i | −2.86272 | + | 4.28623i | 19.4381 | − | 16.3105i | 7.44756 | + | 12.8996i | −23.9543 | − | 12.4576i | −0.0716572 | + | 0.124114i |
4.6 | 1.82340 | + | 0.663664i | 5.12138 | + | 0.878355i | −3.24401 | − | 2.72205i | −0.470388 | + | 2.66770i | 8.75540 | + | 5.00047i | −9.12942 | + | 7.66050i | −11.8703 | − | 20.5600i | 25.4570 | + | 8.99678i | −2.62817 | + | 4.55212i |
4.7 | 3.53135 | + | 1.28531i | −2.46998 | + | 4.57157i | 4.69008 | + | 3.93544i | 1.06026 | − | 6.01302i | −14.5982 | + | 12.9691i | 13.2194 | − | 11.0924i | −3.52788 | − | 6.11047i | −14.7984 | − | 22.5833i | 11.4727 | − | 19.8713i |
4.8 | 4.06758 | + | 1.48048i | −1.65472 | − | 4.92564i | 8.22505 | + | 6.90164i | −0.745703 | + | 4.22909i | 0.561612 | − | 22.4852i | −15.6540 | + | 13.1353i | 5.92381 | + | 10.2603i | −21.5238 | + | 16.3011i | −9.29428 | + | 16.0982i |
7.1 | −4.97861 | + | 1.81207i | −3.67671 | + | 3.67176i | 15.3746 | − | 12.9008i | −1.82513 | − | 10.3508i | 11.6515 | − | 24.9427i | −5.92244 | − | 4.96952i | −31.9745 | + | 55.3815i | 0.0364268 | − | 27.0000i | 27.8430 | + | 48.2255i |
7.2 | −4.05233 | + | 1.47493i | 4.37853 | − | 2.79794i | 8.11761 | − | 6.81148i | 3.22691 | + | 18.3007i | −13.6165 | + | 17.7962i | 14.4087 | + | 12.0903i | −5.59920 | + | 9.69809i | 11.3431 | − | 24.5017i | −40.0687 | − | 69.4011i |
7.3 | −2.12171 | + | 0.772239i | −0.789571 | − | 5.13581i | −2.22306 | + | 1.86537i | −3.33920 | − | 18.9376i | 5.64131 | + | 10.2870i | 0.500915 | + | 0.420318i | 12.3077 | − | 21.3175i | −25.7532 | + | 8.11018i | 21.7091 | + | 37.6013i |
7.4 | −0.982993 | + | 0.357780i | −5.19600 | + | 0.0395600i | −5.29009 | + | 4.43891i | 2.68017 | + | 15.2000i | 5.09348 | − | 1.89791i | −18.0349 | − | 15.1331i | 7.79628 | − | 13.5036i | 26.9969 | − | 0.411107i | −8.07284 | − | 13.9826i |
7.5 | −0.932125 | + | 0.339266i | 1.23404 | + | 5.04749i | −5.37460 | + | 4.50982i | 0.0250883 | + | 0.142283i | −2.86272 | − | 4.28623i | 19.4381 | + | 16.3105i | 7.44756 | − | 12.8996i | −23.9543 | + | 12.4576i | −0.0716572 | − | 0.124114i |
7.6 | 1.82340 | − | 0.663664i | 5.12138 | − | 0.878355i | −3.24401 | + | 2.72205i | −0.470388 | − | 2.66770i | 8.75540 | − | 5.00047i | −9.12942 | − | 7.66050i | −11.8703 | + | 20.5600i | 25.4570 | − | 8.99678i | −2.62817 | − | 4.55212i |
7.7 | 3.53135 | − | 1.28531i | −2.46998 | − | 4.57157i | 4.69008 | − | 3.93544i | 1.06026 | + | 6.01302i | −14.5982 | − | 12.9691i | 13.2194 | + | 11.0924i | −3.52788 | + | 6.11047i | −14.7984 | + | 22.5833i | 11.4727 | + | 19.8713i |
7.8 | 4.06758 | − | 1.48048i | −1.65472 | + | 4.92564i | 8.22505 | − | 6.90164i | −0.745703 | − | 4.22909i | 0.561612 | + | 22.4852i | −15.6540 | − | 13.1353i | 5.92381 | − | 10.2603i | −21.5238 | − | 16.3011i | −9.29428 | − | 16.0982i |
13.1 | −0.874714 | − | 4.96075i | 2.71299 | − | 4.43167i | −16.3263 | + | 5.94230i | 11.9326 | + | 10.0126i | −24.3575 | − | 9.58200i | −5.29732 | − | 1.92807i | 23.6100 | + | 40.8938i | −12.2794 | − | 24.0461i | 39.2325 | − | 67.9527i |
13.2 | −0.592608 | − | 3.36085i | −5.15968 | − | 0.614572i | −3.42657 | + | 1.24717i | −8.41296 | − | 7.05931i | 0.992184 | + | 17.7051i | 4.14024 | + | 1.50692i | −7.42861 | − | 12.8667i | 26.2446 | + | 6.34199i | −18.7397 | + | 32.4581i |
13.3 | −0.404735 | − | 2.29536i | 4.52897 | + | 2.54724i | 2.41266 | − | 0.878135i | −4.78113 | − | 4.01185i | 4.01380 | − | 11.4266i | 2.53990 | + | 0.924448i | −12.3152 | − | 21.3306i | 14.0232 | + | 23.0727i | −7.27356 | + | 12.5982i |
13.4 | −0.0518956 | − | 0.294314i | −2.82128 | + | 4.36353i | 7.43361 | − | 2.70561i | 15.3604 | + | 12.8889i | 1.43066 | + | 0.603897i | −20.1945 | − | 7.35018i | −2.37749 | − | 4.11794i | −11.0807 | − | 24.6215i | 2.99626 | − | 5.18968i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 27.4.e.a | ✓ | 48 |
3.b | odd | 2 | 1 | 81.4.e.a | 48 | ||
9.c | even | 3 | 1 | 243.4.e.c | 48 | ||
9.c | even | 3 | 1 | 243.4.e.d | 48 | ||
9.d | odd | 6 | 1 | 243.4.e.a | 48 | ||
9.d | odd | 6 | 1 | 243.4.e.b | 48 | ||
27.e | even | 9 | 1 | inner | 27.4.e.a | ✓ | 48 |
27.e | even | 9 | 1 | 243.4.e.c | 48 | ||
27.e | even | 9 | 1 | 243.4.e.d | 48 | ||
27.e | even | 9 | 1 | 729.4.a.d | 24 | ||
27.f | odd | 18 | 1 | 81.4.e.a | 48 | ||
27.f | odd | 18 | 1 | 243.4.e.a | 48 | ||
27.f | odd | 18 | 1 | 243.4.e.b | 48 | ||
27.f | odd | 18 | 1 | 729.4.a.c | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.4.e.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
27.4.e.a | ✓ | 48 | 27.e | even | 9 | 1 | inner |
81.4.e.a | 48 | 3.b | odd | 2 | 1 | ||
81.4.e.a | 48 | 27.f | odd | 18 | 1 | ||
243.4.e.a | 48 | 9.d | odd | 6 | 1 | ||
243.4.e.a | 48 | 27.f | odd | 18 | 1 | ||
243.4.e.b | 48 | 9.d | odd | 6 | 1 | ||
243.4.e.b | 48 | 27.f | odd | 18 | 1 | ||
243.4.e.c | 48 | 9.c | even | 3 | 1 | ||
243.4.e.c | 48 | 27.e | even | 9 | 1 | ||
243.4.e.d | 48 | 9.c | even | 3 | 1 | ||
243.4.e.d | 48 | 27.e | even | 9 | 1 | ||
729.4.a.c | 24 | 27.f | odd | 18 | 1 | ||
729.4.a.d | 24 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(27, [\chi])\).