Properties

Label 27.4.c.a
Level $27$
Weight $4$
Character orbit 27.c
Analytic conductor $1.593$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,4,Mod(10,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.10");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 27.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59305157015\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1) q^{2} + (3 \beta_{3} - 3 \beta_{2} + \beta_1 - 4) q^{4} + (\beta_{3} - \beta_{2} - 8 \beta_1 + 7) q^{5} + ( - 3 \beta_{3} - 2 \beta_1) q^{7} + (\beta_{2} - 16) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} + \beta_1) q^{2} + (3 \beta_{3} - 3 \beta_{2} + \beta_1 - 4) q^{4} + (\beta_{3} - \beta_{2} - 8 \beta_1 + 7) q^{5} + ( - 3 \beta_{3} - 2 \beta_1) q^{7} + (\beta_{2} - 16) q^{8} + (6 \beta_{2} + 6) q^{10} + ( - 8 \beta_{3} + 37 \beta_1) q^{11} + ( - 15 \beta_{3} + 15 \beta_{2} + 2 \beta_1 + 13) q^{13} + ( - 8 \beta_{3} + 8 \beta_{2} - 26 \beta_1 + 34) q^{14} + (9 \beta_{3} - \beta_1) q^{16} + ( - 9 \beta_{2} - 54) q^{17} + ( - 27 \beta_{2} - 52) q^{19} + (20 \beta_{3} - 16 \beta_1) q^{20} + (21 \beta_{3} - 21 \beta_{2} - 27 \beta_1 + 6) q^{22} + (19 \beta_{3} - 19 \beta_{2} - 26 \beta_1 + 7) q^{23} + (15 \beta_{3} + 53 \beta_1) q^{25} + (28 \beta_{2} + 146) q^{26} + (18 \beta_{2} + 92) q^{28} + (\beta_{3} - 26 \beta_1) q^{29} + (3 \beta_{3} - 3 \beta_{2} + 20 \beta_1 - 23) q^{31} + (9 \beta_{3} - 9 \beta_{2} + 207 \beta_1 - 216) q^{32} + ( - 63 \beta_{3} - 117 \beta_1) q^{34} + ( - 19 \beta_{2} - 11) q^{35} + (54 \beta_{2} + 2) q^{37} + ( - 79 \beta_{3} - 241 \beta_1) q^{38} + ( - 24 \beta_{3} + 24 \beta_{2} + 144 \beta_1 - 120) q^{40} + ( - 98 \beta_{3} + 98 \beta_{2} - 17 \beta_1 + 115) q^{41} + (6 \beta_{3} - 47 \beta_1) q^{43} + ( - 79 \beta_{2} + 76) q^{44} + ( - 12 \beta_{2} - 138) q^{46} + (91 \beta_{3} + 154 \beta_1) q^{47} + (21 \beta_{3} - 21 \beta_{2} - 267 \beta_1 + 246) q^{49} + (83 \beta_{3} - 83 \beta_{2} + 173 \beta_1 - 256) q^{50} + (54 \beta_{3} + 358 \beta_1) q^{52} + (162 \beta_{2} + 54) q^{53} + ( - 93 \beta_{2} + 267) q^{55} + (46 \beta_{3} + 10 \beta_1) q^{56} + ( - 24 \beta_{3} + 24 \beta_{2} - 18 \beta_1 + 42) q^{58} + (136 \beta_{3} - 136 \beta_{2} - 467 \beta_1 + 331) q^{59} + (105 \beta_{3} - 272 \beta_1) q^{61} + ( - 26 \beta_{2} - 70) q^{62} + ( - 153 \beta_{2} - 440) q^{64} + ( - 107 \beta_{3} + 136 \beta_1) q^{65} + (66 \beta_{3} - 66 \beta_{2} + 461 \beta_1 - 527) q^{67} + ( - 171 \beta_{3} + 171 \beta_{2} - 261 \beta_1 + 432) q^{68} + ( - 30 \beta_{3} - 144 \beta_1) q^{70} + ( - 144 \beta_{2} - 756) q^{71} + (243 \beta_{2} - 106) q^{73} + (56 \beta_{3} + 380 \beta_1) q^{74} + ( - 183 \beta_{3} + 183 \beta_{2} - 673 \beta_1 + 856) q^{76} + ( - 71 \beta_{3} + 71 \beta_{2} + 118 \beta_1 - 47) q^{77} + ( - 309 \beta_{3} + 556 \beta_1) q^{79} + (64 \beta_{2} - 16) q^{80} + (213 \beta_{2} + 1014) q^{82} + ( - 107 \beta_{3} + 460 \beta_1) q^{83} + (18 \beta_{3} - 18 \beta_{2} + 288 \beta_1 - 306) q^{85} + ( - 35 \beta_{3} + 35 \beta_{2} + \beta_1 + 34) q^{86} + (165 \beta_{3} - 693 \beta_1) q^{88} + ( - 72 \beta_{2} + 162) q^{89} + ( - 69 \beta_{2} - 425) q^{91} + (2 \beta_{3} - 430 \beta_1) q^{92} + (336 \beta_{3} - 336 \beta_{2} + 882 \beta_1 - 1218) q^{94} + (164 \beta_{3} - 164 \beta_{2} - 16 \beta_1 - 148) q^{95} + ( - 102 \beta_{3} - 317 \beta_1) q^{97} + (225 \beta_{2} + 324) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - 5 q^{4} + 15 q^{5} - 7 q^{7} - 66 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} - 5 q^{4} + 15 q^{5} - 7 q^{7} - 66 q^{8} + 12 q^{10} + 66 q^{11} + 11 q^{13} + 60 q^{14} + 7 q^{16} - 198 q^{17} - 154 q^{19} - 12 q^{20} + 33 q^{22} + 33 q^{23} + 121 q^{25} + 528 q^{26} + 332 q^{28} - 51 q^{29} - 43 q^{31} - 423 q^{32} - 297 q^{34} - 6 q^{35} - 100 q^{37} - 561 q^{38} - 264 q^{40} + 132 q^{41} - 88 q^{43} + 462 q^{44} - 528 q^{46} + 399 q^{47} + 513 q^{49} - 429 q^{50} + 770 q^{52} - 108 q^{53} + 1254 q^{55} + 66 q^{56} + 60 q^{58} + 798 q^{59} - 439 q^{61} - 228 q^{62} - 1454 q^{64} + 165 q^{65} - 988 q^{67} + 693 q^{68} - 318 q^{70} - 2736 q^{71} - 910 q^{73} + 816 q^{74} + 1529 q^{76} - 165 q^{77} + 803 q^{79} - 192 q^{80} + 3630 q^{82} + 813 q^{83} - 594 q^{85} + 33 q^{86} - 1221 q^{88} + 792 q^{89} - 1562 q^{91} - 858 q^{92} - 2100 q^{94} - 132 q^{95} - 736 q^{97} + 846 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} + \nu^{2} + 2\nu - 9 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 2\beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 8\beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{3} - 2\beta_{2} - 2\beta _1 + 11 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
−1.18614 1.26217i
1.68614 + 0.396143i
−1.18614 + 1.26217i
1.68614 0.396143i
−0.686141 1.18843i 0 3.05842 5.29734i 5.18614 8.98266i 0 2.55842 + 4.43132i −19.3723 0 −14.2337
10.2 2.18614 + 3.78651i 0 −5.55842 + 9.62747i 2.31386 4.00772i 0 −6.05842 10.4935i −13.6277 0 20.2337
19.1 −0.686141 + 1.18843i 0 3.05842 + 5.29734i 5.18614 + 8.98266i 0 2.55842 4.43132i −19.3723 0 −14.2337
19.2 2.18614 3.78651i 0 −5.55842 9.62747i 2.31386 + 4.00772i 0 −6.05842 + 10.4935i −13.6277 0 20.2337
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.4.c.a 4
3.b odd 2 1 9.4.c.a 4
4.b odd 2 1 432.4.i.c 4
9.c even 3 1 inner 27.4.c.a 4
9.c even 3 1 81.4.a.a 2
9.d odd 6 1 9.4.c.a 4
9.d odd 6 1 81.4.a.d 2
12.b even 2 1 144.4.i.c 4
15.d odd 2 1 225.4.e.b 4
15.e even 4 2 225.4.k.b 8
36.f odd 6 1 432.4.i.c 4
36.f odd 6 1 1296.4.a.i 2
36.h even 6 1 144.4.i.c 4
36.h even 6 1 1296.4.a.u 2
45.h odd 6 1 225.4.e.b 4
45.h odd 6 1 2025.4.a.g 2
45.j even 6 1 2025.4.a.n 2
45.l even 12 2 225.4.k.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.c.a 4 3.b odd 2 1
9.4.c.a 4 9.d odd 6 1
27.4.c.a 4 1.a even 1 1 trivial
27.4.c.a 4 9.c even 3 1 inner
81.4.a.a 2 9.c even 3 1
81.4.a.d 2 9.d odd 6 1
144.4.i.c 4 12.b even 2 1
144.4.i.c 4 36.h even 6 1
225.4.e.b 4 15.d odd 2 1
225.4.e.b 4 45.h odd 6 1
225.4.k.b 8 15.e even 4 2
225.4.k.b 8 45.l even 12 2
432.4.i.c 4 4.b odd 2 1
432.4.i.c 4 36.f odd 6 1
1296.4.a.i 2 36.f odd 6 1
1296.4.a.u 2 36.h even 6 1
2025.4.a.g 2 45.h odd 6 1
2025.4.a.n 2 45.j even 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(27, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3 T^{3} + 15 T^{2} + 18 T + 36 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 15 T^{3} + 177 T^{2} + \cdots + 2304 \) Copy content Toggle raw display
$7$ \( T^{4} + 7 T^{3} + 111 T^{2} + \cdots + 3844 \) Copy content Toggle raw display
$11$ \( T^{4} - 66 T^{3} + 3795 T^{2} + \cdots + 314721 \) Copy content Toggle raw display
$13$ \( T^{4} - 11 T^{3} + 1947 T^{2} + \cdots + 3334276 \) Copy content Toggle raw display
$17$ \( (T^{2} + 99 T + 1782)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 77 T - 4532)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 33 T^{3} + 3795 T^{2} + \cdots + 7322436 \) Copy content Toggle raw display
$29$ \( T^{4} + 51 T^{3} + 1959 T^{2} + \cdots + 412164 \) Copy content Toggle raw display
$31$ \( T^{4} + 43 T^{3} + 1461 T^{2} + \cdots + 150544 \) Copy content Toggle raw display
$37$ \( (T^{2} + 50 T - 23432)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 132 T^{3} + \cdots + 5606565129 \) Copy content Toggle raw display
$43$ \( T^{4} + 88 T^{3} + 6105 T^{2} + \cdots + 2686321 \) Copy content Toggle raw display
$47$ \( T^{4} - 399 T^{3} + \cdots + 813276324 \) Copy content Toggle raw display
$53$ \( (T^{2} + 54 T - 215784)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 798 T^{3} + \cdots + 43678881 \) Copy content Toggle raw display
$61$ \( T^{4} + 439 T^{3} + \cdots + 1829786176 \) Copy content Toggle raw display
$67$ \( T^{4} + 988 T^{3} + \cdots + 43305193801 \) Copy content Toggle raw display
$71$ \( (T^{2} + 1368 T + 296784)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 455 T - 435398)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 803 T^{3} + \cdots + 392522298256 \) Copy content Toggle raw display
$83$ \( T^{4} - 813 T^{3} + \cdots + 5010940944 \) Copy content Toggle raw display
$89$ \( (T^{2} - 396 T - 3564)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 736 T^{3} + \cdots + 2459267281 \) Copy content Toggle raw display
show more
show less