Properties

Label 27.4.c.a
Level 27
Weight 4
Character orbit 27.c
Analytic conductor 1.593
Analytic rank 0
Dimension 4
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 27.c (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(1.59305157016\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( + ( \beta_{1} + \beta_{3} ) q^{2} \) \( + ( -4 + \beta_{1} - 3 \beta_{2} + 3 \beta_{3} ) q^{4} \) \( + ( 7 - 8 \beta_{1} - \beta_{2} + \beta_{3} ) q^{5} \) \( + ( -2 \beta_{1} - 3 \beta_{3} ) q^{7} \) \( + ( -16 + \beta_{2} ) q^{8} \) \(+O(q^{10})\) \( q\) \( + ( \beta_{1} + \beta_{3} ) q^{2} \) \( + ( -4 + \beta_{1} - 3 \beta_{2} + 3 \beta_{3} ) q^{4} \) \( + ( 7 - 8 \beta_{1} - \beta_{2} + \beta_{3} ) q^{5} \) \( + ( -2 \beta_{1} - 3 \beta_{3} ) q^{7} \) \( + ( -16 + \beta_{2} ) q^{8} \) \( + ( 6 + 6 \beta_{2} ) q^{10} \) \( + ( 37 \beta_{1} - 8 \beta_{3} ) q^{11} \) \( + ( 13 + 2 \beta_{1} + 15 \beta_{2} - 15 \beta_{3} ) q^{13} \) \( + ( 34 - 26 \beta_{1} + 8 \beta_{2} - 8 \beta_{3} ) q^{14} \) \( + ( -\beta_{1} + 9 \beta_{3} ) q^{16} \) \( + ( -54 - 9 \beta_{2} ) q^{17} \) \( + ( -52 - 27 \beta_{2} ) q^{19} \) \( + ( -16 \beta_{1} + 20 \beta_{3} ) q^{20} \) \( + ( 6 - 27 \beta_{1} - 21 \beta_{2} + 21 \beta_{3} ) q^{22} \) \( + ( 7 - 26 \beta_{1} - 19 \beta_{2} + 19 \beta_{3} ) q^{23} \) \( + ( 53 \beta_{1} + 15 \beta_{3} ) q^{25} \) \( + ( 146 + 28 \beta_{2} ) q^{26} \) \( + ( 92 + 18 \beta_{2} ) q^{28} \) \( + ( -26 \beta_{1} + \beta_{3} ) q^{29} \) \( + ( -23 + 20 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} ) q^{31} \) \( + ( -216 + 207 \beta_{1} - 9 \beta_{2} + 9 \beta_{3} ) q^{32} \) \( + ( -117 \beta_{1} - 63 \beta_{3} ) q^{34} \) \( + ( -11 - 19 \beta_{2} ) q^{35} \) \( + ( 2 + 54 \beta_{2} ) q^{37} \) \( + ( -241 \beta_{1} - 79 \beta_{3} ) q^{38} \) \( + ( -120 + 144 \beta_{1} + 24 \beta_{2} - 24 \beta_{3} ) q^{40} \) \( + ( 115 - 17 \beta_{1} + 98 \beta_{2} - 98 \beta_{3} ) q^{41} \) \( + ( -47 \beta_{1} + 6 \beta_{3} ) q^{43} \) \( + ( 76 - 79 \beta_{2} ) q^{44} \) \( + ( -138 - 12 \beta_{2} ) q^{46} \) \( + ( 154 \beta_{1} + 91 \beta_{3} ) q^{47} \) \( + ( 246 - 267 \beta_{1} - 21 \beta_{2} + 21 \beta_{3} ) q^{49} \) \( + ( -256 + 173 \beta_{1} - 83 \beta_{2} + 83 \beta_{3} ) q^{50} \) \( + ( 358 \beta_{1} + 54 \beta_{3} ) q^{52} \) \( + ( 54 + 162 \beta_{2} ) q^{53} \) \( + ( 267 - 93 \beta_{2} ) q^{55} \) \( + ( 10 \beta_{1} + 46 \beta_{3} ) q^{56} \) \( + ( 42 - 18 \beta_{1} + 24 \beta_{2} - 24 \beta_{3} ) q^{58} \) \( + ( 331 - 467 \beta_{1} - 136 \beta_{2} + 136 \beta_{3} ) q^{59} \) \( + ( -272 \beta_{1} + 105 \beta_{3} ) q^{61} \) \( + ( -70 - 26 \beta_{2} ) q^{62} \) \( + ( -440 - 153 \beta_{2} ) q^{64} \) \( + ( 136 \beta_{1} - 107 \beta_{3} ) q^{65} \) \( + ( -527 + 461 \beta_{1} - 66 \beta_{2} + 66 \beta_{3} ) q^{67} \) \( + ( 432 - 261 \beta_{1} + 171 \beta_{2} - 171 \beta_{3} ) q^{68} \) \( + ( -144 \beta_{1} - 30 \beta_{3} ) q^{70} \) \( + ( -756 - 144 \beta_{2} ) q^{71} \) \( + ( -106 + 243 \beta_{2} ) q^{73} \) \( + ( 380 \beta_{1} + 56 \beta_{3} ) q^{74} \) \( + ( 856 - 673 \beta_{1} + 183 \beta_{2} - 183 \beta_{3} ) q^{76} \) \( + ( -47 + 118 \beta_{1} + 71 \beta_{2} - 71 \beta_{3} ) q^{77} \) \( + ( 556 \beta_{1} - 309 \beta_{3} ) q^{79} \) \( + ( -16 + 64 \beta_{2} ) q^{80} \) \( + ( 1014 + 213 \beta_{2} ) q^{82} \) \( + ( 460 \beta_{1} - 107 \beta_{3} ) q^{83} \) \( + ( -306 + 288 \beta_{1} - 18 \beta_{2} + 18 \beta_{3} ) q^{85} \) \( + ( 34 + \beta_{1} + 35 \beta_{2} - 35 \beta_{3} ) q^{86} \) \( + ( -693 \beta_{1} + 165 \beta_{3} ) q^{88} \) \( + ( 162 - 72 \beta_{2} ) q^{89} \) \( + ( -425 - 69 \beta_{2} ) q^{91} \) \( + ( -430 \beta_{1} + 2 \beta_{3} ) q^{92} \) \( + ( -1218 + 882 \beta_{1} - 336 \beta_{2} + 336 \beta_{3} ) q^{94} \) \( + ( -148 - 16 \beta_{1} - 164 \beta_{2} + 164 \beta_{3} ) q^{95} \) \( + ( -317 \beta_{1} - 102 \beta_{3} ) q^{97} \) \( + ( 324 + 225 \beta_{2} ) q^{98} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut +\mathstrut 15q^{5} \) \(\mathstrut -\mathstrut 7q^{7} \) \(\mathstrut -\mathstrut 66q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut +\mathstrut 15q^{5} \) \(\mathstrut -\mathstrut 7q^{7} \) \(\mathstrut -\mathstrut 66q^{8} \) \(\mathstrut +\mathstrut 12q^{10} \) \(\mathstrut +\mathstrut 66q^{11} \) \(\mathstrut +\mathstrut 11q^{13} \) \(\mathstrut +\mathstrut 60q^{14} \) \(\mathstrut +\mathstrut 7q^{16} \) \(\mathstrut -\mathstrut 198q^{17} \) \(\mathstrut -\mathstrut 154q^{19} \) \(\mathstrut -\mathstrut 12q^{20} \) \(\mathstrut +\mathstrut 33q^{22} \) \(\mathstrut +\mathstrut 33q^{23} \) \(\mathstrut +\mathstrut 121q^{25} \) \(\mathstrut +\mathstrut 528q^{26} \) \(\mathstrut +\mathstrut 332q^{28} \) \(\mathstrut -\mathstrut 51q^{29} \) \(\mathstrut -\mathstrut 43q^{31} \) \(\mathstrut -\mathstrut 423q^{32} \) \(\mathstrut -\mathstrut 297q^{34} \) \(\mathstrut -\mathstrut 6q^{35} \) \(\mathstrut -\mathstrut 100q^{37} \) \(\mathstrut -\mathstrut 561q^{38} \) \(\mathstrut -\mathstrut 264q^{40} \) \(\mathstrut +\mathstrut 132q^{41} \) \(\mathstrut -\mathstrut 88q^{43} \) \(\mathstrut +\mathstrut 462q^{44} \) \(\mathstrut -\mathstrut 528q^{46} \) \(\mathstrut +\mathstrut 399q^{47} \) \(\mathstrut +\mathstrut 513q^{49} \) \(\mathstrut -\mathstrut 429q^{50} \) \(\mathstrut +\mathstrut 770q^{52} \) \(\mathstrut -\mathstrut 108q^{53} \) \(\mathstrut +\mathstrut 1254q^{55} \) \(\mathstrut +\mathstrut 66q^{56} \) \(\mathstrut +\mathstrut 60q^{58} \) \(\mathstrut +\mathstrut 798q^{59} \) \(\mathstrut -\mathstrut 439q^{61} \) \(\mathstrut -\mathstrut 228q^{62} \) \(\mathstrut -\mathstrut 1454q^{64} \) \(\mathstrut +\mathstrut 165q^{65} \) \(\mathstrut -\mathstrut 988q^{67} \) \(\mathstrut +\mathstrut 693q^{68} \) \(\mathstrut -\mathstrut 318q^{70} \) \(\mathstrut -\mathstrut 2736q^{71} \) \(\mathstrut -\mathstrut 910q^{73} \) \(\mathstrut +\mathstrut 816q^{74} \) \(\mathstrut +\mathstrut 1529q^{76} \) \(\mathstrut -\mathstrut 165q^{77} \) \(\mathstrut +\mathstrut 803q^{79} \) \(\mathstrut -\mathstrut 192q^{80} \) \(\mathstrut +\mathstrut 3630q^{82} \) \(\mathstrut +\mathstrut 813q^{83} \) \(\mathstrut -\mathstrut 594q^{85} \) \(\mathstrut +\mathstrut 33q^{86} \) \(\mathstrut -\mathstrut 1221q^{88} \) \(\mathstrut +\mathstrut 792q^{89} \) \(\mathstrut -\mathstrut 1562q^{91} \) \(\mathstrut -\mathstrut 858q^{92} \) \(\mathstrut -\mathstrut 2100q^{94} \) \(\mathstrut -\mathstrut 132q^{95} \) \(\mathstrut -\mathstrut 736q^{97} \) \(\mathstrut +\mathstrut 846q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4}\mathstrut -\mathstrut \) \(x^{3}\mathstrut -\mathstrut \) \(2\) \(x^{2}\mathstrut -\mathstrut \) \(3\) \(x\mathstrut +\mathstrut \) \(9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 2 \nu^{2} - 2 \nu - 3 \)\()/6\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{3} + \nu^{2} + 5 \nu \)\()/3\)
\(\beta_{3}\)\(=\)\((\)\( 2 \nu^{3} + \nu^{2} + 2 \nu - 9 \)\()/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut -\mathstrut \) \(2\) \(\beta_{1}\mathstrut +\mathstrut \) \(2\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(-\)\(\beta_{3}\mathstrut +\mathstrut \) \(2\) \(\beta_{2}\mathstrut +\mathstrut \) \(8\) \(\beta_{1}\mathstrut +\mathstrut \) \(1\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(4\) \(\beta_{3}\mathstrut -\mathstrut \) \(2\) \(\beta_{2}\mathstrut -\mathstrut \) \(2\) \(\beta_{1}\mathstrut +\mathstrut \) \(11\)\()/3\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
−1.18614 1.26217i
1.68614 + 0.396143i
−1.18614 + 1.26217i
1.68614 0.396143i
−0.686141 1.18843i 0 3.05842 5.29734i 5.18614 8.98266i 0 2.55842 + 4.43132i −19.3723 0 −14.2337
10.2 2.18614 + 3.78651i 0 −5.55842 + 9.62747i 2.31386 4.00772i 0 −6.05842 10.4935i −13.6277 0 20.2337
19.1 −0.686141 + 1.18843i 0 3.05842 + 5.29734i 5.18614 + 8.98266i 0 2.55842 4.43132i −19.3723 0 −14.2337
19.2 2.18614 3.78651i 0 −5.55842 9.62747i 2.31386 + 4.00772i 0 −6.05842 + 10.4935i −13.6277 0 20.2337
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
9.c Even 1 yes

Hecke kernels

There are no other newforms in \(S_{4}^{\mathrm{new}}(27, [\chi])\).