Properties

Label 27.4.c
Level $27$
Weight $4$
Character orbit 27.c
Rep. character $\chi_{27}(10,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $4$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 27.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(27, [\chi])\).

Total New Old
Modular forms 24 8 16
Cusp forms 12 4 8
Eisenstein series 12 4 8

Trace form

\( 4 q + 3 q^{2} - 5 q^{4} + 15 q^{5} - 7 q^{7} - 66 q^{8} + 12 q^{10} + 66 q^{11} + 11 q^{13} + 60 q^{14} + 7 q^{16} - 198 q^{17} - 154 q^{19} - 12 q^{20} + 33 q^{22} + 33 q^{23} + 121 q^{25} + 528 q^{26}+ \cdots + 846 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.4.c.a 27.c 9.c $4$ $1.593$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 9.4.c.a \(3\) \(0\) \(15\) \(-7\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{3})q^{2}+(-4+\beta _{1}-3\beta _{2}+3\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(27, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)