Defining parameters
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(27, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 8 | 16 |
Cusp forms | 12 | 4 | 8 |
Eisenstein series | 12 | 4 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(27, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
27.4.c.a | $4$ | $1.593$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(3\) | \(0\) | \(15\) | \(-7\) | \(q+(\beta _{1}+\beta _{3})q^{2}+(-4+\beta _{1}-3\beta _{2}+3\beta _{3})q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(27, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)