Properties

Label 27.3.b.b.26.2
Level $27$
Weight $3$
Character 27.26
Analytic conductor $0.736$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,3,Mod(26,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.735696713773\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 27.26
Dual form 27.3.b.b.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{2} -5.00000 q^{4} -3.00000i q^{5} +5.00000 q^{7} -3.00000i q^{8} +9.00000 q^{10} -15.0000i q^{11} -10.0000 q^{13} +15.0000i q^{14} -11.0000 q^{16} +18.0000i q^{17} -16.0000 q^{19} +15.0000i q^{20} +45.0000 q^{22} -12.0000i q^{23} +16.0000 q^{25} -30.0000i q^{26} -25.0000 q^{28} +30.0000i q^{29} -1.00000 q^{31} -45.0000i q^{32} -54.0000 q^{34} -15.0000i q^{35} +20.0000 q^{37} -48.0000i q^{38} -9.00000 q^{40} +60.0000i q^{41} +50.0000 q^{43} +75.0000i q^{44} +36.0000 q^{46} -6.00000i q^{47} -24.0000 q^{49} +48.0000i q^{50} +50.0000 q^{52} -27.0000i q^{53} -45.0000 q^{55} -15.0000i q^{56} -90.0000 q^{58} -30.0000i q^{59} -76.0000 q^{61} -3.00000i q^{62} +91.0000 q^{64} +30.0000i q^{65} -10.0000 q^{67} -90.0000i q^{68} +45.0000 q^{70} -90.0000i q^{71} +65.0000 q^{73} +60.0000i q^{74} +80.0000 q^{76} -75.0000i q^{77} +14.0000 q^{79} +33.0000i q^{80} -180.000 q^{82} +3.00000i q^{83} +54.0000 q^{85} +150.000i q^{86} -45.0000 q^{88} +90.0000i q^{89} -50.0000 q^{91} +60.0000i q^{92} +18.0000 q^{94} +48.0000i q^{95} -85.0000 q^{97} -72.0000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{4} + 10 q^{7} + 18 q^{10} - 20 q^{13} - 22 q^{16} - 32 q^{19} + 90 q^{22} + 32 q^{25} - 50 q^{28} - 2 q^{31} - 108 q^{34} + 40 q^{37} - 18 q^{40} + 100 q^{43} + 72 q^{46} - 48 q^{49} + 100 q^{52}+ \cdots - 170 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000i 1.50000i 0.661438 + 0.750000i \(0.269947\pi\)
−0.661438 + 0.750000i \(0.730053\pi\)
\(3\) 0 0
\(4\) −5.00000 −1.25000
\(5\) − 3.00000i − 0.600000i −0.953939 0.300000i \(-0.903013\pi\)
0.953939 0.300000i \(-0.0969867\pi\)
\(6\) 0 0
\(7\) 5.00000 0.714286 0.357143 0.934050i \(-0.383751\pi\)
0.357143 + 0.934050i \(0.383751\pi\)
\(8\) − 3.00000i − 0.375000i
\(9\) 0 0
\(10\) 9.00000 0.900000
\(11\) − 15.0000i − 1.36364i −0.731522 0.681818i \(-0.761190\pi\)
0.731522 0.681818i \(-0.238810\pi\)
\(12\) 0 0
\(13\) −10.0000 −0.769231 −0.384615 0.923077i \(-0.625666\pi\)
−0.384615 + 0.923077i \(0.625666\pi\)
\(14\) 15.0000i 1.07143i
\(15\) 0 0
\(16\) −11.0000 −0.687500
\(17\) 18.0000i 1.05882i 0.848365 + 0.529412i \(0.177587\pi\)
−0.848365 + 0.529412i \(0.822413\pi\)
\(18\) 0 0
\(19\) −16.0000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) 15.0000i 0.750000i
\(21\) 0 0
\(22\) 45.0000 2.04545
\(23\) − 12.0000i − 0.521739i −0.965374 0.260870i \(-0.915991\pi\)
0.965374 0.260870i \(-0.0840093\pi\)
\(24\) 0 0
\(25\) 16.0000 0.640000
\(26\) − 30.0000i − 1.15385i
\(27\) 0 0
\(28\) −25.0000 −0.892857
\(29\) 30.0000i 1.03448i 0.855840 + 0.517241i \(0.173041\pi\)
−0.855840 + 0.517241i \(0.826959\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.0322581 −0.0161290 0.999870i \(-0.505134\pi\)
−0.0161290 + 0.999870i \(0.505134\pi\)
\(32\) − 45.0000i − 1.40625i
\(33\) 0 0
\(34\) −54.0000 −1.58824
\(35\) − 15.0000i − 0.428571i
\(36\) 0 0
\(37\) 20.0000 0.540541 0.270270 0.962784i \(-0.412887\pi\)
0.270270 + 0.962784i \(0.412887\pi\)
\(38\) − 48.0000i − 1.26316i
\(39\) 0 0
\(40\) −9.00000 −0.225000
\(41\) 60.0000i 1.46341i 0.681619 + 0.731707i \(0.261276\pi\)
−0.681619 + 0.731707i \(0.738724\pi\)
\(42\) 0 0
\(43\) 50.0000 1.16279 0.581395 0.813621i \(-0.302507\pi\)
0.581395 + 0.813621i \(0.302507\pi\)
\(44\) 75.0000i 1.70455i
\(45\) 0 0
\(46\) 36.0000 0.782609
\(47\) − 6.00000i − 0.127660i −0.997961 0.0638298i \(-0.979669\pi\)
0.997961 0.0638298i \(-0.0203315\pi\)
\(48\) 0 0
\(49\) −24.0000 −0.489796
\(50\) 48.0000i 0.960000i
\(51\) 0 0
\(52\) 50.0000 0.961538
\(53\) − 27.0000i − 0.509434i −0.967016 0.254717i \(-0.918018\pi\)
0.967016 0.254717i \(-0.0819823\pi\)
\(54\) 0 0
\(55\) −45.0000 −0.818182
\(56\) − 15.0000i − 0.267857i
\(57\) 0 0
\(58\) −90.0000 −1.55172
\(59\) − 30.0000i − 0.508475i −0.967142 0.254237i \(-0.918176\pi\)
0.967142 0.254237i \(-0.0818244\pi\)
\(60\) 0 0
\(61\) −76.0000 −1.24590 −0.622951 0.782261i \(-0.714066\pi\)
−0.622951 + 0.782261i \(0.714066\pi\)
\(62\) − 3.00000i − 0.0483871i
\(63\) 0 0
\(64\) 91.0000 1.42188
\(65\) 30.0000i 0.461538i
\(66\) 0 0
\(67\) −10.0000 −0.149254 −0.0746269 0.997212i \(-0.523777\pi\)
−0.0746269 + 0.997212i \(0.523777\pi\)
\(68\) − 90.0000i − 1.32353i
\(69\) 0 0
\(70\) 45.0000 0.642857
\(71\) − 90.0000i − 1.26761i −0.773495 0.633803i \(-0.781493\pi\)
0.773495 0.633803i \(-0.218507\pi\)
\(72\) 0 0
\(73\) 65.0000 0.890411 0.445205 0.895428i \(-0.353131\pi\)
0.445205 + 0.895428i \(0.353131\pi\)
\(74\) 60.0000i 0.810811i
\(75\) 0 0
\(76\) 80.0000 1.05263
\(77\) − 75.0000i − 0.974026i
\(78\) 0 0
\(79\) 14.0000 0.177215 0.0886076 0.996067i \(-0.471758\pi\)
0.0886076 + 0.996067i \(0.471758\pi\)
\(80\) 33.0000i 0.412500i
\(81\) 0 0
\(82\) −180.000 −2.19512
\(83\) 3.00000i 0.0361446i 0.999837 + 0.0180723i \(0.00575290\pi\)
−0.999837 + 0.0180723i \(0.994247\pi\)
\(84\) 0 0
\(85\) 54.0000 0.635294
\(86\) 150.000i 1.74419i
\(87\) 0 0
\(88\) −45.0000 −0.511364
\(89\) 90.0000i 1.01124i 0.862757 + 0.505618i \(0.168735\pi\)
−0.862757 + 0.505618i \(0.831265\pi\)
\(90\) 0 0
\(91\) −50.0000 −0.549451
\(92\) 60.0000i 0.652174i
\(93\) 0 0
\(94\) 18.0000 0.191489
\(95\) 48.0000i 0.505263i
\(96\) 0 0
\(97\) −85.0000 −0.876289 −0.438144 0.898905i \(-0.644364\pi\)
−0.438144 + 0.898905i \(0.644364\pi\)
\(98\) − 72.0000i − 0.734694i
\(99\) 0 0
\(100\) −80.0000 −0.800000
\(101\) − 195.000i − 1.93069i −0.260971 0.965347i \(-0.584043\pi\)
0.260971 0.965347i \(-0.415957\pi\)
\(102\) 0 0
\(103\) 170.000 1.65049 0.825243 0.564778i \(-0.191038\pi\)
0.825243 + 0.564778i \(0.191038\pi\)
\(104\) 30.0000i 0.288462i
\(105\) 0 0
\(106\) 81.0000 0.764151
\(107\) 189.000i 1.76636i 0.469039 + 0.883178i \(0.344600\pi\)
−0.469039 + 0.883178i \(0.655400\pi\)
\(108\) 0 0
\(109\) 164.000 1.50459 0.752294 0.658828i \(-0.228948\pi\)
0.752294 + 0.658828i \(0.228948\pi\)
\(110\) − 135.000i − 1.22727i
\(111\) 0 0
\(112\) −55.0000 −0.491071
\(113\) 24.0000i 0.212389i 0.994345 + 0.106195i \(0.0338667\pi\)
−0.994345 + 0.106195i \(0.966133\pi\)
\(114\) 0 0
\(115\) −36.0000 −0.313043
\(116\) − 150.000i − 1.29310i
\(117\) 0 0
\(118\) 90.0000 0.762712
\(119\) 90.0000i 0.756303i
\(120\) 0 0
\(121\) −104.000 −0.859504
\(122\) − 228.000i − 1.86885i
\(123\) 0 0
\(124\) 5.00000 0.0403226
\(125\) − 123.000i − 0.984000i
\(126\) 0 0
\(127\) −205.000 −1.61417 −0.807087 0.590433i \(-0.798957\pi\)
−0.807087 + 0.590433i \(0.798957\pi\)
\(128\) 93.0000i 0.726562i
\(129\) 0 0
\(130\) −90.0000 −0.692308
\(131\) 15.0000i 0.114504i 0.998360 + 0.0572519i \(0.0182338\pi\)
−0.998360 + 0.0572519i \(0.981766\pi\)
\(132\) 0 0
\(133\) −80.0000 −0.601504
\(134\) − 30.0000i − 0.223881i
\(135\) 0 0
\(136\) 54.0000 0.397059
\(137\) 138.000i 1.00730i 0.863908 + 0.503650i \(0.168010\pi\)
−0.863908 + 0.503650i \(0.831990\pi\)
\(138\) 0 0
\(139\) −28.0000 −0.201439 −0.100719 0.994915i \(-0.532114\pi\)
−0.100719 + 0.994915i \(0.532114\pi\)
\(140\) 75.0000i 0.535714i
\(141\) 0 0
\(142\) 270.000 1.90141
\(143\) 150.000i 1.04895i
\(144\) 0 0
\(145\) 90.0000 0.620690
\(146\) 195.000i 1.33562i
\(147\) 0 0
\(148\) −100.000 −0.675676
\(149\) − 75.0000i − 0.503356i −0.967811 0.251678i \(-0.919018\pi\)
0.967811 0.251678i \(-0.0809823\pi\)
\(150\) 0 0
\(151\) 77.0000 0.509934 0.254967 0.966950i \(-0.417935\pi\)
0.254967 + 0.966950i \(0.417935\pi\)
\(152\) 48.0000i 0.315789i
\(153\) 0 0
\(154\) 225.000 1.46104
\(155\) 3.00000i 0.0193548i
\(156\) 0 0
\(157\) −100.000 −0.636943 −0.318471 0.947932i \(-0.603169\pi\)
−0.318471 + 0.947932i \(0.603169\pi\)
\(158\) 42.0000i 0.265823i
\(159\) 0 0
\(160\) −135.000 −0.843750
\(161\) − 60.0000i − 0.372671i
\(162\) 0 0
\(163\) 110.000 0.674847 0.337423 0.941353i \(-0.390445\pi\)
0.337423 + 0.941353i \(0.390445\pi\)
\(164\) − 300.000i − 1.82927i
\(165\) 0 0
\(166\) −9.00000 −0.0542169
\(167\) 78.0000i 0.467066i 0.972349 + 0.233533i \(0.0750287\pi\)
−0.972349 + 0.233533i \(0.924971\pi\)
\(168\) 0 0
\(169\) −69.0000 −0.408284
\(170\) 162.000i 0.952941i
\(171\) 0 0
\(172\) −250.000 −1.45349
\(173\) − 177.000i − 1.02312i −0.859247 0.511561i \(-0.829068\pi\)
0.859247 0.511561i \(-0.170932\pi\)
\(174\) 0 0
\(175\) 80.0000 0.457143
\(176\) 165.000i 0.937500i
\(177\) 0 0
\(178\) −270.000 −1.51685
\(179\) − 225.000i − 1.25698i −0.777816 0.628492i \(-0.783673\pi\)
0.777816 0.628492i \(-0.216327\pi\)
\(180\) 0 0
\(181\) −16.0000 −0.0883978 −0.0441989 0.999023i \(-0.514074\pi\)
−0.0441989 + 0.999023i \(0.514074\pi\)
\(182\) − 150.000i − 0.824176i
\(183\) 0 0
\(184\) −36.0000 −0.195652
\(185\) − 60.0000i − 0.324324i
\(186\) 0 0
\(187\) 270.000 1.44385
\(188\) 30.0000i 0.159574i
\(189\) 0 0
\(190\) −144.000 −0.757895
\(191\) 30.0000i 0.157068i 0.996911 + 0.0785340i \(0.0250239\pi\)
−0.996911 + 0.0785340i \(0.974976\pi\)
\(192\) 0 0
\(193\) 215.000 1.11399 0.556995 0.830516i \(-0.311954\pi\)
0.556995 + 0.830516i \(0.311954\pi\)
\(194\) − 255.000i − 1.31443i
\(195\) 0 0
\(196\) 120.000 0.612245
\(197\) − 207.000i − 1.05076i −0.850867 0.525381i \(-0.823923\pi\)
0.850867 0.525381i \(-0.176077\pi\)
\(198\) 0 0
\(199\) −223.000 −1.12060 −0.560302 0.828289i \(-0.689315\pi\)
−0.560302 + 0.828289i \(0.689315\pi\)
\(200\) − 48.0000i − 0.240000i
\(201\) 0 0
\(202\) 585.000 2.89604
\(203\) 150.000i 0.738916i
\(204\) 0 0
\(205\) 180.000 0.878049
\(206\) 510.000i 2.47573i
\(207\) 0 0
\(208\) 110.000 0.528846
\(209\) 240.000i 1.14833i
\(210\) 0 0
\(211\) −316.000 −1.49763 −0.748815 0.662779i \(-0.769377\pi\)
−0.748815 + 0.662779i \(0.769377\pi\)
\(212\) 135.000i 0.636792i
\(213\) 0 0
\(214\) −567.000 −2.64953
\(215\) − 150.000i − 0.697674i
\(216\) 0 0
\(217\) −5.00000 −0.0230415
\(218\) 492.000i 2.25688i
\(219\) 0 0
\(220\) 225.000 1.02273
\(221\) − 180.000i − 0.814480i
\(222\) 0 0
\(223\) −130.000 −0.582960 −0.291480 0.956577i \(-0.594148\pi\)
−0.291480 + 0.956577i \(0.594148\pi\)
\(224\) − 225.000i − 1.00446i
\(225\) 0 0
\(226\) −72.0000 −0.318584
\(227\) − 42.0000i − 0.185022i −0.995712 0.0925110i \(-0.970511\pi\)
0.995712 0.0925110i \(-0.0294893\pi\)
\(228\) 0 0
\(229\) −226.000 −0.986900 −0.493450 0.869774i \(-0.664264\pi\)
−0.493450 + 0.869774i \(0.664264\pi\)
\(230\) − 108.000i − 0.469565i
\(231\) 0 0
\(232\) 90.0000 0.387931
\(233\) 234.000i 1.00429i 0.864783 + 0.502146i \(0.167456\pi\)
−0.864783 + 0.502146i \(0.832544\pi\)
\(234\) 0 0
\(235\) −18.0000 −0.0765957
\(236\) 150.000i 0.635593i
\(237\) 0 0
\(238\) −270.000 −1.13445
\(239\) − 120.000i − 0.502092i −0.967975 0.251046i \(-0.919225\pi\)
0.967975 0.251046i \(-0.0807746\pi\)
\(240\) 0 0
\(241\) 14.0000 0.0580913 0.0290456 0.999578i \(-0.490753\pi\)
0.0290456 + 0.999578i \(0.490753\pi\)
\(242\) − 312.000i − 1.28926i
\(243\) 0 0
\(244\) 380.000 1.55738
\(245\) 72.0000i 0.293878i
\(246\) 0 0
\(247\) 160.000 0.647773
\(248\) 3.00000i 0.0120968i
\(249\) 0 0
\(250\) 369.000 1.47600
\(251\) 90.0000i 0.358566i 0.983798 + 0.179283i \(0.0573777\pi\)
−0.983798 + 0.179283i \(0.942622\pi\)
\(252\) 0 0
\(253\) −180.000 −0.711462
\(254\) − 615.000i − 2.42126i
\(255\) 0 0
\(256\) 85.0000 0.332031
\(257\) 438.000i 1.70428i 0.523314 + 0.852140i \(0.324696\pi\)
−0.523314 + 0.852140i \(0.675304\pi\)
\(258\) 0 0
\(259\) 100.000 0.386100
\(260\) − 150.000i − 0.576923i
\(261\) 0 0
\(262\) −45.0000 −0.171756
\(263\) − 276.000i − 1.04943i −0.851278 0.524715i \(-0.824172\pi\)
0.851278 0.524715i \(-0.175828\pi\)
\(264\) 0 0
\(265\) −81.0000 −0.305660
\(266\) − 240.000i − 0.902256i
\(267\) 0 0
\(268\) 50.0000 0.186567
\(269\) 270.000i 1.00372i 0.864950 + 0.501859i \(0.167350\pi\)
−0.864950 + 0.501859i \(0.832650\pi\)
\(270\) 0 0
\(271\) 299.000 1.10332 0.551661 0.834069i \(-0.313994\pi\)
0.551661 + 0.834069i \(0.313994\pi\)
\(272\) − 198.000i − 0.727941i
\(273\) 0 0
\(274\) −414.000 −1.51095
\(275\) − 240.000i − 0.872727i
\(276\) 0 0
\(277\) 140.000 0.505415 0.252708 0.967543i \(-0.418679\pi\)
0.252708 + 0.967543i \(0.418679\pi\)
\(278\) − 84.0000i − 0.302158i
\(279\) 0 0
\(280\) −45.0000 −0.160714
\(281\) − 150.000i − 0.533808i −0.963723 0.266904i \(-0.913999\pi\)
0.963723 0.266904i \(-0.0860006\pi\)
\(282\) 0 0
\(283\) −280.000 −0.989399 −0.494700 0.869064i \(-0.664722\pi\)
−0.494700 + 0.869064i \(0.664722\pi\)
\(284\) 450.000i 1.58451i
\(285\) 0 0
\(286\) −450.000 −1.57343
\(287\) 300.000i 1.04530i
\(288\) 0 0
\(289\) −35.0000 −0.121107
\(290\) 270.000i 0.931034i
\(291\) 0 0
\(292\) −325.000 −1.11301
\(293\) 258.000i 0.880546i 0.897864 + 0.440273i \(0.145118\pi\)
−0.897864 + 0.440273i \(0.854882\pi\)
\(294\) 0 0
\(295\) −90.0000 −0.305085
\(296\) − 60.0000i − 0.202703i
\(297\) 0 0
\(298\) 225.000 0.755034
\(299\) 120.000i 0.401338i
\(300\) 0 0
\(301\) 250.000 0.830565
\(302\) 231.000i 0.764901i
\(303\) 0 0
\(304\) 176.000 0.578947
\(305\) 228.000i 0.747541i
\(306\) 0 0
\(307\) 290.000 0.944625 0.472313 0.881431i \(-0.343419\pi\)
0.472313 + 0.881431i \(0.343419\pi\)
\(308\) 375.000i 1.21753i
\(309\) 0 0
\(310\) −9.00000 −0.0290323
\(311\) − 480.000i − 1.54341i −0.635982 0.771704i \(-0.719405\pi\)
0.635982 0.771704i \(-0.280595\pi\)
\(312\) 0 0
\(313\) 185.000 0.591054 0.295527 0.955334i \(-0.404505\pi\)
0.295527 + 0.955334i \(0.404505\pi\)
\(314\) − 300.000i − 0.955414i
\(315\) 0 0
\(316\) −70.0000 −0.221519
\(317\) 183.000i 0.577287i 0.957437 + 0.288644i \(0.0932042\pi\)
−0.957437 + 0.288644i \(0.906796\pi\)
\(318\) 0 0
\(319\) 450.000 1.41066
\(320\) − 273.000i − 0.853125i
\(321\) 0 0
\(322\) 180.000 0.559006
\(323\) − 288.000i − 0.891641i
\(324\) 0 0
\(325\) −160.000 −0.492308
\(326\) 330.000i 1.01227i
\(327\) 0 0
\(328\) 180.000 0.548780
\(329\) − 30.0000i − 0.0911854i
\(330\) 0 0
\(331\) −238.000 −0.719033 −0.359517 0.933139i \(-0.617058\pi\)
−0.359517 + 0.933139i \(0.617058\pi\)
\(332\) − 15.0000i − 0.0451807i
\(333\) 0 0
\(334\) −234.000 −0.700599
\(335\) 30.0000i 0.0895522i
\(336\) 0 0
\(337\) −10.0000 −0.0296736 −0.0148368 0.999890i \(-0.504723\pi\)
−0.0148368 + 0.999890i \(0.504723\pi\)
\(338\) − 207.000i − 0.612426i
\(339\) 0 0
\(340\) −270.000 −0.794118
\(341\) 15.0000i 0.0439883i
\(342\) 0 0
\(343\) −365.000 −1.06414
\(344\) − 150.000i − 0.436047i
\(345\) 0 0
\(346\) 531.000 1.53468
\(347\) 69.0000i 0.198847i 0.995045 + 0.0994236i \(0.0316999\pi\)
−0.995045 + 0.0994236i \(0.968300\pi\)
\(348\) 0 0
\(349\) −256.000 −0.733524 −0.366762 0.930315i \(-0.619534\pi\)
−0.366762 + 0.930315i \(0.619534\pi\)
\(350\) 240.000i 0.685714i
\(351\) 0 0
\(352\) −675.000 −1.91761
\(353\) − 456.000i − 1.29178i −0.763428 0.645892i \(-0.776485\pi\)
0.763428 0.645892i \(-0.223515\pi\)
\(354\) 0 0
\(355\) −270.000 −0.760563
\(356\) − 450.000i − 1.26404i
\(357\) 0 0
\(358\) 675.000 1.88547
\(359\) − 450.000i − 1.25348i −0.779228 0.626741i \(-0.784388\pi\)
0.779228 0.626741i \(-0.215612\pi\)
\(360\) 0 0
\(361\) −105.000 −0.290859
\(362\) − 48.0000i − 0.132597i
\(363\) 0 0
\(364\) 250.000 0.686813
\(365\) − 195.000i − 0.534247i
\(366\) 0 0
\(367\) −625.000 −1.70300 −0.851499 0.524357i \(-0.824306\pi\)
−0.851499 + 0.524357i \(0.824306\pi\)
\(368\) 132.000i 0.358696i
\(369\) 0 0
\(370\) 180.000 0.486486
\(371\) − 135.000i − 0.363881i
\(372\) 0 0
\(373\) 170.000 0.455764 0.227882 0.973689i \(-0.426820\pi\)
0.227882 + 0.973689i \(0.426820\pi\)
\(374\) 810.000i 2.16578i
\(375\) 0 0
\(376\) −18.0000 −0.0478723
\(377\) − 300.000i − 0.795756i
\(378\) 0 0
\(379\) 704.000 1.85752 0.928760 0.370682i \(-0.120876\pi\)
0.928760 + 0.370682i \(0.120876\pi\)
\(380\) − 240.000i − 0.631579i
\(381\) 0 0
\(382\) −90.0000 −0.235602
\(383\) 618.000i 1.61358i 0.590840 + 0.806789i \(0.298796\pi\)
−0.590840 + 0.806789i \(0.701204\pi\)
\(384\) 0 0
\(385\) −225.000 −0.584416
\(386\) 645.000i 1.67098i
\(387\) 0 0
\(388\) 425.000 1.09536
\(389\) 525.000i 1.34961i 0.737994 + 0.674807i \(0.235773\pi\)
−0.737994 + 0.674807i \(0.764227\pi\)
\(390\) 0 0
\(391\) 216.000 0.552430
\(392\) 72.0000i 0.183673i
\(393\) 0 0
\(394\) 621.000 1.57614
\(395\) − 42.0000i − 0.106329i
\(396\) 0 0
\(397\) −70.0000 −0.176322 −0.0881612 0.996106i \(-0.528099\pi\)
−0.0881612 + 0.996106i \(0.528099\pi\)
\(398\) − 669.000i − 1.68090i
\(399\) 0 0
\(400\) −176.000 −0.440000
\(401\) − 120.000i − 0.299252i −0.988743 0.149626i \(-0.952193\pi\)
0.988743 0.149626i \(-0.0478069\pi\)
\(402\) 0 0
\(403\) 10.0000 0.0248139
\(404\) 975.000i 2.41337i
\(405\) 0 0
\(406\) −450.000 −1.10837
\(407\) − 300.000i − 0.737101i
\(408\) 0 0
\(409\) 269.000 0.657702 0.328851 0.944382i \(-0.393339\pi\)
0.328851 + 0.944382i \(0.393339\pi\)
\(410\) 540.000i 1.31707i
\(411\) 0 0
\(412\) −850.000 −2.06311
\(413\) − 150.000i − 0.363196i
\(414\) 0 0
\(415\) 9.00000 0.0216867
\(416\) 450.000i 1.08173i
\(417\) 0 0
\(418\) −720.000 −1.72249
\(419\) − 210.000i − 0.501193i −0.968092 0.250597i \(-0.919373\pi\)
0.968092 0.250597i \(-0.0806268\pi\)
\(420\) 0 0
\(421\) 644.000 1.52969 0.764846 0.644214i \(-0.222815\pi\)
0.764846 + 0.644214i \(0.222815\pi\)
\(422\) − 948.000i − 2.24645i
\(423\) 0 0
\(424\) −81.0000 −0.191038
\(425\) 288.000i 0.677647i
\(426\) 0 0
\(427\) −380.000 −0.889930
\(428\) − 945.000i − 2.20794i
\(429\) 0 0
\(430\) 450.000 1.04651
\(431\) 270.000i 0.626450i 0.949679 + 0.313225i \(0.101409\pi\)
−0.949679 + 0.313225i \(0.898591\pi\)
\(432\) 0 0
\(433\) −565.000 −1.30485 −0.652425 0.757853i \(-0.726248\pi\)
−0.652425 + 0.757853i \(0.726248\pi\)
\(434\) − 15.0000i − 0.0345622i
\(435\) 0 0
\(436\) −820.000 −1.88073
\(437\) 192.000i 0.439359i
\(438\) 0 0
\(439\) −211.000 −0.480638 −0.240319 0.970694i \(-0.577252\pi\)
−0.240319 + 0.970694i \(0.577252\pi\)
\(440\) 135.000i 0.306818i
\(441\) 0 0
\(442\) 540.000 1.22172
\(443\) 498.000i 1.12415i 0.827085 + 0.562077i \(0.189997\pi\)
−0.827085 + 0.562077i \(0.810003\pi\)
\(444\) 0 0
\(445\) 270.000 0.606742
\(446\) − 390.000i − 0.874439i
\(447\) 0 0
\(448\) 455.000 1.01562
\(449\) − 360.000i − 0.801782i −0.916126 0.400891i \(-0.868701\pi\)
0.916126 0.400891i \(-0.131299\pi\)
\(450\) 0 0
\(451\) 900.000 1.99557
\(452\) − 120.000i − 0.265487i
\(453\) 0 0
\(454\) 126.000 0.277533
\(455\) 150.000i 0.329670i
\(456\) 0 0
\(457\) 365.000 0.798687 0.399344 0.916801i \(-0.369238\pi\)
0.399344 + 0.916801i \(0.369238\pi\)
\(458\) − 678.000i − 1.48035i
\(459\) 0 0
\(460\) 180.000 0.391304
\(461\) − 105.000i − 0.227766i −0.993494 0.113883i \(-0.963671\pi\)
0.993494 0.113883i \(-0.0363289\pi\)
\(462\) 0 0
\(463\) 215.000 0.464363 0.232181 0.972672i \(-0.425414\pi\)
0.232181 + 0.972672i \(0.425414\pi\)
\(464\) − 330.000i − 0.711207i
\(465\) 0 0
\(466\) −702.000 −1.50644
\(467\) 63.0000i 0.134904i 0.997723 + 0.0674518i \(0.0214869\pi\)
−0.997723 + 0.0674518i \(0.978513\pi\)
\(468\) 0 0
\(469\) −50.0000 −0.106610
\(470\) − 54.0000i − 0.114894i
\(471\) 0 0
\(472\) −90.0000 −0.190678
\(473\) − 750.000i − 1.58562i
\(474\) 0 0
\(475\) −256.000 −0.538947
\(476\) − 450.000i − 0.945378i
\(477\) 0 0
\(478\) 360.000 0.753138
\(479\) 750.000i 1.56576i 0.622171 + 0.782881i \(0.286251\pi\)
−0.622171 + 0.782881i \(0.713749\pi\)
\(480\) 0 0
\(481\) −200.000 −0.415800
\(482\) 42.0000i 0.0871369i
\(483\) 0 0
\(484\) 520.000 1.07438
\(485\) 255.000i 0.525773i
\(486\) 0 0
\(487\) 110.000 0.225873 0.112936 0.993602i \(-0.463974\pi\)
0.112936 + 0.993602i \(0.463974\pi\)
\(488\) 228.000i 0.467213i
\(489\) 0 0
\(490\) −216.000 −0.440816
\(491\) 645.000i 1.31365i 0.754045 + 0.656823i \(0.228100\pi\)
−0.754045 + 0.656823i \(0.771900\pi\)
\(492\) 0 0
\(493\) −540.000 −1.09533
\(494\) 480.000i 0.971660i
\(495\) 0 0
\(496\) 11.0000 0.0221774
\(497\) − 450.000i − 0.905433i
\(498\) 0 0
\(499\) −766.000 −1.53507 −0.767535 0.641007i \(-0.778517\pi\)
−0.767535 + 0.641007i \(0.778517\pi\)
\(500\) 615.000i 1.23000i
\(501\) 0 0
\(502\) −270.000 −0.537849
\(503\) 828.000i 1.64612i 0.567952 + 0.823062i \(0.307736\pi\)
−0.567952 + 0.823062i \(0.692264\pi\)
\(504\) 0 0
\(505\) −585.000 −1.15842
\(506\) − 540.000i − 1.06719i
\(507\) 0 0
\(508\) 1025.00 2.01772
\(509\) 555.000i 1.09037i 0.838315 + 0.545187i \(0.183541\pi\)
−0.838315 + 0.545187i \(0.816459\pi\)
\(510\) 0 0
\(511\) 325.000 0.636008
\(512\) 627.000i 1.22461i
\(513\) 0 0
\(514\) −1314.00 −2.55642
\(515\) − 510.000i − 0.990291i
\(516\) 0 0
\(517\) −90.0000 −0.174081
\(518\) 300.000i 0.579151i
\(519\) 0 0
\(520\) 90.0000 0.173077
\(521\) − 450.000i − 0.863724i −0.901940 0.431862i \(-0.857857\pi\)
0.901940 0.431862i \(-0.142143\pi\)
\(522\) 0 0
\(523\) −250.000 −0.478011 −0.239006 0.971018i \(-0.576821\pi\)
−0.239006 + 0.971018i \(0.576821\pi\)
\(524\) − 75.0000i − 0.143130i
\(525\) 0 0
\(526\) 828.000 1.57414
\(527\) − 18.0000i − 0.0341556i
\(528\) 0 0
\(529\) 385.000 0.727788
\(530\) − 243.000i − 0.458491i
\(531\) 0 0
\(532\) 400.000 0.751880
\(533\) − 600.000i − 1.12570i
\(534\) 0 0
\(535\) 567.000 1.05981
\(536\) 30.0000i 0.0559701i
\(537\) 0 0
\(538\) −810.000 −1.50558
\(539\) 360.000i 0.667904i
\(540\) 0 0
\(541\) −268.000 −0.495379 −0.247689 0.968839i \(-0.579671\pi\)
−0.247689 + 0.968839i \(0.579671\pi\)
\(542\) 897.000i 1.65498i
\(543\) 0 0
\(544\) 810.000 1.48897
\(545\) − 492.000i − 0.902752i
\(546\) 0 0
\(547\) 410.000 0.749543 0.374771 0.927117i \(-0.377721\pi\)
0.374771 + 0.927117i \(0.377721\pi\)
\(548\) − 690.000i − 1.25912i
\(549\) 0 0
\(550\) 720.000 1.30909
\(551\) − 480.000i − 0.871143i
\(552\) 0 0
\(553\) 70.0000 0.126582
\(554\) 420.000i 0.758123i
\(555\) 0 0
\(556\) 140.000 0.251799
\(557\) 639.000i 1.14722i 0.819130 + 0.573609i \(0.194457\pi\)
−0.819130 + 0.573609i \(0.805543\pi\)
\(558\) 0 0
\(559\) −500.000 −0.894454
\(560\) 165.000i 0.294643i
\(561\) 0 0
\(562\) 450.000 0.800712
\(563\) − 201.000i − 0.357016i −0.983938 0.178508i \(-0.942873\pi\)
0.983938 0.178508i \(-0.0571270\pi\)
\(564\) 0 0
\(565\) 72.0000 0.127434
\(566\) − 840.000i − 1.48410i
\(567\) 0 0
\(568\) −270.000 −0.475352
\(569\) − 240.000i − 0.421793i −0.977508 0.210896i \(-0.932362\pi\)
0.977508 0.210896i \(-0.0676382\pi\)
\(570\) 0 0
\(571\) −946.000 −1.65674 −0.828371 0.560179i \(-0.810732\pi\)
−0.828371 + 0.560179i \(0.810732\pi\)
\(572\) − 750.000i − 1.31119i
\(573\) 0 0
\(574\) −900.000 −1.56794
\(575\) − 192.000i − 0.333913i
\(576\) 0 0
\(577\) 830.000 1.43847 0.719237 0.694764i \(-0.244491\pi\)
0.719237 + 0.694764i \(0.244491\pi\)
\(578\) − 105.000i − 0.181661i
\(579\) 0 0
\(580\) −450.000 −0.775862
\(581\) 15.0000i 0.0258176i
\(582\) 0 0
\(583\) −405.000 −0.694683
\(584\) − 195.000i − 0.333904i
\(585\) 0 0
\(586\) −774.000 −1.32082
\(587\) 453.000i 0.771721i 0.922557 + 0.385860i \(0.126095\pi\)
−0.922557 + 0.385860i \(0.873905\pi\)
\(588\) 0 0
\(589\) 16.0000 0.0271647
\(590\) − 270.000i − 0.457627i
\(591\) 0 0
\(592\) −220.000 −0.371622
\(593\) − 702.000i − 1.18381i −0.806007 0.591906i \(-0.798376\pi\)
0.806007 0.591906i \(-0.201624\pi\)
\(594\) 0 0
\(595\) 270.000 0.453782
\(596\) 375.000i 0.629195i
\(597\) 0 0
\(598\) −360.000 −0.602007
\(599\) − 1110.00i − 1.85309i −0.376186 0.926544i \(-0.622765\pi\)
0.376186 0.926544i \(-0.377235\pi\)
\(600\) 0 0
\(601\) 869.000 1.44592 0.722962 0.690888i \(-0.242780\pi\)
0.722962 + 0.690888i \(0.242780\pi\)
\(602\) 750.000i 1.24585i
\(603\) 0 0
\(604\) −385.000 −0.637417
\(605\) 312.000i 0.515702i
\(606\) 0 0
\(607\) 530.000 0.873147 0.436573 0.899669i \(-0.356192\pi\)
0.436573 + 0.899669i \(0.356192\pi\)
\(608\) 720.000i 1.18421i
\(609\) 0 0
\(610\) −684.000 −1.12131
\(611\) 60.0000i 0.0981997i
\(612\) 0 0
\(613\) −70.0000 −0.114192 −0.0570962 0.998369i \(-0.518184\pi\)
−0.0570962 + 0.998369i \(0.518184\pi\)
\(614\) 870.000i 1.41694i
\(615\) 0 0
\(616\) −225.000 −0.365260
\(617\) − 552.000i − 0.894652i −0.894371 0.447326i \(-0.852376\pi\)
0.894371 0.447326i \(-0.147624\pi\)
\(618\) 0 0
\(619\) 662.000 1.06947 0.534733 0.845021i \(-0.320412\pi\)
0.534733 + 0.845021i \(0.320412\pi\)
\(620\) − 15.0000i − 0.0241935i
\(621\) 0 0
\(622\) 1440.00 2.31511
\(623\) 450.000i 0.722311i
\(624\) 0 0
\(625\) 31.0000 0.0496000
\(626\) 555.000i 0.886581i
\(627\) 0 0
\(628\) 500.000 0.796178
\(629\) 360.000i 0.572337i
\(630\) 0 0
\(631\) −331.000 −0.524564 −0.262282 0.964991i \(-0.584475\pi\)
−0.262282 + 0.964991i \(0.584475\pi\)
\(632\) − 42.0000i − 0.0664557i
\(633\) 0 0
\(634\) −549.000 −0.865931
\(635\) 615.000i 0.968504i
\(636\) 0 0
\(637\) 240.000 0.376766
\(638\) 1350.00i 2.11599i
\(639\) 0 0
\(640\) 279.000 0.435937
\(641\) − 60.0000i − 0.0936037i −0.998904 0.0468019i \(-0.985097\pi\)
0.998904 0.0468019i \(-0.0149029\pi\)
\(642\) 0 0
\(643\) 440.000 0.684292 0.342146 0.939647i \(-0.388846\pi\)
0.342146 + 0.939647i \(0.388846\pi\)
\(644\) 300.000i 0.465839i
\(645\) 0 0
\(646\) 864.000 1.33746
\(647\) − 972.000i − 1.50232i −0.660121 0.751159i \(-0.729495\pi\)
0.660121 0.751159i \(-0.270505\pi\)
\(648\) 0 0
\(649\) −450.000 −0.693374
\(650\) − 480.000i − 0.738462i
\(651\) 0 0
\(652\) −550.000 −0.843558
\(653\) 483.000i 0.739663i 0.929099 + 0.369832i \(0.120585\pi\)
−0.929099 + 0.369832i \(0.879415\pi\)
\(654\) 0 0
\(655\) 45.0000 0.0687023
\(656\) − 660.000i − 1.00610i
\(657\) 0 0
\(658\) 90.0000 0.136778
\(659\) − 825.000i − 1.25190i −0.779864 0.625948i \(-0.784712\pi\)
0.779864 0.625948i \(-0.215288\pi\)
\(660\) 0 0
\(661\) −928.000 −1.40393 −0.701967 0.712210i \(-0.747694\pi\)
−0.701967 + 0.712210i \(0.747694\pi\)
\(662\) − 714.000i − 1.07855i
\(663\) 0 0
\(664\) 9.00000 0.0135542
\(665\) 240.000i 0.360902i
\(666\) 0 0
\(667\) 360.000 0.539730
\(668\) − 390.000i − 0.583832i
\(669\) 0 0
\(670\) −90.0000 −0.134328
\(671\) 1140.00i 1.69896i
\(672\) 0 0
\(673\) −985.000 −1.46360 −0.731798 0.681522i \(-0.761319\pi\)
−0.731798 + 0.681522i \(0.761319\pi\)
\(674\) − 30.0000i − 0.0445104i
\(675\) 0 0
\(676\) 345.000 0.510355
\(677\) 354.000i 0.522895i 0.965218 + 0.261448i \(0.0841998\pi\)
−0.965218 + 0.261448i \(0.915800\pi\)
\(678\) 0 0
\(679\) −425.000 −0.625920
\(680\) − 162.000i − 0.238235i
\(681\) 0 0
\(682\) −45.0000 −0.0659824
\(683\) 198.000i 0.289898i 0.989439 + 0.144949i \(0.0463017\pi\)
−0.989439 + 0.144949i \(0.953698\pi\)
\(684\) 0 0
\(685\) 414.000 0.604380
\(686\) − 1095.00i − 1.59621i
\(687\) 0 0
\(688\) −550.000 −0.799419
\(689\) 270.000i 0.391872i
\(690\) 0 0
\(691\) −436.000 −0.630970 −0.315485 0.948931i \(-0.602167\pi\)
−0.315485 + 0.948931i \(0.602167\pi\)
\(692\) 885.000i 1.27890i
\(693\) 0 0
\(694\) −207.000 −0.298271
\(695\) 84.0000i 0.120863i
\(696\) 0 0
\(697\) −1080.00 −1.54950
\(698\) − 768.000i − 1.10029i
\(699\) 0 0
\(700\) −400.000 −0.571429
\(701\) 135.000i 0.192582i 0.995353 + 0.0962910i \(0.0306979\pi\)
−0.995353 + 0.0962910i \(0.969302\pi\)
\(702\) 0 0
\(703\) −320.000 −0.455192
\(704\) − 1365.00i − 1.93892i
\(705\) 0 0
\(706\) 1368.00 1.93768
\(707\) − 975.000i − 1.37907i
\(708\) 0 0
\(709\) 32.0000 0.0451340 0.0225670 0.999745i \(-0.492816\pi\)
0.0225670 + 0.999745i \(0.492816\pi\)
\(710\) − 810.000i − 1.14085i
\(711\) 0 0
\(712\) 270.000 0.379213
\(713\) 12.0000i 0.0168303i
\(714\) 0 0
\(715\) 450.000 0.629371
\(716\) 1125.00i 1.57123i
\(717\) 0 0
\(718\) 1350.00 1.88022
\(719\) − 900.000i − 1.25174i −0.779928 0.625869i \(-0.784744\pi\)
0.779928 0.625869i \(-0.215256\pi\)
\(720\) 0 0
\(721\) 850.000 1.17892
\(722\) − 315.000i − 0.436288i
\(723\) 0 0
\(724\) 80.0000 0.110497
\(725\) 480.000i 0.662069i
\(726\) 0 0
\(727\) −175.000 −0.240715 −0.120358 0.992731i \(-0.538404\pi\)
−0.120358 + 0.992731i \(0.538404\pi\)
\(728\) 150.000i 0.206044i
\(729\) 0 0
\(730\) 585.000 0.801370
\(731\) 900.000i 1.23119i
\(732\) 0 0
\(733\) 1160.00 1.58254 0.791269 0.611469i \(-0.209421\pi\)
0.791269 + 0.611469i \(0.209421\pi\)
\(734\) − 1875.00i − 2.55450i
\(735\) 0 0
\(736\) −540.000 −0.733696
\(737\) 150.000i 0.203528i
\(738\) 0 0
\(739\) −1006.00 −1.36130 −0.680650 0.732609i \(-0.738302\pi\)
−0.680650 + 0.732609i \(0.738302\pi\)
\(740\) 300.000i 0.405405i
\(741\) 0 0
\(742\) 405.000 0.545822
\(743\) 114.000i 0.153432i 0.997053 + 0.0767160i \(0.0244435\pi\)
−0.997053 + 0.0767160i \(0.975557\pi\)
\(744\) 0 0
\(745\) −225.000 −0.302013
\(746\) 510.000i 0.683646i
\(747\) 0 0
\(748\) −1350.00 −1.80481
\(749\) 945.000i 1.26168i
\(750\) 0 0
\(751\) 359.000 0.478029 0.239015 0.971016i \(-0.423176\pi\)
0.239015 + 0.971016i \(0.423176\pi\)
\(752\) 66.0000i 0.0877660i
\(753\) 0 0
\(754\) 900.000 1.19363
\(755\) − 231.000i − 0.305960i
\(756\) 0 0
\(757\) −430.000 −0.568032 −0.284016 0.958820i \(-0.591667\pi\)
−0.284016 + 0.958820i \(0.591667\pi\)
\(758\) 2112.00i 2.78628i
\(759\) 0 0
\(760\) 144.000 0.189474
\(761\) 1320.00i 1.73456i 0.497821 + 0.867280i \(0.334134\pi\)
−0.497821 + 0.867280i \(0.665866\pi\)
\(762\) 0 0
\(763\) 820.000 1.07471
\(764\) − 150.000i − 0.196335i
\(765\) 0 0
\(766\) −1854.00 −2.42037
\(767\) 300.000i 0.391134i
\(768\) 0 0
\(769\) 1259.00 1.63719 0.818596 0.574370i \(-0.194753\pi\)
0.818596 + 0.574370i \(0.194753\pi\)
\(770\) − 675.000i − 0.876623i
\(771\) 0 0
\(772\) −1075.00 −1.39249
\(773\) − 522.000i − 0.675291i −0.941273 0.337646i \(-0.890369\pi\)
0.941273 0.337646i \(-0.109631\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.0206452
\(776\) 255.000i 0.328608i
\(777\) 0 0
\(778\) −1575.00 −2.02442
\(779\) − 960.000i − 1.23235i
\(780\) 0 0
\(781\) −1350.00 −1.72855
\(782\) 648.000i 0.828645i
\(783\) 0 0
\(784\) 264.000 0.336735
\(785\) 300.000i 0.382166i
\(786\) 0 0
\(787\) −460.000 −0.584498 −0.292249 0.956342i \(-0.594404\pi\)
−0.292249 + 0.956342i \(0.594404\pi\)
\(788\) 1035.00i 1.31345i
\(789\) 0 0
\(790\) 126.000 0.159494
\(791\) 120.000i 0.151707i
\(792\) 0 0
\(793\) 760.000 0.958386
\(794\) − 210.000i − 0.264484i
\(795\) 0 0
\(796\) 1115.00 1.40075
\(797\) − 237.000i − 0.297365i −0.988885 0.148683i \(-0.952497\pi\)
0.988885 0.148683i \(-0.0475033\pi\)
\(798\) 0 0
\(799\) 108.000 0.135169
\(800\) − 720.000i − 0.900000i
\(801\) 0 0
\(802\) 360.000 0.448878
\(803\) − 975.000i − 1.21420i
\(804\) 0 0
\(805\) −180.000 −0.223602
\(806\) 30.0000i 0.0372208i
\(807\) 0 0
\(808\) −585.000 −0.724010
\(809\) 810.000i 1.00124i 0.865668 + 0.500618i \(0.166894\pi\)
−0.865668 + 0.500618i \(0.833106\pi\)
\(810\) 0 0
\(811\) 272.000 0.335388 0.167694 0.985839i \(-0.446368\pi\)
0.167694 + 0.985839i \(0.446368\pi\)
\(812\) − 750.000i − 0.923645i
\(813\) 0 0
\(814\) 900.000 1.10565
\(815\) − 330.000i − 0.404908i
\(816\) 0 0
\(817\) −800.000 −0.979192
\(818\) 807.000i 0.986553i
\(819\) 0 0
\(820\) −900.000 −1.09756
\(821\) 390.000i 0.475030i 0.971384 + 0.237515i \(0.0763330\pi\)
−0.971384 + 0.237515i \(0.923667\pi\)
\(822\) 0 0
\(823\) 1205.00 1.46416 0.732078 0.681221i \(-0.238551\pi\)
0.732078 + 0.681221i \(0.238551\pi\)
\(824\) − 510.000i − 0.618932i
\(825\) 0 0
\(826\) 450.000 0.544794
\(827\) 18.0000i 0.0217654i 0.999941 + 0.0108827i \(0.00346414\pi\)
−0.999941 + 0.0108827i \(0.996536\pi\)
\(828\) 0 0
\(829\) 1442.00 1.73945 0.869723 0.493541i \(-0.164298\pi\)
0.869723 + 0.493541i \(0.164298\pi\)
\(830\) 27.0000i 0.0325301i
\(831\) 0 0
\(832\) −910.000 −1.09375
\(833\) − 432.000i − 0.518607i
\(834\) 0 0
\(835\) 234.000 0.280240
\(836\) − 1200.00i − 1.43541i
\(837\) 0 0
\(838\) 630.000 0.751790
\(839\) − 1590.00i − 1.89511i −0.319588 0.947557i \(-0.603544\pi\)
0.319588 0.947557i \(-0.396456\pi\)
\(840\) 0 0
\(841\) −59.0000 −0.0701546
\(842\) 1932.00i 2.29454i
\(843\) 0 0
\(844\) 1580.00 1.87204
\(845\) 207.000i 0.244970i
\(846\) 0 0
\(847\) −520.000 −0.613932
\(848\) 297.000i 0.350236i
\(849\) 0 0
\(850\) −864.000 −1.01647
\(851\) − 240.000i − 0.282021i
\(852\) 0 0
\(853\) 590.000 0.691676 0.345838 0.938294i \(-0.387595\pi\)
0.345838 + 0.938294i \(0.387595\pi\)
\(854\) − 1140.00i − 1.33489i
\(855\) 0 0
\(856\) 567.000 0.662383
\(857\) − 1302.00i − 1.51925i −0.650359 0.759627i \(-0.725382\pi\)
0.650359 0.759627i \(-0.274618\pi\)
\(858\) 0 0
\(859\) −316.000 −0.367870 −0.183935 0.982938i \(-0.558884\pi\)
−0.183935 + 0.982938i \(0.558884\pi\)
\(860\) 750.000i 0.872093i
\(861\) 0 0
\(862\) −810.000 −0.939675
\(863\) 1188.00i 1.37659i 0.725429 + 0.688297i \(0.241641\pi\)
−0.725429 + 0.688297i \(0.758359\pi\)
\(864\) 0 0
\(865\) −531.000 −0.613873
\(866\) − 1695.00i − 1.95727i
\(867\) 0 0
\(868\) 25.0000 0.0288018
\(869\) − 210.000i − 0.241657i
\(870\) 0 0
\(871\) 100.000 0.114811
\(872\) − 492.000i − 0.564220i
\(873\) 0 0
\(874\) −576.000 −0.659039
\(875\) − 615.000i − 0.702857i
\(876\) 0 0
\(877\) −550.000 −0.627138 −0.313569 0.949565i \(-0.601525\pi\)
−0.313569 + 0.949565i \(0.601525\pi\)
\(878\) − 633.000i − 0.720957i
\(879\) 0 0
\(880\) 495.000 0.562500
\(881\) − 90.0000i − 0.102157i −0.998695 0.0510783i \(-0.983734\pi\)
0.998695 0.0510783i \(-0.0162658\pi\)
\(882\) 0 0
\(883\) −880.000 −0.996602 −0.498301 0.867004i \(-0.666043\pi\)
−0.498301 + 0.867004i \(0.666043\pi\)
\(884\) 900.000i 1.01810i
\(885\) 0 0
\(886\) −1494.00 −1.68623
\(887\) − 282.000i − 0.317926i −0.987285 0.158963i \(-0.949185\pi\)
0.987285 0.158963i \(-0.0508150\pi\)
\(888\) 0 0
\(889\) −1025.00 −1.15298
\(890\) 810.000i 0.910112i
\(891\) 0 0
\(892\) 650.000 0.728700
\(893\) 96.0000i 0.107503i
\(894\) 0 0
\(895\) −675.000 −0.754190
\(896\) 465.000i 0.518973i
\(897\) 0 0
\(898\) 1080.00 1.20267
\(899\) − 30.0000i − 0.0333704i
\(900\) 0 0
\(901\) 486.000 0.539401
\(902\) 2700.00i 2.99335i
\(903\) 0 0
\(904\) 72.0000 0.0796460
\(905\) 48.0000i 0.0530387i
\(906\) 0 0
\(907\) −1300.00 −1.43330 −0.716648 0.697435i \(-0.754325\pi\)
−0.716648 + 0.697435i \(0.754325\pi\)
\(908\) 210.000i 0.231278i
\(909\) 0 0
\(910\) −450.000 −0.494505
\(911\) 210.000i 0.230516i 0.993336 + 0.115258i \(0.0367695\pi\)
−0.993336 + 0.115258i \(0.963231\pi\)
\(912\) 0 0
\(913\) 45.0000 0.0492881
\(914\) 1095.00i 1.19803i
\(915\) 0 0
\(916\) 1130.00 1.23362
\(917\) 75.0000i 0.0817884i
\(918\) 0 0
\(919\) 137.000 0.149075 0.0745375 0.997218i \(-0.476252\pi\)
0.0745375 + 0.997218i \(0.476252\pi\)
\(920\) 108.000i 0.117391i
\(921\) 0 0
\(922\) 315.000 0.341649
\(923\) 900.000i 0.975081i
\(924\) 0 0
\(925\) 320.000 0.345946
\(926\) 645.000i 0.696544i
\(927\) 0 0
\(928\) 1350.00 1.45474
\(929\) 660.000i 0.710441i 0.934782 + 0.355221i \(0.115594\pi\)
−0.934782 + 0.355221i \(0.884406\pi\)
\(930\) 0 0
\(931\) 384.000 0.412460
\(932\) − 1170.00i − 1.25536i
\(933\) 0 0
\(934\) −189.000 −0.202355
\(935\) − 810.000i − 0.866310i
\(936\) 0 0
\(937\) 605.000 0.645678 0.322839 0.946454i \(-0.395363\pi\)
0.322839 + 0.946454i \(0.395363\pi\)
\(938\) − 150.000i − 0.159915i
\(939\) 0 0
\(940\) 90.0000 0.0957447
\(941\) − 1605.00i − 1.70563i −0.522211 0.852816i \(-0.674893\pi\)
0.522211 0.852816i \(-0.325107\pi\)
\(942\) 0 0
\(943\) 720.000 0.763521
\(944\) 330.000i 0.349576i
\(945\) 0 0
\(946\) 2250.00 2.37844
\(947\) 543.000i 0.573390i 0.958022 + 0.286695i \(0.0925566\pi\)
−0.958022 + 0.286695i \(0.907443\pi\)
\(948\) 0 0
\(949\) −650.000 −0.684932
\(950\) − 768.000i − 0.808421i
\(951\) 0 0
\(952\) 270.000 0.283613
\(953\) 144.000i 0.151102i 0.997142 + 0.0755509i \(0.0240715\pi\)
−0.997142 + 0.0755509i \(0.975928\pi\)
\(954\) 0 0
\(955\) 90.0000 0.0942408
\(956\) 600.000i 0.627615i
\(957\) 0 0
\(958\) −2250.00 −2.34864
\(959\) 690.000i 0.719499i
\(960\) 0 0
\(961\) −960.000 −0.998959
\(962\) − 600.000i − 0.623701i
\(963\) 0 0
\(964\) −70.0000 −0.0726141
\(965\) − 645.000i − 0.668394i
\(966\) 0 0
\(967\) 845.000 0.873837 0.436918 0.899501i \(-0.356070\pi\)
0.436918 + 0.899501i \(0.356070\pi\)
\(968\) 312.000i 0.322314i
\(969\) 0 0
\(970\) −765.000 −0.788660
\(971\) 405.000i 0.417096i 0.978012 + 0.208548i \(0.0668737\pi\)
−0.978012 + 0.208548i \(0.933126\pi\)
\(972\) 0 0
\(973\) −140.000 −0.143885
\(974\) 330.000i 0.338809i
\(975\) 0 0
\(976\) 836.000 0.856557
\(977\) − 246.000i − 0.251791i −0.992043 0.125896i \(-0.959820\pi\)
0.992043 0.125896i \(-0.0401804\pi\)
\(978\) 0 0
\(979\) 1350.00 1.37896
\(980\) − 360.000i − 0.367347i
\(981\) 0 0
\(982\) −1935.00 −1.97047
\(983\) 1038.00i 1.05595i 0.849260 + 0.527976i \(0.177049\pi\)
−0.849260 + 0.527976i \(0.822951\pi\)
\(984\) 0 0
\(985\) −621.000 −0.630457
\(986\) − 1620.00i − 1.64300i
\(987\) 0 0
\(988\) −800.000 −0.809717
\(989\) − 600.000i − 0.606673i
\(990\) 0 0
\(991\) −1501.00 −1.51463 −0.757316 0.653049i \(-0.773490\pi\)
−0.757316 + 0.653049i \(0.773490\pi\)
\(992\) 45.0000i 0.0453629i
\(993\) 0 0
\(994\) 1350.00 1.35815
\(995\) 669.000i 0.672362i
\(996\) 0 0
\(997\) 770.000 0.772317 0.386158 0.922432i \(-0.373802\pi\)
0.386158 + 0.922432i \(0.373802\pi\)
\(998\) − 2298.00i − 2.30261i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.3.b.b.26.2 yes 2
3.2 odd 2 inner 27.3.b.b.26.1 2
4.3 odd 2 432.3.e.c.161.1 2
5.2 odd 4 675.3.d.a.674.2 2
5.3 odd 4 675.3.d.d.674.1 2
5.4 even 2 675.3.c.h.26.1 2
8.3 odd 2 1728.3.e.g.1025.2 2
8.5 even 2 1728.3.e.m.1025.2 2
9.2 odd 6 81.3.d.b.53.1 4
9.4 even 3 81.3.d.b.26.1 4
9.5 odd 6 81.3.d.b.26.2 4
9.7 even 3 81.3.d.b.53.2 4
12.11 even 2 432.3.e.c.161.2 2
15.2 even 4 675.3.d.d.674.2 2
15.8 even 4 675.3.d.a.674.1 2
15.14 odd 2 675.3.c.h.26.2 2
24.5 odd 2 1728.3.e.m.1025.1 2
24.11 even 2 1728.3.e.g.1025.1 2
36.7 odd 6 1296.3.q.j.1025.2 4
36.11 even 6 1296.3.q.j.1025.1 4
36.23 even 6 1296.3.q.j.593.2 4
36.31 odd 6 1296.3.q.j.593.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.b.b.26.1 2 3.2 odd 2 inner
27.3.b.b.26.2 yes 2 1.1 even 1 trivial
81.3.d.b.26.1 4 9.4 even 3
81.3.d.b.26.2 4 9.5 odd 6
81.3.d.b.53.1 4 9.2 odd 6
81.3.d.b.53.2 4 9.7 even 3
432.3.e.c.161.1 2 4.3 odd 2
432.3.e.c.161.2 2 12.11 even 2
675.3.c.h.26.1 2 5.4 even 2
675.3.c.h.26.2 2 15.14 odd 2
675.3.d.a.674.1 2 15.8 even 4
675.3.d.a.674.2 2 5.2 odd 4
675.3.d.d.674.1 2 5.3 odd 4
675.3.d.d.674.2 2 15.2 even 4
1296.3.q.j.593.1 4 36.31 odd 6
1296.3.q.j.593.2 4 36.23 even 6
1296.3.q.j.1025.1 4 36.11 even 6
1296.3.q.j.1025.2 4 36.7 odd 6
1728.3.e.g.1025.1 2 24.11 even 2
1728.3.e.g.1025.2 2 8.3 odd 2
1728.3.e.m.1025.1 2 24.5 odd 2
1728.3.e.m.1025.2 2 8.5 even 2