Newspace parameters
| Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 27.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | yes |
| Analytic conductor: | \(0.735696713773\) |
| Analytic rank: | \(0\) |
| Dimension: | \(1\) |
| Coefficient field: | \(\mathbb{Q}\) |
| Coefficient ring: | \(\mathbb{Z}\) |
| Coefficient ring index: | \( 1 \) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
| Embedding label | 26.1 | ||
| Character | \(\chi\) | \(=\) | 27.26 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).
| \(n\) | \(2\) |
| \(\chi(n)\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(3\) | 0 | 0 | ||||||||
| \(4\) | 4.00000 | 1.00000 | ||||||||
| \(5\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | −13.0000 | −1.85714 | −0.928571 | − | 0.371154i | \(-0.878962\pi\) | ||||
| −0.928571 | + | 0.371154i | \(0.878962\pi\) | |||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | 0 | 0 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | −1.00000 | −0.0769231 | −0.0384615 | − | 0.999260i | \(-0.512246\pi\) | ||||
| −0.0384615 | + | 0.999260i | \(0.512246\pi\) | |||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 16.0000 | 1.00000 | ||||||||
| \(17\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | 11.0000 | 0.578947 | 0.289474 | − | 0.957186i | \(-0.406520\pi\) | ||||
| 0.289474 | + | 0.957186i | \(0.406520\pi\) | |||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | 25.0000 | 1.00000 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 0 | 0 | ||||||||
| \(28\) | −52.0000 | −1.85714 | ||||||||
| \(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | −46.0000 | −1.48387 | −0.741935 | − | 0.670471i | \(-0.766092\pi\) | ||||
| −0.741935 | + | 0.670471i | \(0.766092\pi\) | |||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | 0 | 0 | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | 47.0000 | 1.27027 | 0.635135 | − | 0.772401i | \(-0.280944\pi\) | ||||
| 0.635135 | + | 0.772401i | \(0.280944\pi\) | |||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | −22.0000 | −0.511628 | −0.255814 | − | 0.966726i | \(-0.582343\pi\) | ||||
| −0.255814 | + | 0.966726i | \(0.582343\pi\) | |||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 0 | 0 | ||||||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | 120.000 | 2.44898 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | −4.00000 | −0.0769231 | ||||||||
| \(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | −121.000 | −1.98361 | −0.991803 | − | 0.127774i | \(-0.959217\pi\) | ||||
| −0.991803 | + | 0.127774i | \(0.959217\pi\) | |||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 64.0000 | 1.00000 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | −109.000 | −1.62687 | −0.813433 | − | 0.581659i | \(-0.802404\pi\) | ||||
| −0.813433 | + | 0.581659i | \(0.802404\pi\) | |||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | −97.0000 | −1.32877 | −0.664384 | − | 0.747392i | \(-0.731306\pi\) | ||||
| −0.664384 | + | 0.747392i | \(0.731306\pi\) | |||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 44.0000 | 0.578947 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | 131.000 | 1.65823 | 0.829114 | − | 0.559080i | \(-0.188845\pi\) | ||||
| 0.829114 | + | 0.559080i | \(0.188845\pi\) | |||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 0 | 0 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 0 | 0 | ||||||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 13.0000 | 0.142857 | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | 167.000 | 1.72165 | 0.860825 | − | 0.508902i | \(-0.169948\pi\) | ||||
| 0.860825 | + | 0.508902i | \(0.169948\pi\) | |||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 100.000 | 1.00000 | ||||||||
| \(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | −37.0000 | −0.359223 | −0.179612 | − | 0.983738i | \(-0.557484\pi\) | ||||
| −0.179612 | + | 0.983738i | \(0.557484\pi\) | |||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | −214.000 | −1.96330 | −0.981651 | − | 0.190684i | \(-0.938929\pi\) | ||||
| −0.981651 | + | 0.190684i | \(0.938929\pi\) | |||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | −208.000 | −1.85714 | ||||||||
| \(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 0 | 0 | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | 121.000 | 1.00000 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 0 | 0 | ||||||||
| \(124\) | −184.000 | −1.48387 | ||||||||
| \(125\) | 0 | 0 | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 146.000 | 1.14961 | 0.574803 | − | 0.818292i | \(-0.305079\pi\) | ||||
| 0.574803 | + | 0.818292i | \(0.305079\pi\) | |||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 0 | 0 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | −143.000 | −1.07519 | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | 251.000 | 1.80576 | 0.902878 | − | 0.429898i | \(-0.141450\pi\) | ||||
| 0.902878 | + | 0.429898i | \(0.141450\pi\) | |||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | 0 | 0 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | 0 | 0 | ||||||||
| \(148\) | 188.000 | 1.27027 | ||||||||
| \(149\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 59.0000 | 0.390728 | 0.195364 | − | 0.980731i | \(-0.437411\pi\) | ||||
| 0.195364 | + | 0.980731i | \(0.437411\pi\) | |||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | 0 | 0 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | −118.000 | −0.751592 | −0.375796 | − | 0.926702i | \(-0.622631\pi\) | ||||
| −0.375796 | + | 0.926702i | \(0.622631\pi\) | |||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 0 | 0 | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | 299.000 | 1.83436 | 0.917178 | − | 0.398478i | \(-0.130461\pi\) | ||||
| 0.917178 | + | 0.398478i | \(0.130461\pi\) | |||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | −168.000 | −0.994083 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | −88.0000 | −0.511628 | ||||||||
| \(173\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | −325.000 | −1.85714 | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | −313.000 | −1.72928 | −0.864641 | − | 0.502390i | \(-0.832454\pi\) | ||||
| −0.864641 | + | 0.502390i | \(0.832454\pi\) | |||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | 0 | 0 | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 0 | 0 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | 143.000 | 0.740933 | 0.370466 | − | 0.928846i | \(-0.379198\pi\) | ||||
| 0.370466 | + | 0.928846i | \(0.379198\pi\) | |||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 480.000 | 2.44898 | ||||||||
| \(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | −277.000 | −1.39196 | −0.695980 | − | 0.718061i | \(-0.745030\pi\) | ||||
| −0.695980 | + | 0.718061i | \(0.745030\pi\) | |||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | 0 | 0 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 0 | 0 | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | 0 | 0 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 0 | 0 | ||||||||
| \(208\) | −16.0000 | −0.0769231 | ||||||||
| \(209\) | 0 | 0 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | −253.000 | −1.19905 | −0.599526 | − | 0.800355i | \(-0.704644\pi\) | ||||
| −0.599526 | + | 0.800355i | \(0.704644\pi\) | |||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | 0 | 0 | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 598.000 | 2.75576 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | 338.000 | 1.51570 | 0.757848 | − | 0.652432i | \(-0.226251\pi\) | ||||
| 0.757848 | + | 0.652432i | \(0.226251\pi\) | |||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 0 | 0 | ||||||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | 26.0000 | 0.113537 | 0.0567686 | − | 0.998387i | \(-0.481920\pi\) | ||||
| 0.0567686 | + | 0.998387i | \(0.481920\pi\) | |||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | 0 | 0 | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | −193.000 | −0.800830 | −0.400415 | − | 0.916334i | \(-0.631134\pi\) | ||||
| −0.400415 | + | 0.916334i | \(0.631134\pi\) | |||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 0 | 0 | ||||||||
| \(244\) | −484.000 | −1.98361 | ||||||||
| \(245\) | 0 | 0 | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | −11.0000 | −0.0445344 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 0 | 0 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 256.000 | 1.00000 | ||||||||
| \(257\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | −611.000 | −2.35907 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | 0 | 0 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 0 | 0 | ||||||||
| \(268\) | −436.000 | −1.62687 | ||||||||
| \(269\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | 299.000 | 1.10332 | 0.551661 | − | 0.834069i | \(-0.313994\pi\) | ||||
| 0.551661 | + | 0.834069i | \(0.313994\pi\) | |||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | 122.000 | 0.440433 | 0.220217 | − | 0.975451i | \(-0.429324\pi\) | ||||
| 0.220217 | + | 0.975451i | \(0.429324\pi\) | |||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | 458.000 | 1.61837 | 0.809187 | − | 0.587551i | \(-0.199908\pi\) | ||||
| 0.809187 | + | 0.587551i | \(0.199908\pi\) | |||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | 0 | 0 | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | 289.000 | 1.00000 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | −388.000 | −1.32877 | ||||||||
| \(293\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | 286.000 | 0.950166 | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 176.000 | 0.578947 | ||||||||
| \(305\) | 0 | 0 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | −358.000 | −1.16612 | −0.583062 | − | 0.812428i | \(-0.698145\pi\) | ||||
| −0.583062 | + | 0.812428i | \(0.698145\pi\) | |||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | 599.000 | 1.91374 | 0.956869 | − | 0.290520i | \(-0.0938282\pi\) | ||||
| 0.956869 | + | 0.290520i | \(0.0938282\pi\) | |||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 524.000 | 1.65823 | ||||||||
| \(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 0 | 0 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 0 | 0 | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | −25.0000 | −0.0769231 | ||||||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 0 | 0 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | −661.000 | −1.99698 | −0.998489 | − | 0.0549442i | \(-0.982502\pi\) | ||||
| −0.998489 | + | 0.0549442i | \(0.982502\pi\) | |||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | 0 | 0 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 0 | 0 | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | −649.000 | −1.92582 | −0.962908 | − | 0.269830i | \(-0.913033\pi\) | ||||
| −0.962908 | + | 0.269830i | \(0.913033\pi\) | |||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | −923.000 | −2.69096 | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 671.000 | 1.92264 | 0.961318 | − | 0.275441i | \(-0.0888238\pi\) | ||||
| 0.961318 | + | 0.275441i | \(0.0888238\pi\) | |||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | −240.000 | −0.664820 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | 0 | 0 | ||||||||
| \(364\) | 52.0000 | 0.142857 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | 491.000 | 1.33787 | 0.668937 | − | 0.743319i | \(-0.266749\pi\) | ||||
| 0.668937 | + | 0.743319i | \(0.266749\pi\) | |||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 0 | 0 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | −577.000 | −1.54692 | −0.773458 | − | 0.633847i | \(-0.781475\pi\) | ||||
| −0.773458 | + | 0.633847i | \(0.781475\pi\) | |||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | 83.0000 | 0.218997 | 0.109499 | − | 0.993987i | \(-0.465075\pi\) | ||||
| 0.109499 | + | 0.993987i | \(0.465075\pi\) | |||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | 0 | 0 | ||||||||
| \(388\) | 668.000 | 1.72165 | ||||||||
| \(389\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 362.000 | 0.911839 | 0.455919 | − | 0.890021i | \(-0.349311\pi\) | ||||
| 0.455919 | + | 0.890021i | \(0.349311\pi\) | |||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 400.000 | 1.00000 | ||||||||
| \(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 46.0000 | 0.114144 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | 0 | 0 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | 143.000 | 0.349633 | 0.174817 | − | 0.984601i | \(-0.444067\pi\) | ||||
| 0.174817 | + | 0.984601i | \(0.444067\pi\) | |||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | −148.000 | −0.359223 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 0 | 0 | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | −481.000 | −1.14252 | −0.571259 | − | 0.820770i | \(-0.693545\pi\) | ||||
| −0.571259 | + | 0.820770i | \(0.693545\pi\) | |||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | 0 | 0 | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | 0 | 0 | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 1573.00 | 3.68384 | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | −862.000 | −1.99076 | −0.995381 | − | 0.0960028i | \(-0.969394\pi\) | ||||
| −0.995381 | + | 0.0960028i | \(0.969394\pi\) | |||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | −856.000 | −1.96330 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | −94.0000 | −0.214123 | −0.107062 | − | 0.994252i | \(-0.534144\pi\) | ||||
| −0.107062 | + | 0.994252i | \(0.534144\pi\) | |||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | 0 | 0 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 0 | 0 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | −832.000 | −1.85714 | ||||||||
| \(449\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | 0 | 0 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | −814.000 | −1.78118 | −0.890591 | − | 0.454805i | \(-0.849709\pi\) | ||||
| −0.890591 | + | 0.454805i | \(0.849709\pi\) | |||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | −397.000 | −0.857451 | −0.428726 | − | 0.903435i | \(-0.641037\pi\) | ||||
| −0.428726 | + | 0.903435i | \(0.641037\pi\) | |||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | 1417.00 | 3.02132 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 275.000 | 0.578947 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 0 | 0 | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | −47.0000 | −0.0977131 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 484.000 | 1.00000 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | −349.000 | −0.716632 | −0.358316 | − | 0.933600i | \(-0.616649\pi\) | ||||
| −0.358316 | + | 0.933600i | \(0.616649\pi\) | |||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 0 | 0 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | −736.000 | −1.48387 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | 26.0000 | 0.0521042 | 0.0260521 | − | 0.999661i | \(-0.491706\pi\) | ||||
| 0.0260521 | + | 0.999661i | \(0.491706\pi\) | |||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | 0 | 0 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 0 | 0 | ||||||||
| \(508\) | 584.000 | 1.14961 | ||||||||
| \(509\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 1261.00 | 2.46771 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | 0 | 0 | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | 803.000 | 1.53537 | 0.767686 | − | 0.640826i | \(-0.221408\pi\) | ||||
| 0.767686 | + | 0.640826i | \(0.221408\pi\) | |||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | 529.000 | 1.00000 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 0 | 0 | ||||||||
| \(532\) | −572.000 | −1.07519 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | 0 | 0 | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 0 | 0 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | −241.000 | −0.445471 | −0.222736 | − | 0.974879i | \(-0.571499\pi\) | ||||
| −0.222736 | + | 0.974879i | \(0.571499\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | 0 | 0 | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | −1093.00 | −1.99817 | −0.999086 | − | 0.0427471i | \(-0.986389\pi\) | ||||
| −0.999086 | + | 0.0427471i | \(0.986389\pi\) | |||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | 0 | 0 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | −1703.00 | −3.07957 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 1004.00 | 1.80576 | ||||||||
| \(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 22.0000 | 0.0393560 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | −181.000 | −0.316988 | −0.158494 | − | 0.987360i | \(-0.550664\pi\) | ||||
| −0.158494 | + | 0.987360i | \(0.550664\pi\) | |||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 0 | 0 | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | −1033.00 | −1.79029 | −0.895147 | − | 0.445770i | \(-0.852930\pi\) | ||||
| −0.895147 | + | 0.445770i | \(0.852930\pi\) | |||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 0 | 0 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | −506.000 | −0.859083 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 752.000 | 1.27027 | ||||||||
| \(593\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | −526.000 | −0.875208 | −0.437604 | − | 0.899168i | \(-0.644173\pi\) | ||||
| −0.437604 | + | 0.899168i | \(0.644173\pi\) | |||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | 0 | 0 | ||||||||
| \(604\) | 236.000 | 0.390728 | ||||||||
| \(605\) | 0 | 0 | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | 1187.00 | 1.95552 | 0.977759 | − | 0.209729i | \(-0.0672583\pi\) | ||||
| 0.977759 | + | 0.209729i | \(0.0672583\pi\) | |||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 983.000 | 1.60359 | 0.801794 | − | 0.597600i | \(-0.203879\pi\) | ||||
| 0.801794 | + | 0.597600i | \(0.203879\pi\) | |||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | −949.000 | −1.53312 | −0.766559 | − | 0.642174i | \(-0.778033\pi\) | ||||
| −0.766559 | + | 0.642174i | \(0.778033\pi\) | |||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 0 | 0 | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 625.000 | 1.00000 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | −472.000 | −0.751592 | ||||||||
| \(629\) | 0 | 0 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | 587.000 | 0.930269 | 0.465135 | − | 0.885240i | \(-0.346006\pi\) | ||||
| 0.465135 | + | 0.885240i | \(0.346006\pi\) | |||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 0 | 0 | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | −120.000 | −0.188383 | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | 314.000 | 0.488336 | 0.244168 | − | 0.969733i | \(-0.421485\pi\) | ||||
| 0.244168 | + | 0.969733i | \(0.421485\pi\) | |||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 1196.00 | 1.83436 | ||||||||
| \(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 0 | 0 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | 1079.00 | 1.63238 | 0.816188 | − | 0.577787i | \(-0.196084\pi\) | ||||
| 0.816188 | + | 0.577787i | \(0.196084\pi\) | |||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | 0 | 0 | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | 23.0000 | 0.0341753 | 0.0170877 | − | 0.999854i | \(-0.494561\pi\) | ||||
| 0.0170877 | + | 0.999854i | \(0.494561\pi\) | |||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | −672.000 | −0.994083 | ||||||||
| \(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | −2171.00 | −3.19735 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 0 | 0 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | −352.000 | −0.511628 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | −1318.00 | −1.90738 | −0.953690 | − | 0.300790i | \(-0.902750\pi\) | ||||
| −0.953690 | + | 0.300790i | \(0.902750\pi\) | |||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | 0 | 0 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | −1300.00 | −1.85714 | ||||||||
| \(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 517.000 | 0.735420 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | 0 | 0 | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | 1391.00 | 1.96192 | 0.980959 | − | 0.194214i | \(-0.0622158\pi\) | ||||
| 0.980959 | + | 0.194214i | \(0.0622158\pi\) | |||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 0 | 0 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 481.000 | 0.667129 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | 0 | 0 | ||||||||
| \(724\) | −1252.00 | −1.72928 | ||||||||
| \(725\) | 0 | 0 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | 482.000 | 0.662999 | 0.331499 | − | 0.943455i | \(-0.392446\pi\) | ||||
| 0.331499 | + | 0.943455i | \(0.392446\pi\) | |||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | 0 | 0 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 1034.00 | 1.41064 | 0.705321 | − | 0.708888i | \(-0.250803\pi\) | ||||
| 0.705321 | + | 0.708888i | \(0.250803\pi\) | |||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | −1222.00 | −1.65359 | −0.826793 | − | 0.562506i | \(-0.809837\pi\) | ||||
| −0.826793 | + | 0.562506i | \(0.809837\pi\) | |||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 0 | 0 | ||||||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 0 | 0 | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | 0 | 0 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 179.000 | 0.238349 | 0.119174 | − | 0.992873i | \(-0.461975\pi\) | ||||
| 0.119174 | + | 0.992873i | \(0.461975\pi\) | |||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | −673.000 | −0.889036 | −0.444518 | − | 0.895770i | \(-0.646625\pi\) | ||||
| −0.444518 | + | 0.895770i | \(0.646625\pi\) | |||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 2782.00 | 3.64613 | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | 863.000 | 1.12224 | 0.561118 | − | 0.827736i | \(-0.310371\pi\) | ||||
| 0.561118 | + | 0.827736i | \(0.310371\pi\) | |||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 572.000 | 0.740933 | ||||||||
| \(773\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | −1150.00 | −1.48387 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | 0 | 0 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 1920.00 | 2.44898 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | −613.000 | −0.778907 | −0.389454 | − | 0.921046i | \(-0.627336\pi\) | ||||
| −0.389454 | + | 0.921046i | \(0.627336\pi\) | |||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 121.000 | 0.152585 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | −1108.00 | −1.39196 | ||||||||
| \(797\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | 0 | 0 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 0 | 0 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | 1514.00 | 1.86683 | 0.933416 | − | 0.358797i | \(-0.116813\pi\) | ||||
| 0.933416 | + | 0.358797i | \(0.116813\pi\) | |||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | 0 | 0 | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | −242.000 | −0.296206 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | −1621.00 | −1.96962 | −0.984812 | − | 0.173626i | \(-0.944452\pi\) | ||||
| −0.984812 | + | 0.173626i | \(0.944452\pi\) | |||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | −1609.00 | −1.94089 | −0.970446 | − | 0.241317i | \(-0.922421\pi\) | ||||
| −0.970446 | + | 0.241317i | \(0.922421\pi\) | |||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | −64.0000 | −0.0769231 | ||||||||
| \(833\) | 0 | 0 | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 0 | 0 | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | 841.000 | 1.00000 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | 0 | 0 | ||||||||
| \(844\) | −1012.00 | −1.19905 | ||||||||
| \(845\) | 0 | 0 | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | −1573.00 | −1.85714 | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | 0 | 0 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 0 | 0 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | −481.000 | −0.563892 | −0.281946 | − | 0.959430i | \(-0.590980\pi\) | ||||
| −0.281946 | + | 0.959430i | \(0.590980\pi\) | |||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | −1549.00 | −1.80326 | −0.901630 | − | 0.432509i | \(-0.857629\pi\) | ||||
| −0.901630 | + | 0.432509i | \(0.857629\pi\) | |||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 0 | 0 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 0 | 0 | ||||||||
| \(868\) | 2392.00 | 2.75576 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 109.000 | 0.125144 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | 0 | 0 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | 0 | 0 | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | 1727.00 | 1.96921 | 0.984607 | − | 0.174785i | \(-0.0559231\pi\) | ||||
| 0.984607 | + | 0.174785i | \(0.0559231\pi\) | |||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | 443.000 | 0.501699 | 0.250849 | − | 0.968026i | \(-0.419290\pi\) | ||||
| 0.250849 | + | 0.968026i | \(0.419290\pi\) | |||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | −1898.00 | −2.13498 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 1352.00 | 1.51570 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | 0 | 0 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | −1453.00 | −1.60198 | −0.800992 | − | 0.598675i | \(-0.795694\pi\) | ||||
| −0.800992 | + | 0.598675i | \(0.795694\pi\) | |||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 0 | 0 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 104.000 | 0.113537 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 866.000 | 0.942329 | 0.471164 | − | 0.882045i | \(-0.343834\pi\) | ||||
| 0.471164 | + | 0.882045i | \(0.343834\pi\) | |||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 0 | 0 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | 1175.00 | 1.27027 | ||||||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | 1320.00 | 1.41783 | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | 1847.00 | 1.97118 | 0.985592 | − | 0.169138i | \(-0.0540985\pi\) | ||||
| 0.985592 | + | 0.169138i | \(0.0540985\pi\) | |||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 0 | 0 | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 97.0000 | 0.102213 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | 1155.00 | 1.20187 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | 0 | 0 | ||||||||
| \(964\) | −772.000 | −0.800830 | ||||||||
| \(965\) | 0 | 0 | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | −253.000 | −0.261634 | −0.130817 | − | 0.991407i | \(-0.541760\pi\) | ||||
| −0.130817 | + | 0.991407i | \(0.541760\pi\) | |||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | −3263.00 | −3.35355 | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | −1936.00 | −1.98361 | ||||||||
| \(977\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 0 | 0 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | 0 | 0 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | −44.0000 | −0.0445344 | ||||||||
| \(989\) | 0 | 0 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | 1739.00 | 1.75479 | 0.877397 | − | 0.479766i | \(-0.159278\pi\) | ||||
| 0.877397 | + | 0.479766i | \(0.159278\pi\) | |||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | −1894.00 | −1.89970 | −0.949850 | − | 0.312707i | \(-0.898764\pi\) | ||||
| −0.949850 | + | 0.312707i | \(0.898764\pi\) | |||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
| By twisting character | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Type | Twist | Min | Dim | |
| 1.1 | even | 1 | trivial | 27.3.b.a.26.1 | ✓ | 1 | |
| 3.2 | odd | 2 | CM | 27.3.b.a.26.1 | ✓ | 1 | |
| 4.3 | odd | 2 | 432.3.e.b.161.1 | 1 | |||
| 5.2 | odd | 4 | 675.3.d.c.674.1 | 2 | |||
| 5.3 | odd | 4 | 675.3.d.c.674.2 | 2 | |||
| 5.4 | even | 2 | 675.3.c.c.26.1 | 1 | |||
| 8.3 | odd | 2 | 1728.3.e.d.1025.1 | 1 | |||
| 8.5 | even | 2 | 1728.3.e.a.1025.1 | 1 | |||
| 9.2 | odd | 6 | 81.3.d.a.53.1 | 2 | |||
| 9.4 | even | 3 | 81.3.d.a.26.1 | 2 | |||
| 9.5 | odd | 6 | 81.3.d.a.26.1 | 2 | |||
| 9.7 | even | 3 | 81.3.d.a.53.1 | 2 | |||
| 12.11 | even | 2 | 432.3.e.b.161.1 | 1 | |||
| 15.2 | even | 4 | 675.3.d.c.674.1 | 2 | |||
| 15.8 | even | 4 | 675.3.d.c.674.2 | 2 | |||
| 15.14 | odd | 2 | 675.3.c.c.26.1 | 1 | |||
| 24.5 | odd | 2 | 1728.3.e.a.1025.1 | 1 | |||
| 24.11 | even | 2 | 1728.3.e.d.1025.1 | 1 | |||
| 36.7 | odd | 6 | 1296.3.q.a.1025.1 | 2 | |||
| 36.11 | even | 6 | 1296.3.q.a.1025.1 | 2 | |||
| 36.23 | even | 6 | 1296.3.q.a.593.1 | 2 | |||
| 36.31 | odd | 6 | 1296.3.q.a.593.1 | 2 | |||
| By twisted newform | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Type | |
| 27.3.b.a.26.1 | ✓ | 1 | 1.1 | even | 1 | trivial | |
| 27.3.b.a.26.1 | ✓ | 1 | 3.2 | odd | 2 | CM | |
| 81.3.d.a.26.1 | 2 | 9.4 | even | 3 | |||
| 81.3.d.a.26.1 | 2 | 9.5 | odd | 6 | |||
| 81.3.d.a.53.1 | 2 | 9.2 | odd | 6 | |||
| 81.3.d.a.53.1 | 2 | 9.7 | even | 3 | |||
| 432.3.e.b.161.1 | 1 | 4.3 | odd | 2 | |||
| 432.3.e.b.161.1 | 1 | 12.11 | even | 2 | |||
| 675.3.c.c.26.1 | 1 | 5.4 | even | 2 | |||
| 675.3.c.c.26.1 | 1 | 15.14 | odd | 2 | |||
| 675.3.d.c.674.1 | 2 | 5.2 | odd | 4 | |||
| 675.3.d.c.674.1 | 2 | 15.2 | even | 4 | |||
| 675.3.d.c.674.2 | 2 | 5.3 | odd | 4 | |||
| 675.3.d.c.674.2 | 2 | 15.8 | even | 4 | |||
| 1296.3.q.a.593.1 | 2 | 36.23 | even | 6 | |||
| 1296.3.q.a.593.1 | 2 | 36.31 | odd | 6 | |||
| 1296.3.q.a.1025.1 | 2 | 36.7 | odd | 6 | |||
| 1296.3.q.a.1025.1 | 2 | 36.11 | even | 6 | |||
| 1728.3.e.a.1025.1 | 1 | 8.5 | even | 2 | |||
| 1728.3.e.a.1025.1 | 1 | 24.5 | odd | 2 | |||
| 1728.3.e.d.1025.1 | 1 | 8.3 | odd | 2 | |||
| 1728.3.e.d.1025.1 | 1 | 24.11 | even | 2 | |||