Properties

Label 27.3
Level 27
Weight 3
Dimension 35
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 162
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(162\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(27))\).

Total New Old
Modular forms 69 51 18
Cusp forms 39 35 4
Eisenstein series 30 16 14

Trace form

\( 35 q - 3 q^{2} - 6 q^{3} - 13 q^{4} - 21 q^{5} - 18 q^{6} - 11 q^{7} - 9 q^{8} + 3 q^{10} - 3 q^{11} - 15 q^{12} - 23 q^{13} - 21 q^{14} - 9 q^{15} - 13 q^{16} - 9 q^{17} + 63 q^{18} - 2 q^{19} + 219 q^{20}+ \cdots + 513 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
27.3.b \(\chi_{27}(26, \cdot)\) 27.3.b.a 1 1
27.3.b.b 2
27.3.d \(\chi_{27}(8, \cdot)\) 27.3.d.a 2 2
27.3.f \(\chi_{27}(2, \cdot)\) 27.3.f.a 30 6

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(27))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(27)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)