Defining parameters
Level: | \( N \) | = | \( 27 = 3^{3} \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(162\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(27))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 69 | 51 | 18 |
Cusp forms | 39 | 35 | 4 |
Eisenstein series | 30 | 16 | 14 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
27.3.b | \(\chi_{27}(26, \cdot)\) | 27.3.b.a | 1 | 1 |
27.3.b.b | 2 | |||
27.3.d | \(\chi_{27}(8, \cdot)\) | 27.3.d.a | 2 | 2 |
27.3.f | \(\chi_{27}(2, \cdot)\) | 27.3.f.a | 30 | 6 |
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(27))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(27)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)