Properties

Label 27.2.e.a.22.2
Level $27$
Weight $2$
Character 27.22
Analytic conductor $0.216$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,2,Mod(4,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 27.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.215596085457\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 22.2
Root \(0.500000 + 2.22827i\) of defining polynomial
Character \(\chi\) \(=\) 27.22
Dual form 27.2.e.a.16.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.318266 + 0.267057i) q^{2} +(0.159815 - 1.72466i) q^{3} +(-0.317323 + 1.79963i) q^{4} +(-2.08159 + 0.757639i) q^{5} +(0.409719 + 0.591580i) q^{6} +(-0.229151 - 1.29958i) q^{7} +(-0.795075 - 1.37711i) q^{8} +(-2.94892 - 0.551252i) q^{9} +O(q^{10})\) \(q+(-0.318266 + 0.267057i) q^{2} +(0.159815 - 1.72466i) q^{3} +(-0.317323 + 1.79963i) q^{4} +(-2.08159 + 0.757639i) q^{5} +(0.409719 + 0.591580i) q^{6} +(-0.229151 - 1.29958i) q^{7} +(-0.795075 - 1.37711i) q^{8} +(-2.94892 - 0.551252i) q^{9} +(0.460168 - 0.797034i) q^{10} +(4.90067 + 1.78370i) q^{11} +(3.05303 + 0.834881i) q^{12} +(-0.0138336 - 0.0116078i) q^{13} +(0.419993 + 0.352416i) q^{14} +(0.974001 + 3.71113i) q^{15} +(-2.81355 - 1.02405i) q^{16} +(1.56640 - 2.71308i) q^{17} +(1.08575 - 0.612083i) q^{18} +(-0.208676 - 0.361438i) q^{19} +(-0.702929 - 3.98651i) q^{20} +(-2.27796 + 0.187516i) q^{21} +(-2.03606 + 0.741067i) q^{22} +(-0.179619 + 1.01867i) q^{23} +(-2.50212 + 1.15115i) q^{24} +(-0.0712019 + 0.0597455i) q^{25} +0.00750270 q^{26} +(-1.42200 + 4.99779i) q^{27} +2.41147 q^{28} +(-5.98068 + 5.01839i) q^{29} +(-1.30107 - 0.921011i) q^{30} +(0.647649 - 3.67300i) q^{31} +(4.15744 - 1.51319i) q^{32} +(3.85948 - 8.16694i) q^{33} +(0.226015 + 1.28180i) q^{34} +(1.46161 + 2.53159i) q^{35} +(1.92781 - 5.13202i) q^{36} +(-2.21238 + 3.83195i) q^{37} +(0.162939 + 0.0593049i) q^{38} +(-0.0222303 + 0.0220032i) q^{39} +(2.69838 + 2.26421i) q^{40} +(-2.81517 - 2.36221i) q^{41} +(0.674919 - 0.668024i) q^{42} +(7.80685 + 2.84146i) q^{43} +(-4.76508 + 8.25337i) q^{44} +(6.55610 - 1.08673i) q^{45} +(-0.214876 - 0.372177i) q^{46} +(-1.23254 - 6.99008i) q^{47} +(-2.21579 + 4.68877i) q^{48} +(4.94145 - 1.79854i) q^{49} +(0.00670569 - 0.0380299i) q^{50} +(-4.42881 - 3.13510i) q^{51} +(0.0252794 - 0.0212119i) q^{52} -1.30057 q^{53} +(-0.882118 - 1.97038i) q^{54} -11.5526 q^{55} +(-1.60747 + 1.34883i) q^{56} +(-0.656707 + 0.302133i) q^{57} +(0.563252 - 3.19436i) q^{58} +(3.47856 - 1.26609i) q^{59} +(-6.98772 + 0.575213i) q^{60} +(1.20064 + 6.80919i) q^{61} +(0.774775 + 1.34195i) q^{62} +(-0.0406486 + 3.95868i) q^{63} +(2.07506 - 3.59410i) q^{64} +(0.0375905 + 0.0136818i) q^{65} +(0.952697 + 3.62996i) q^{66} +(-8.44702 - 7.08789i) q^{67} +(4.38548 + 3.67985i) q^{68} +(1.72816 + 0.472581i) q^{69} +(-1.14126 - 0.415384i) q^{70} +(3.04214 - 5.26914i) q^{71} +(1.58548 + 4.49927i) q^{72} +(0.273486 + 0.473692i) q^{73} +(-0.319224 - 1.81041i) q^{74} +(0.0916617 + 0.132347i) q^{75} +(0.716670 - 0.260847i) q^{76} +(1.19507 - 6.77756i) q^{77} +(0.00119904 - 0.0129396i) q^{78} +(0.374706 - 0.314416i) q^{79} +6.63254 q^{80} +(8.39224 + 3.25120i) q^{81} +1.52681 q^{82} +(3.53428 - 2.96561i) q^{83} +(0.385389 - 4.15898i) q^{84} +(-1.20507 + 6.83430i) q^{85} +(-3.24348 + 1.18053i) q^{86} +(7.69922 + 11.1167i) q^{87} +(-1.44005 - 8.16694i) q^{88} +(1.68653 + 2.92116i) q^{89} +(-1.79636 + 2.09672i) q^{90} +(-0.0119153 + 0.0206379i) q^{91} +(-1.77623 - 0.646495i) q^{92} +(-6.23118 - 1.70398i) q^{93} +(2.25902 + 1.89554i) q^{94} +(0.708218 + 0.594266i) q^{95} +(-1.94531 - 7.41201i) q^{96} +(-9.34182 - 3.40014i) q^{97} +(-1.09238 + 1.89206i) q^{98} +(-13.4684 - 7.96149i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 6 q^{8} - 3 q^{10} + 3 q^{11} + 12 q^{12} - 6 q^{13} + 15 q^{14} + 9 q^{15} + 9 q^{17} + 9 q^{18} - 3 q^{19} - 3 q^{20} - 12 q^{21} + 3 q^{22} - 12 q^{23} - 18 q^{24} + 3 q^{25} - 30 q^{26} - 9 q^{27} - 12 q^{28} - 6 q^{29} - 9 q^{30} + 3 q^{31} + 9 q^{34} + 12 q^{35} + 18 q^{36} - 3 q^{37} + 42 q^{38} + 33 q^{39} + 21 q^{40} + 15 q^{41} + 18 q^{42} + 3 q^{43} + 3 q^{44} - 9 q^{45} - 3 q^{46} - 15 q^{47} - 15 q^{48} + 12 q^{49} - 33 q^{50} - 18 q^{51} + 9 q^{52} - 18 q^{53} - 54 q^{54} - 12 q^{55} - 33 q^{56} - 3 q^{57} + 21 q^{58} - 12 q^{59} + 12 q^{61} - 12 q^{62} + 9 q^{63} + 12 q^{64} + 3 q^{65} - 9 q^{66} - 15 q^{67} + 9 q^{68} + 9 q^{69} - 15 q^{70} + 27 q^{71} + 18 q^{72} + 6 q^{73} + 33 q^{74} + 39 q^{75} - 48 q^{76} + 15 q^{77} + 18 q^{78} - 42 q^{79} + 42 q^{80} + 36 q^{81} - 12 q^{82} + 39 q^{83} + 6 q^{84} - 27 q^{85} + 51 q^{86} + 9 q^{87} - 30 q^{88} + 9 q^{89} + 18 q^{90} + 6 q^{91} - 39 q^{92} - 39 q^{93} - 15 q^{94} - 33 q^{95} + 3 q^{97} - 45 q^{98} - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.318266 + 0.267057i −0.225048 + 0.188837i −0.748339 0.663316i \(-0.769148\pi\)
0.523291 + 0.852154i \(0.324704\pi\)
\(3\) 0.159815 1.72466i 0.0922690 0.995734i
\(4\) −0.317323 + 1.79963i −0.158661 + 0.899813i
\(5\) −2.08159 + 0.757639i −0.930917 + 0.338826i −0.762573 0.646902i \(-0.776064\pi\)
−0.168344 + 0.985728i \(0.553842\pi\)
\(6\) 0.409719 + 0.591580i 0.167267 + 0.241512i
\(7\) −0.229151 1.29958i −0.0866110 0.491195i −0.996997 0.0774361i \(-0.975327\pi\)
0.910386 0.413759i \(-0.135784\pi\)
\(8\) −0.795075 1.37711i −0.281102 0.486882i
\(9\) −2.94892 0.551252i −0.982973 0.183751i
\(10\) 0.460168 0.797034i 0.145518 0.252044i
\(11\) 4.90067 + 1.78370i 1.47761 + 0.537805i 0.950155 0.311778i \(-0.100925\pi\)
0.527454 + 0.849584i \(0.323147\pi\)
\(12\) 3.05303 + 0.834881i 0.881335 + 0.241009i
\(13\) −0.0138336 0.0116078i −0.00383676 0.00321942i 0.640867 0.767652i \(-0.278575\pi\)
−0.644704 + 0.764432i \(0.723019\pi\)
\(14\) 0.419993 + 0.352416i 0.112248 + 0.0941870i
\(15\) 0.974001 + 3.71113i 0.251486 + 0.958209i
\(16\) −2.81355 1.02405i −0.703389 0.256012i
\(17\) 1.56640 2.71308i 0.379907 0.658019i −0.611141 0.791522i \(-0.709289\pi\)
0.991048 + 0.133503i \(0.0426226\pi\)
\(18\) 1.08575 0.612083i 0.255915 0.144269i
\(19\) −0.208676 0.361438i −0.0478736 0.0829195i 0.841096 0.540886i \(-0.181911\pi\)
−0.888969 + 0.457967i \(0.848578\pi\)
\(20\) −0.702929 3.98651i −0.157180 0.891410i
\(21\) −2.27796 + 0.187516i −0.497092 + 0.0409194i
\(22\) −2.03606 + 0.741067i −0.434090 + 0.157996i
\(23\) −0.179619 + 1.01867i −0.0374532 + 0.212408i −0.997791 0.0664316i \(-0.978839\pi\)
0.960338 + 0.278839i \(0.0899497\pi\)
\(24\) −2.50212 + 1.15115i −0.510742 + 0.234978i
\(25\) −0.0712019 + 0.0597455i −0.0142404 + 0.0119491i
\(26\) 0.00750270 0.00147140
\(27\) −1.42200 + 4.99779i −0.273665 + 0.961825i
\(28\) 2.41147 0.455726
\(29\) −5.98068 + 5.01839i −1.11058 + 0.931891i −0.998091 0.0617615i \(-0.980328\pi\)
−0.112493 + 0.993652i \(0.535884\pi\)
\(30\) −1.30107 0.921011i −0.237542 0.168153i
\(31\) 0.647649 3.67300i 0.116321 0.659691i −0.869766 0.493464i \(-0.835730\pi\)
0.986088 0.166227i \(-0.0531584\pi\)
\(32\) 4.15744 1.51319i 0.734939 0.267496i
\(33\) 3.85948 8.16694i 0.671849 1.42168i
\(34\) 0.226015 + 1.28180i 0.0387613 + 0.219826i
\(35\) 1.46161 + 2.53159i 0.247058 + 0.427916i
\(36\) 1.92781 5.13202i 0.321301 0.855337i
\(37\) −2.21238 + 3.83195i −0.363713 + 0.629969i −0.988569 0.150771i \(-0.951824\pi\)
0.624856 + 0.780740i \(0.285158\pi\)
\(38\) 0.162939 + 0.0593049i 0.0264322 + 0.00962052i
\(39\) −0.0222303 + 0.0220032i −0.00355970 + 0.00352334i
\(40\) 2.69838 + 2.26421i 0.426651 + 0.358002i
\(41\) −2.81517 2.36221i −0.439655 0.368915i 0.395925 0.918283i \(-0.370424\pi\)
−0.835580 + 0.549368i \(0.814868\pi\)
\(42\) 0.674919 0.668024i 0.104142 0.103078i
\(43\) 7.80685 + 2.84146i 1.19053 + 0.433319i 0.859911 0.510445i \(-0.170519\pi\)
0.330622 + 0.943763i \(0.392741\pi\)
\(44\) −4.76508 + 8.25337i −0.718363 + 1.24424i
\(45\) 6.55610 1.08673i 0.977326 0.162000i
\(46\) −0.214876 0.372177i −0.0316818 0.0548745i
\(47\) −1.23254 6.99008i −0.179784 1.01961i −0.932475 0.361234i \(-0.882356\pi\)
0.752691 0.658374i \(-0.228755\pi\)
\(48\) −2.21579 + 4.68877i −0.319821 + 0.676766i
\(49\) 4.94145 1.79854i 0.705921 0.256934i
\(50\) 0.00670569 0.0380299i 0.000948328 0.00537824i
\(51\) −4.42881 3.13510i −0.620158 0.439001i
\(52\) 0.0252794 0.0212119i 0.00350562 0.00294157i
\(53\) −1.30057 −0.178648 −0.0893238 0.996003i \(-0.528471\pi\)
−0.0893238 + 0.996003i \(0.528471\pi\)
\(54\) −0.882118 1.97038i −0.120041 0.268135i
\(55\) −11.5526 −1.55775
\(56\) −1.60747 + 1.34883i −0.214808 + 0.180245i
\(57\) −0.656707 + 0.302133i −0.0869830 + 0.0400185i
\(58\) 0.563252 3.19436i 0.0739586 0.419440i
\(59\) 3.47856 1.26609i 0.452871 0.164831i −0.105507 0.994419i \(-0.533646\pi\)
0.558377 + 0.829587i \(0.311424\pi\)
\(60\) −6.98772 + 0.575213i −0.902110 + 0.0742596i
\(61\) 1.20064 + 6.80919i 0.153727 + 0.871828i 0.959941 + 0.280204i \(0.0904020\pi\)
−0.806214 + 0.591624i \(0.798487\pi\)
\(62\) 0.774775 + 1.34195i 0.0983965 + 0.170428i
\(63\) −0.0406486 + 3.95868i −0.00512125 + 0.498747i
\(64\) 2.07506 3.59410i 0.259382 0.449263i
\(65\) 0.0375905 + 0.0136818i 0.00466253 + 0.00169702i
\(66\) 0.952697 + 3.62996i 0.117269 + 0.446817i
\(67\) −8.44702 7.08789i −1.03197 0.865923i −0.0408835 0.999164i \(-0.513017\pi\)
−0.991084 + 0.133241i \(0.957462\pi\)
\(68\) 4.38548 + 3.67985i 0.531817 + 0.446247i
\(69\) 1.72816 + 0.472581i 0.208046 + 0.0568921i
\(70\) −1.14126 0.415384i −0.136406 0.0496479i
\(71\) 3.04214 5.26914i 0.361035 0.625332i −0.627096 0.778942i \(-0.715757\pi\)
0.988132 + 0.153610i \(0.0490900\pi\)
\(72\) 1.58548 + 4.49927i 0.186850 + 0.530245i
\(73\) 0.273486 + 0.473692i 0.0320092 + 0.0554415i 0.881586 0.472023i \(-0.156476\pi\)
−0.849577 + 0.527465i \(0.823143\pi\)
\(74\) −0.319224 1.81041i −0.0371090 0.210456i
\(75\) 0.0916617 + 0.132347i 0.0105842 + 0.0152822i
\(76\) 0.716670 0.260847i 0.0822077 0.0299212i
\(77\) 1.19507 6.77756i 0.136190 0.772374i
\(78\) 0.00119904 0.0129396i 0.000135765 0.00146512i
\(79\) 0.374706 0.314416i 0.0421577 0.0353745i −0.621465 0.783442i \(-0.713462\pi\)
0.663623 + 0.748067i \(0.269018\pi\)
\(80\) 6.63254 0.741540
\(81\) 8.39224 + 3.25120i 0.932471 + 0.361244i
\(82\) 1.52681 0.168608
\(83\) 3.53428 2.96561i 0.387937 0.325518i −0.427872 0.903839i \(-0.640737\pi\)
0.815809 + 0.578321i \(0.196292\pi\)
\(84\) 0.385389 4.15898i 0.0420493 0.453782i
\(85\) −1.20507 + 6.83430i −0.130708 + 0.741284i
\(86\) −3.24348 + 1.18053i −0.349754 + 0.127300i
\(87\) 7.69922 + 11.1167i 0.825443 + 1.19183i
\(88\) −1.44005 8.16694i −0.153510 0.870599i
\(89\) 1.68653 + 2.92116i 0.178772 + 0.309642i 0.941460 0.337124i \(-0.109454\pi\)
−0.762688 + 0.646766i \(0.776121\pi\)
\(90\) −1.79636 + 2.09672i −0.189353 + 0.221014i
\(91\) −0.0119153 + 0.0206379i −0.00124906 + 0.00216344i
\(92\) −1.77623 0.646495i −0.185185 0.0674018i
\(93\) −6.23118 1.70398i −0.646144 0.176694i
\(94\) 2.25902 + 1.89554i 0.233000 + 0.195510i
\(95\) 0.708218 + 0.594266i 0.0726617 + 0.0609704i
\(96\) −1.94531 7.41201i −0.198543 0.756485i
\(97\) −9.34182 3.40014i −0.948518 0.345232i −0.178994 0.983850i \(-0.557284\pi\)
−0.769524 + 0.638618i \(0.779507\pi\)
\(98\) −1.09238 + 1.89206i −0.110347 + 0.191127i
\(99\) −13.4684 7.96149i −1.35363 0.800160i
\(100\) −0.0849256 0.147095i −0.00849256 0.0147095i
\(101\) 2.39626 + 13.5898i 0.238436 + 1.35224i 0.835255 + 0.549863i \(0.185320\pi\)
−0.596818 + 0.802377i \(0.703569\pi\)
\(102\) 2.24679 0.184950i 0.222465 0.0183128i
\(103\) −4.28981 + 1.56136i −0.422687 + 0.153846i −0.544601 0.838695i \(-0.683319\pi\)
0.121914 + 0.992541i \(0.461097\pi\)
\(104\) −0.00498644 + 0.0282795i −0.000488961 + 0.00277303i
\(105\) 4.59972 2.11620i 0.448887 0.206520i
\(106\) 0.413928 0.347327i 0.0402042 0.0337354i
\(107\) −11.2965 −1.09207 −0.546035 0.837762i \(-0.683864\pi\)
−0.546035 + 0.837762i \(0.683864\pi\)
\(108\) −8.54292 4.14499i −0.822043 0.398851i
\(109\) 14.5032 1.38915 0.694577 0.719419i \(-0.255592\pi\)
0.694577 + 0.719419i \(0.255592\pi\)
\(110\) 3.67680 3.08520i 0.350569 0.294162i
\(111\) 6.25525 + 4.42801i 0.593722 + 0.420288i
\(112\) −0.686107 + 3.89110i −0.0648310 + 0.367675i
\(113\) −11.8011 + 4.29523i −1.11015 + 0.404062i −0.831049 0.556200i \(-0.812259\pi\)
−0.279102 + 0.960262i \(0.590037\pi\)
\(114\) 0.128321 0.271536i 0.0120183 0.0254317i
\(115\) −0.397890 2.25655i −0.0371035 0.210424i
\(116\) −7.13341 12.3554i −0.662321 1.14717i
\(117\) 0.0343954 + 0.0418563i 0.00317986 + 0.00386961i
\(118\) −0.768989 + 1.33193i −0.0707912 + 0.122614i
\(119\) −3.88481 1.41395i −0.356120 0.129617i
\(120\) 4.33623 4.29193i 0.395842 0.391798i
\(121\) 12.4085 + 10.4120i 1.12805 + 0.946544i
\(122\) −2.20056 1.84649i −0.199230 0.167174i
\(123\) −4.52391 + 4.47770i −0.407907 + 0.403740i
\(124\) 6.40452 + 2.33105i 0.575143 + 0.209335i
\(125\) 5.64092 9.77035i 0.504539 0.873887i
\(126\) −1.04425 1.27077i −0.0930295 0.113209i
\(127\) 4.19749 + 7.27027i 0.372467 + 0.645132i 0.989944 0.141456i \(-0.0451785\pi\)
−0.617477 + 0.786589i \(0.711845\pi\)
\(128\) 1.83594 + 10.4121i 0.162276 + 0.920310i
\(129\) 6.14821 13.0101i 0.541319 1.14547i
\(130\) −0.0156176 + 0.00568434i −0.00136975 + 0.000498549i
\(131\) −2.69761 + 15.2989i −0.235691 + 1.33667i 0.605463 + 0.795874i \(0.292988\pi\)
−0.841154 + 0.540796i \(0.818123\pi\)
\(132\) 13.4727 + 9.53717i 1.17265 + 0.830104i
\(133\) −0.421899 + 0.354015i −0.0365833 + 0.0306970i
\(134\) 4.58126 0.395761
\(135\) −0.826482 11.4807i −0.0711323 0.988105i
\(136\) −4.98162 −0.427170
\(137\) 9.19820 7.71820i 0.785855 0.659411i −0.158861 0.987301i \(-0.550782\pi\)
0.944716 + 0.327890i \(0.106338\pi\)
\(138\) −0.676219 + 0.311110i −0.0575636 + 0.0264834i
\(139\) 1.06709 6.05176i 0.0905093 0.513304i −0.905522 0.424299i \(-0.860520\pi\)
0.996031 0.0890042i \(-0.0283685\pi\)
\(140\) −5.01971 + 1.82703i −0.424243 + 0.154412i
\(141\) −12.2525 + 1.00860i −1.03185 + 0.0849392i
\(142\) 0.438950 + 2.48941i 0.0368359 + 0.208907i
\(143\) −0.0470893 0.0815610i −0.00393780 0.00682047i
\(144\) 7.73243 + 4.57082i 0.644369 + 0.380901i
\(145\) 8.64723 14.9774i 0.718113 1.24381i
\(146\) −0.213544 0.0777237i −0.0176730 0.00643246i
\(147\) −2.31216 8.80976i −0.190704 0.726617i
\(148\) −6.19404 5.19742i −0.509147 0.427225i
\(149\) 0.676280 + 0.567466i 0.0554030 + 0.0464886i 0.670069 0.742299i \(-0.266265\pi\)
−0.614666 + 0.788788i \(0.710709\pi\)
\(150\) −0.0645170 0.0176428i −0.00526779 0.00144053i
\(151\) −7.72942 2.81328i −0.629011 0.228941i 0.00778980 0.999970i \(-0.497520\pi\)
−0.636801 + 0.771028i \(0.719743\pi\)
\(152\) −0.331826 + 0.574740i −0.0269147 + 0.0466176i
\(153\) −6.11477 + 7.13717i −0.494350 + 0.577006i
\(154\) 1.42964 + 2.47621i 0.115204 + 0.199539i
\(155\) 1.43466 + 8.13639i 0.115235 + 0.653530i
\(156\) −0.0325434 0.0469884i −0.00260556 0.00376208i
\(157\) −11.8024 + 4.29571i −0.941932 + 0.342835i −0.766928 0.641733i \(-0.778216\pi\)
−0.175003 + 0.984568i \(0.555994\pi\)
\(158\) −0.0352893 + 0.200135i −0.00280746 + 0.0159219i
\(159\) −0.207851 + 2.24305i −0.0164836 + 0.177886i
\(160\) −7.50766 + 6.29968i −0.593533 + 0.498033i
\(161\) 1.36501 0.107578
\(162\) −3.53922 + 1.20646i −0.278067 + 0.0947884i
\(163\) 3.31466 0.259624 0.129812 0.991539i \(-0.458563\pi\)
0.129812 + 0.991539i \(0.458563\pi\)
\(164\) 5.14440 4.31667i 0.401710 0.337075i
\(165\) −1.84628 + 19.9244i −0.143732 + 1.55111i
\(166\) −0.332853 + 1.88770i −0.0258344 + 0.146514i
\(167\) 19.3229 7.03295i 1.49525 0.544226i 0.540424 0.841393i \(-0.318264\pi\)
0.954826 + 0.297167i \(0.0960417\pi\)
\(168\) 2.06938 + 2.98791i 0.159656 + 0.230522i
\(169\) −2.25737 12.8022i −0.173644 0.984783i
\(170\) −1.44161 2.49694i −0.110567 0.191507i
\(171\) 0.416126 + 1.18088i 0.0318219 + 0.0903044i
\(172\) −7.59085 + 13.1477i −0.578797 + 1.00251i
\(173\) −13.1870 4.79966i −1.00259 0.364911i −0.212005 0.977269i \(-0.567999\pi\)
−0.790581 + 0.612357i \(0.790221\pi\)
\(174\) −5.41917 1.48192i −0.410827 0.112344i
\(175\) 0.0939601 + 0.0788419i 0.00710272 + 0.00595989i
\(176\) −11.9617 10.0371i −0.901648 0.756572i
\(177\) −1.62766 6.20169i −0.122342 0.466148i
\(178\) −1.31688 0.479305i −0.0987043 0.0359254i
\(179\) −5.09500 + 8.82479i −0.380818 + 0.659596i −0.991179 0.132527i \(-0.957691\pi\)
0.610361 + 0.792123i \(0.291024\pi\)
\(180\) −0.124691 + 12.1434i −0.00929392 + 0.905114i
\(181\) −12.0274 20.8320i −0.893987 1.54843i −0.835054 0.550169i \(-0.814563\pi\)
−0.0589331 0.998262i \(-0.518770\pi\)
\(182\) −0.00171925 0.00975037i −0.000127440 0.000722746i
\(183\) 11.9354 0.982498i 0.882293 0.0726283i
\(184\) 1.54563 0.562565i 0.113946 0.0414728i
\(185\) 1.70204 9.65275i 0.125137 0.709685i
\(186\) 2.43823 1.12176i 0.178780 0.0822516i
\(187\) 12.5157 10.5019i 0.915240 0.767978i
\(188\) 12.9706 0.945981
\(189\) 6.82089 + 0.702760i 0.496146 + 0.0511182i
\(190\) −0.384104 −0.0278658
\(191\) 8.38541 7.03619i 0.606747 0.509121i −0.286860 0.957973i \(-0.592611\pi\)
0.893606 + 0.448852i \(0.148167\pi\)
\(192\) −5.86699 4.15316i −0.423414 0.299729i
\(193\) −1.87644 + 10.6418i −0.135069 + 0.766013i 0.839743 + 0.542984i \(0.182706\pi\)
−0.974812 + 0.223029i \(0.928405\pi\)
\(194\) 3.88121 1.41265i 0.278655 0.101422i
\(195\) 0.0296040 0.0626444i 0.00211999 0.00448606i
\(196\) 1.66867 + 9.46347i 0.119190 + 0.675962i
\(197\) 11.0367 + 19.1161i 0.786331 + 1.36196i 0.928201 + 0.372080i \(0.121355\pi\)
−0.141870 + 0.989885i \(0.545311\pi\)
\(198\) 6.41270 1.06296i 0.455731 0.0755413i
\(199\) −6.44338 + 11.1603i −0.456759 + 0.791130i −0.998787 0.0492301i \(-0.984323\pi\)
0.542028 + 0.840360i \(0.317657\pi\)
\(200\) 0.138887 + 0.0505508i 0.00982080 + 0.00357448i
\(201\) −13.5742 + 13.4355i −0.957448 + 0.947667i
\(202\) −4.39190 3.68524i −0.309013 0.259293i
\(203\) 7.89228 + 6.62241i 0.553929 + 0.464802i
\(204\) 7.04736 6.97537i 0.493414 0.488374i
\(205\) 7.64974 + 2.78428i 0.534281 + 0.194462i
\(206\) 0.948326 1.64255i 0.0660730 0.114442i
\(207\) 1.09123 2.90496i 0.0758456 0.201909i
\(208\) 0.0270347 + 0.0468255i 0.00187452 + 0.00324676i
\(209\) −0.377957 2.14350i −0.0261439 0.148269i
\(210\) −0.898786 + 1.90190i −0.0620222 + 0.131244i
\(211\) 22.5485 8.20699i 1.55230 0.564992i 0.583347 0.812223i \(-0.301743\pi\)
0.968957 + 0.247230i \(0.0795204\pi\)
\(212\) 0.412702 2.34055i 0.0283445 0.160749i
\(213\) −8.60131 6.08875i −0.589352 0.417194i
\(214\) 3.59528 3.01680i 0.245768 0.206224i
\(215\) −18.4035 −1.25511
\(216\) 8.01311 2.01536i 0.545223 0.137128i
\(217\) −4.92177 −0.334112
\(218\) −4.61587 + 3.87317i −0.312626 + 0.262324i
\(219\) 0.860667 0.395969i 0.0581585 0.0267571i
\(220\) 3.66590 20.7904i 0.247155 1.40169i
\(221\) −0.0531618 + 0.0193493i −0.00357605 + 0.00130158i
\(222\) −3.17336 + 0.261224i −0.212982 + 0.0175322i
\(223\) 3.76160 + 21.3331i 0.251895 + 1.42857i 0.803918 + 0.594740i \(0.202745\pi\)
−0.552023 + 0.833829i \(0.686144\pi\)
\(224\) −2.91919 5.05618i −0.195047 0.337831i
\(225\) 0.242903 0.136934i 0.0161936 0.00912896i
\(226\) 2.60880 4.51858i 0.173535 0.300571i
\(227\) −20.3367 7.40196i −1.34979 0.491285i −0.436911 0.899505i \(-0.643928\pi\)
−0.912884 + 0.408220i \(0.866150\pi\)
\(228\) −0.335338 1.27770i −0.0222083 0.0846178i
\(229\) −8.27739 6.94555i −0.546985 0.458975i 0.326934 0.945047i \(-0.393985\pi\)
−0.873919 + 0.486072i \(0.838429\pi\)
\(230\) 0.729261 + 0.611922i 0.0480860 + 0.0403490i
\(231\) −11.4980 3.14424i −0.756513 0.206876i
\(232\) 11.6660 + 4.24606i 0.765908 + 0.278768i
\(233\) −3.81950 + 6.61557i −0.250224 + 0.433400i −0.963587 0.267394i \(-0.913838\pi\)
0.713364 + 0.700794i \(0.247171\pi\)
\(234\) −0.0221249 0.00413588i −0.00144635 0.000270371i
\(235\) 7.86160 + 13.6167i 0.512834 + 0.888255i
\(236\) 1.17467 + 6.66187i 0.0764644 + 0.433651i
\(237\) −0.482377 0.696490i −0.0313338 0.0452419i
\(238\) 1.61401 0.587451i 0.104621 0.0380788i
\(239\) −0.561143 + 3.18240i −0.0362973 + 0.205852i −0.997563 0.0697711i \(-0.977773\pi\)
0.961266 + 0.275623i \(0.0888842\pi\)
\(240\) 1.05998 11.4389i 0.0684212 0.738377i
\(241\) −20.3346 + 17.0628i −1.30987 + 1.09911i −0.321518 + 0.946903i \(0.604193\pi\)
−0.988349 + 0.152206i \(0.951362\pi\)
\(242\) −6.72979 −0.432608
\(243\) 6.94842 13.9542i 0.445741 0.895162i
\(244\) −12.6350 −0.808873
\(245\) −8.92345 + 7.48766i −0.570098 + 0.478369i
\(246\) 0.244007 2.63324i 0.0155573 0.167889i
\(247\) −0.00130875 + 0.00742226i −8.32735e−5 + 0.000472267i
\(248\) −5.57306 + 2.02843i −0.353890 + 0.128805i
\(249\) −4.54985 6.56938i −0.288335 0.416318i
\(250\) 0.813927 + 4.61601i 0.0514773 + 0.291942i
\(251\) 2.24965 + 3.89651i 0.141997 + 0.245945i 0.928248 0.371961i \(-0.121314\pi\)
−0.786252 + 0.617906i \(0.787981\pi\)
\(252\) −7.11124 1.32933i −0.447966 0.0837399i
\(253\) −2.69726 + 4.67179i −0.169575 + 0.293713i
\(254\) −3.27749 1.19291i −0.205648 0.0748498i
\(255\) 11.5943 + 3.17056i 0.726061 + 0.198548i
\(256\) 2.99340 + 2.51176i 0.187088 + 0.156985i
\(257\) 10.5219 + 8.82895i 0.656340 + 0.550735i 0.908987 0.416824i \(-0.136857\pi\)
−0.252647 + 0.967559i \(0.581301\pi\)
\(258\) 1.51766 + 5.78258i 0.0944854 + 0.360007i
\(259\) 5.48690 + 1.99707i 0.340939 + 0.124092i
\(260\) −0.0365505 + 0.0633073i −0.00226677 + 0.00392615i
\(261\) 20.4029 11.5020i 1.26291 0.711953i
\(262\) −3.22711 5.58952i −0.199372 0.345322i
\(263\) −4.20273 23.8349i −0.259151 1.46972i −0.785187 0.619258i \(-0.787433\pi\)
0.526036 0.850462i \(-0.323678\pi\)
\(264\) −14.3154 + 1.17841i −0.881049 + 0.0725260i
\(265\) 2.70727 0.985365i 0.166306 0.0605305i
\(266\) 0.0397339 0.225342i 0.00243624 0.0138166i
\(267\) 5.30755 2.44185i 0.324817 0.149439i
\(268\) 15.4360 12.9523i 0.942902 0.791189i
\(269\) 12.0062 0.732032 0.366016 0.930609i \(-0.380722\pi\)
0.366016 + 0.930609i \(0.380722\pi\)
\(270\) 3.32905 + 3.43321i 0.202599 + 0.208938i
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) −7.18547 + 6.02933i −0.435683 + 0.365582i
\(273\) 0.0336891 + 0.0238481i 0.00203896 + 0.00144335i
\(274\) −0.866273 + 4.91288i −0.0523335 + 0.296798i
\(275\) −0.455505 + 0.165790i −0.0274680 + 0.00999753i
\(276\) −1.39885 + 2.96008i −0.0842011 + 0.178176i
\(277\) −4.07780 23.1264i −0.245011 1.38953i −0.820466 0.571695i \(-0.806286\pi\)
0.575455 0.817833i \(-0.304825\pi\)
\(278\) 1.27654 + 2.21104i 0.0765621 + 0.132609i
\(279\) −3.93462 + 10.4744i −0.235559 + 0.627084i
\(280\) 2.32418 4.02560i 0.138897 0.240576i
\(281\) 19.1432 + 6.96754i 1.14199 + 0.415649i 0.842630 0.538493i \(-0.181006\pi\)
0.299356 + 0.954142i \(0.403228\pi\)
\(282\) 3.63020 3.59311i 0.216175 0.213967i
\(283\) 8.88607 + 7.45630i 0.528222 + 0.443231i 0.867487 0.497460i \(-0.165734\pi\)
−0.339265 + 0.940691i \(0.610178\pi\)
\(284\) 8.51714 + 7.14673i 0.505399 + 0.424080i
\(285\) 1.13809 1.12646i 0.0674147 0.0667260i
\(286\) 0.0367683 + 0.0133826i 0.00217416 + 0.000791328i
\(287\) −2.42478 + 4.19984i −0.143130 + 0.247909i
\(288\) −13.0941 + 2.17046i −0.771578 + 0.127896i
\(289\) 3.59280 + 6.22291i 0.211341 + 0.366053i
\(290\) 1.24771 + 7.07610i 0.0732679 + 0.415523i
\(291\) −7.35706 + 15.5681i −0.431279 + 0.912618i
\(292\) −0.939253 + 0.341860i −0.0549656 + 0.0200058i
\(293\) 5.48280 31.0945i 0.320308 1.81656i −0.220470 0.975394i \(-0.570759\pi\)
0.540779 0.841165i \(-0.318130\pi\)
\(294\) 3.08858 + 2.18637i 0.180130 + 0.127511i
\(295\) −6.28172 + 5.27099i −0.365736 + 0.306889i
\(296\) 7.03603 0.408961
\(297\) −15.8833 + 21.9561i −0.921644 + 1.27402i
\(298\) −0.366782 −0.0212471
\(299\) 0.0143093 0.0120069i 0.000827529 0.000694379i
\(300\) −0.267262 + 0.122960i −0.0154304 + 0.00709909i
\(301\) 1.90376 10.7968i 0.109731 0.622315i
\(302\) 3.21131 1.16882i 0.184790 0.0672581i
\(303\) 23.8208 1.96088i 1.36847 0.112649i
\(304\) 0.216991 + 1.23062i 0.0124453 + 0.0705809i
\(305\) −7.65816 13.2643i −0.438505 0.759513i
\(306\) 0.0400924 3.90451i 0.00229193 0.223206i
\(307\) 4.06027 7.03259i 0.231732 0.401371i −0.726586 0.687075i \(-0.758894\pi\)
0.958318 + 0.285704i \(0.0922275\pi\)
\(308\) 11.8178 + 4.30134i 0.673384 + 0.245092i
\(309\) 2.00725 + 7.64800i 0.114188 + 0.435079i
\(310\) −2.62948 2.20640i −0.149344 0.125315i
\(311\) −18.2691 15.3296i −1.03594 0.869259i −0.0443970 0.999014i \(-0.514137\pi\)
−0.991546 + 0.129754i \(0.958581\pi\)
\(312\) 0.0479757 + 0.0131194i 0.00271609 + 0.000742740i
\(313\) −25.2876 9.20392i −1.42934 0.520236i −0.492596 0.870258i \(-0.663952\pi\)
−0.936742 + 0.350022i \(0.886174\pi\)
\(314\) 2.60909 4.51908i 0.147240 0.255026i
\(315\) −2.91463 8.27116i −0.164221 0.466027i
\(316\) 0.446928 + 0.774102i 0.0251417 + 0.0435466i
\(317\) −1.44689 8.20574i −0.0812657 0.460881i −0.998100 0.0616130i \(-0.980376\pi\)
0.916834 0.399268i \(-0.130736\pi\)
\(318\) −0.532870 0.769394i −0.0298819 0.0431455i
\(319\) −38.2606 + 13.9257i −2.14218 + 0.779692i
\(320\) −1.59640 + 9.05361i −0.0892412 + 0.506112i
\(321\) −1.80534 + 19.4826i −0.100764 + 1.08741i
\(322\) −0.434435 + 0.364534i −0.0242101 + 0.0203147i
\(323\) −1.30748 −0.0727501
\(324\) −8.51398 + 14.0712i −0.472999 + 0.781734i
\(325\) 0.00167849 9.31061e−5
\(326\) −1.05494 + 0.885201i −0.0584278 + 0.0490268i
\(327\) 2.31782 25.0131i 0.128176 1.38323i
\(328\) −1.01475 + 5.75493i −0.0560301 + 0.317763i
\(329\) −8.80173 + 3.20357i −0.485255 + 0.176618i
\(330\) −4.73332 6.83430i −0.260561 0.376216i
\(331\) −1.11487 6.32272i −0.0612786 0.347528i −0.999996 0.00284030i \(-0.999096\pi\)
0.938717 0.344688i \(-0.112015\pi\)
\(332\) 4.21548 + 7.30143i 0.231355 + 0.400718i
\(333\) 8.63650 10.0805i 0.473277 0.552410i
\(334\) −4.27161 + 7.39865i −0.233732 + 0.404836i
\(335\) 22.9533 + 8.35432i 1.25407 + 0.456446i
\(336\) 6.60119 + 1.80516i 0.360124 + 0.0984794i
\(337\) 5.72610 + 4.80477i 0.311921 + 0.261732i 0.785285 0.619134i \(-0.212516\pi\)
−0.473365 + 0.880867i \(0.656961\pi\)
\(338\) 4.13735 + 3.47165i 0.225042 + 0.188833i
\(339\) 5.52185 + 21.0393i 0.299906 + 1.14270i
\(340\) −11.9168 4.33735i −0.646278 0.235226i
\(341\) 9.72545 16.8450i 0.526663 0.912206i
\(342\) −0.447801 0.264706i −0.0242143 0.0143136i
\(343\) −8.08839 14.0095i −0.436732 0.756442i
\(344\) −2.29403 13.0101i −0.123686 0.701456i
\(345\) −3.95537 + 0.325597i −0.212950 + 0.0175296i
\(346\) 5.47874 1.99410i 0.294539 0.107203i
\(347\) −5.46202 + 30.9766i −0.293216 + 1.66291i 0.381148 + 0.924514i \(0.375529\pi\)
−0.674364 + 0.738399i \(0.735582\pi\)
\(348\) −22.4490 + 10.3281i −1.20339 + 0.553647i
\(349\) 9.07988 7.61893i 0.486035 0.407832i −0.366568 0.930391i \(-0.619467\pi\)
0.852603 + 0.522560i \(0.175023\pi\)
\(350\) −0.0509595 −0.00272390
\(351\) 0.0776848 0.0526312i 0.00414651 0.00280925i
\(352\) 23.0733 1.22981
\(353\) −6.28699 + 5.27541i −0.334623 + 0.280782i −0.794580 0.607159i \(-0.792309\pi\)
0.459958 + 0.887941i \(0.347865\pi\)
\(354\) 2.17423 + 1.53911i 0.115559 + 0.0818026i
\(355\) −2.34040 + 13.2731i −0.124215 + 0.704461i
\(356\) −5.79217 + 2.10818i −0.306984 + 0.111733i
\(357\) −3.05944 + 6.47401i −0.161923 + 0.342641i
\(358\) −0.735157 4.16928i −0.0388542 0.220353i
\(359\) −8.86365 15.3523i −0.467806 0.810263i 0.531517 0.847047i \(-0.321622\pi\)
−0.999323 + 0.0367840i \(0.988289\pi\)
\(360\) −6.70914 8.16445i −0.353603 0.430304i
\(361\) 9.41291 16.3036i 0.495416 0.858086i
\(362\) 9.39122 + 3.41812i 0.493591 + 0.179653i
\(363\) 19.9402 19.7365i 1.04659 1.03590i
\(364\) −0.0333594 0.0279919i −0.00174851 0.00146717i
\(365\) −0.928176 0.778832i −0.0485829 0.0407659i
\(366\) −3.53626 + 3.50013i −0.184843 + 0.182955i
\(367\) 19.0941 + 6.94969i 0.996704 + 0.362771i 0.788313 0.615275i \(-0.210955\pi\)
0.208392 + 0.978045i \(0.433177\pi\)
\(368\) 1.54854 2.68215i 0.0807232 0.139817i
\(369\) 6.99953 + 8.51782i 0.364381 + 0.443420i
\(370\) 2.03613 + 3.52668i 0.105853 + 0.183343i
\(371\) 0.298028 + 1.69020i 0.0154728 + 0.0877509i
\(372\) 5.04381 10.6731i 0.261510 0.553374i
\(373\) 9.09758 3.31125i 0.471055 0.171450i −0.0955754 0.995422i \(-0.530469\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(374\) −1.17871 + 6.68481i −0.0609498 + 0.345663i
\(375\) −15.9491 11.2901i −0.823606 0.583019i
\(376\) −8.64615 + 7.25498i −0.445891 + 0.374147i
\(377\) 0.140987 0.00726119
\(378\) −2.35853 + 1.59790i −0.121310 + 0.0821870i
\(379\) −4.12905 −0.212095 −0.106048 0.994361i \(-0.533820\pi\)
−0.106048 + 0.994361i \(0.533820\pi\)
\(380\) −1.29419 + 1.08595i −0.0663905 + 0.0557083i
\(381\) 13.2096 6.07736i 0.676748 0.311353i
\(382\) −0.789725 + 4.47876i −0.0404059 + 0.229153i
\(383\) −4.46371 + 1.62466i −0.228085 + 0.0830162i −0.453535 0.891239i \(-0.649837\pi\)
0.225450 + 0.974255i \(0.427615\pi\)
\(384\) 18.2508 1.50236i 0.931357 0.0766672i
\(385\) 2.64729 + 15.0136i 0.134919 + 0.765162i
\(386\) −2.24476 3.88803i −0.114255 0.197896i
\(387\) −21.4554 12.6828i −1.09064 0.644702i
\(388\) 9.08336 15.7328i 0.461138 0.798714i
\(389\) 20.4978 + 7.46059i 1.03928 + 0.378267i 0.804607 0.593807i \(-0.202376\pi\)
0.234673 + 0.972074i \(0.424598\pi\)
\(390\) 0.00730764 + 0.0278435i 0.000370037 + 0.00140991i
\(391\) 2.48238 + 2.08297i 0.125539 + 0.105340i
\(392\) −6.40561 5.37495i −0.323532 0.271476i
\(393\) 25.9543 + 7.09745i 1.30922 + 0.358019i
\(394\) −8.61767 3.13658i −0.434152 0.158018i
\(395\) −0.541773 + 0.938378i −0.0272595 + 0.0472149i
\(396\) 18.6015 21.7117i 0.934762 1.09106i
\(397\) 17.4245 + 30.1802i 0.874512 + 1.51470i 0.857282 + 0.514847i \(0.172151\pi\)
0.0172294 + 0.999852i \(0.494515\pi\)
\(398\) −0.929715 5.27268i −0.0466024 0.264295i
\(399\) 0.543131 + 0.784210i 0.0271906 + 0.0392596i
\(400\) 0.261513 0.0951829i 0.0130756 0.00475914i
\(401\) −3.26911 + 18.5401i −0.163252 + 0.925847i 0.787597 + 0.616191i \(0.211325\pi\)
−0.950849 + 0.309656i \(0.899786\pi\)
\(402\) 0.732152 7.90113i 0.0365164 0.394072i
\(403\) −0.0515948 + 0.0432932i −0.00257012 + 0.00215659i
\(404\) −25.2170 −1.25459
\(405\) −19.9325 0.409386i −0.990453 0.0203426i
\(406\) −4.28040 −0.212433
\(407\) −17.6772 + 14.8329i −0.876226 + 0.735241i
\(408\) −0.796135 + 8.59160i −0.0394145 + 0.425348i
\(409\) −1.10439 + 6.26334i −0.0546088 + 0.309702i −0.999862 0.0166371i \(-0.994704\pi\)
0.945253 + 0.326339i \(0.105815\pi\)
\(410\) −3.17821 + 1.15677i −0.156960 + 0.0571289i
\(411\) −11.8413 17.0973i −0.584088 0.843346i
\(412\) −1.44862 8.21551i −0.0713682 0.404749i
\(413\) −2.44251 4.23055i −0.120188 0.208172i
\(414\) 0.428490 + 1.21597i 0.0210591 + 0.0597617i
\(415\) −5.11007 + 8.85090i −0.250843 + 0.434474i
\(416\) −0.0750772 0.0273259i −0.00368096 0.00133976i
\(417\) −10.2667 2.80753i −0.502763 0.137485i
\(418\) 0.692727 + 0.581267i 0.0338824 + 0.0284307i
\(419\) −18.6286 15.6313i −0.910069 0.763638i 0.0620632 0.998072i \(-0.480232\pi\)
−0.972132 + 0.234434i \(0.924676\pi\)
\(420\) 2.34878 + 8.94929i 0.114609 + 0.436681i
\(421\) 7.50818 + 2.73275i 0.365926 + 0.133186i 0.518438 0.855115i \(-0.326514\pi\)
−0.152511 + 0.988302i \(0.548736\pi\)
\(422\) −4.98469 + 8.63373i −0.242651 + 0.420283i
\(423\) −0.218637 + 21.2926i −0.0106305 + 1.03528i
\(424\) 1.03405 + 1.79103i 0.0502181 + 0.0869803i
\(425\) 0.0505638 + 0.286762i 0.00245271 + 0.0139100i
\(426\) 4.36354 0.359197i 0.211414 0.0174031i
\(427\) 8.57397 3.12067i 0.414924 0.151020i
\(428\) 3.58462 20.3294i 0.173269 0.982659i
\(429\) −0.148191 + 0.0681784i −0.00715472 + 0.00329169i
\(430\) 5.85720 4.91477i 0.282459 0.237011i
\(431\) 9.87124 0.475481 0.237740 0.971329i \(-0.423593\pi\)
0.237740 + 0.971329i \(0.423593\pi\)
\(432\) 9.11887 12.6053i 0.438732 0.606475i
\(433\) −6.10369 −0.293325 −0.146662 0.989187i \(-0.546853\pi\)
−0.146662 + 0.989187i \(0.546853\pi\)
\(434\) 1.56643 1.31439i 0.0751911 0.0630928i
\(435\) −24.4491 17.3072i −1.17224 0.829815i
\(436\) −4.60219 + 26.1003i −0.220405 + 1.24998i
\(437\) 0.405669 0.147651i 0.0194058 0.00706312i
\(438\) −0.168174 + 0.355870i −0.00803569 + 0.0170041i
\(439\) −2.62800 14.9041i −0.125427 0.711334i −0.981053 0.193739i \(-0.937938\pi\)
0.855626 0.517595i \(-0.173173\pi\)
\(440\) 9.18520 + 15.9092i 0.437887 + 0.758443i
\(441\) −15.5634 + 2.57976i −0.741113 + 0.122846i
\(442\) 0.0117522 0.0203554i 0.000558996 0.000968210i
\(443\) 0.679204 + 0.247210i 0.0322699 + 0.0117453i 0.358105 0.933681i \(-0.383423\pi\)
−0.325835 + 0.945427i \(0.605645\pi\)
\(444\) −9.95369 + 9.85201i −0.472381 + 0.467555i
\(445\) −5.72386 4.80289i −0.271337 0.227679i
\(446\) −6.89432 5.78502i −0.326456 0.273929i
\(447\) 1.08677 1.07566i 0.0514023 0.0508772i
\(448\) −5.14633 1.87311i −0.243141 0.0884962i
\(449\) −0.834224 + 1.44492i −0.0393695 + 0.0681899i −0.885039 0.465517i \(-0.845868\pi\)
0.845669 + 0.533707i \(0.179202\pi\)
\(450\) −0.0407386 + 0.108450i −0.00192044 + 0.00511240i
\(451\) −9.58275 16.5978i −0.451234 0.781560i
\(452\) −3.98507 22.6005i −0.187442 1.06304i
\(453\) −6.08723 + 12.8810i −0.286003 + 0.605204i
\(454\) 8.44922 3.07526i 0.396541 0.144329i
\(455\) 0.00916673 0.0519871i 0.000429743 0.00243719i
\(456\) 0.938202 + 0.664140i 0.0439353 + 0.0311012i
\(457\) 8.49041 7.12430i 0.397165 0.333261i −0.422232 0.906488i \(-0.638753\pi\)
0.819397 + 0.573227i \(0.194309\pi\)
\(458\) 4.48926 0.209769
\(459\) 11.3320 + 11.6865i 0.528932 + 0.545481i
\(460\) 4.18720 0.195229
\(461\) −16.7644 + 14.0670i −0.780797 + 0.655166i −0.943449 0.331517i \(-0.892439\pi\)
0.162653 + 0.986683i \(0.447995\pi\)
\(462\) 4.49911 2.06992i 0.209318 0.0963012i
\(463\) 4.31546 24.4742i 0.200556 1.13741i −0.703724 0.710473i \(-0.748481\pi\)
0.904281 0.426938i \(-0.140408\pi\)
\(464\) 21.9660 7.99499i 1.01975 0.371158i
\(465\) 14.2618 1.17400i 0.661375 0.0544429i
\(466\) −0.551115 3.12553i −0.0255299 0.144787i
\(467\) 5.91777 + 10.2499i 0.273842 + 0.474308i 0.969842 0.243734i \(-0.0783722\pi\)
−0.696001 + 0.718041i \(0.745039\pi\)
\(468\) −0.0862400 + 0.0486170i −0.00398645 + 0.00224732i
\(469\) −7.27564 + 12.6018i −0.335958 + 0.581896i
\(470\) −6.13850 2.23423i −0.283148 0.103057i
\(471\) 5.52246 + 21.0416i 0.254462 + 0.969547i
\(472\) −4.50927 3.78373i −0.207556 0.174160i
\(473\) 33.1905 + 27.8501i 1.52610 + 1.28055i
\(474\) 0.339526 + 0.0928466i 0.0155950 + 0.00426459i
\(475\) 0.0364524 + 0.0132676i 0.00167255 + 0.000608759i
\(476\) 3.77733 6.54252i 0.173134 0.299876i
\(477\) 3.83529 + 0.716944i 0.175606 + 0.0328266i
\(478\) −0.671288 1.16270i −0.0307040 0.0531809i
\(479\) 0.501383 + 2.84349i 0.0229088 + 0.129922i 0.994117 0.108309i \(-0.0345436\pi\)
−0.971209 + 0.238231i \(0.923432\pi\)
\(480\) 9.66498 + 13.9550i 0.441144 + 0.636954i
\(481\) 0.0750857 0.0273290i 0.00342361 0.00124609i
\(482\) 1.91508 10.8610i 0.0872297 0.494704i
\(483\) 0.218148 2.35417i 0.00992607 0.107119i
\(484\) −22.6752 + 19.0267i −1.03069 + 0.864852i
\(485\) 22.0220 0.999966
\(486\) 1.51512 + 6.29676i 0.0687271 + 0.285627i
\(487\) 8.75903 0.396910 0.198455 0.980110i \(-0.436408\pi\)
0.198455 + 0.980110i \(0.436408\pi\)
\(488\) 8.42241 7.06724i 0.381265 0.319919i
\(489\) 0.529731 5.71667i 0.0239553 0.258517i
\(490\) 0.840397 4.76613i 0.0379653 0.215312i
\(491\) 21.2117 7.72044i 0.957272 0.348418i 0.184308 0.982869i \(-0.440996\pi\)
0.772964 + 0.634450i \(0.218773\pi\)
\(492\) −6.62264 9.56222i −0.298572 0.431098i
\(493\) 4.24716 + 24.0869i 0.191283 + 1.08482i
\(494\) −0.00156564 0.00271176i −7.04413e−5 0.000122008i
\(495\) 34.0677 + 6.36840i 1.53123 + 0.286238i
\(496\) −5.58354 + 9.67097i −0.250708 + 0.434239i
\(497\) −7.54478 2.74608i −0.338430 0.123178i
\(498\) 3.20246 + 0.875741i 0.143505 + 0.0392429i
\(499\) −19.4061 16.2836i −0.868734 0.728955i 0.0950968 0.995468i \(-0.469684\pi\)
−0.963831 + 0.266513i \(0.914128\pi\)
\(500\) 15.7930 + 13.2519i 0.706284 + 0.592642i
\(501\) −9.04139 34.4494i −0.403940 1.53909i
\(502\) −1.75657 0.639340i −0.0783997 0.0285352i
\(503\) −1.87207 + 3.24252i −0.0834714 + 0.144577i −0.904739 0.425967i \(-0.859934\pi\)
0.821267 + 0.570543i \(0.193267\pi\)
\(504\) 5.48386 3.09147i 0.244270 0.137705i
\(505\) −15.2842 26.4731i −0.680139 1.17804i
\(506\) −0.389187 2.20719i −0.0173015 0.0981216i
\(507\) −22.4402 + 1.84723i −0.996604 + 0.0820382i
\(508\) −14.4157 + 5.24690i −0.639595 + 0.232793i
\(509\) 4.22831 23.9800i 0.187417 1.06289i −0.735394 0.677640i \(-0.763003\pi\)
0.922811 0.385253i \(-0.125886\pi\)
\(510\) −4.53677 + 2.08724i −0.200892 + 0.0924247i
\(511\) 0.552932 0.463965i 0.0244603 0.0205246i
\(512\) −22.7690 −1.00626
\(513\) 2.10313 0.528954i 0.0928554 0.0233539i
\(514\) −5.70660 −0.251707
\(515\) 7.74669 6.50025i 0.341360 0.286435i
\(516\) 21.4623 + 15.1929i 0.944824 + 0.668828i
\(517\) 6.42792 36.4546i 0.282700 1.60327i
\(518\) −2.27962 + 0.829715i −0.100161 + 0.0364556i
\(519\) −10.3853 + 21.9760i −0.455862 + 0.964639i
\(520\) −0.0110459 0.0626444i −0.000484395 0.00274714i
\(521\) −9.81046 16.9922i −0.429804 0.744443i 0.567051 0.823682i \(-0.308084\pi\)
−0.996856 + 0.0792397i \(0.974751\pi\)
\(522\) −3.42188 + 9.10941i −0.149772 + 0.398708i
\(523\) −10.4077 + 18.0267i −0.455097 + 0.788251i −0.998694 0.0510956i \(-0.983729\pi\)
0.543597 + 0.839346i \(0.317062\pi\)
\(524\) −26.6763 9.70937i −1.16536 0.424156i
\(525\) 0.150992 0.149449i 0.00658982 0.00652251i
\(526\) 7.70284 + 6.46345i 0.335860 + 0.281820i
\(527\) −8.95067 7.51051i −0.389897 0.327163i
\(528\) −19.2222 + 19.0258i −0.836539 + 0.827993i
\(529\) 20.6075 + 7.50052i 0.895978 + 0.326109i
\(530\) −0.598482 + 1.03660i −0.0259964 + 0.0450271i
\(531\) −10.9559 + 1.81604i −0.475447 + 0.0788095i
\(532\) −0.503217 0.871598i −0.0218172 0.0377886i
\(533\) 0.0115240 + 0.0653558i 0.000499159 + 0.00283087i
\(534\) −1.03710 + 2.19457i −0.0448795 + 0.0949685i
\(535\) 23.5147 8.55864i 1.01663 0.370022i
\(536\) −3.04479 + 17.2679i −0.131515 + 0.745859i
\(537\) 14.4055 + 10.1975i 0.621645 + 0.440054i
\(538\) −3.82117 + 3.20634i −0.164742 + 0.138235i
\(539\) 27.4245 1.18126
\(540\) 20.9233 + 2.15574i 0.900395 + 0.0927682i
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) −1.18324 + 0.992856i −0.0508245 + 0.0426468i
\(543\) −37.8503 + 17.4139i −1.62431 + 0.747301i
\(544\) 2.40681 13.6497i 0.103191 0.585227i
\(545\) −30.1898 + 10.9882i −1.29319 + 0.470682i
\(546\) −0.0170909 + 0.00140688i −0.000731421 + 6.02089e-5i
\(547\) 3.93273 + 22.3036i 0.168151 + 0.953633i 0.945756 + 0.324879i \(0.105324\pi\)
−0.777604 + 0.628754i \(0.783565\pi\)
\(548\) 10.9711 + 19.0025i 0.468661 + 0.811745i
\(549\) 0.212980 20.7416i 0.00908976 0.885231i
\(550\) 0.100696 0.174411i 0.00429370 0.00743691i
\(551\) 3.06186 + 1.11443i 0.130440 + 0.0474761i
\(552\) −0.723220 2.75560i −0.0307823 0.117286i
\(553\) −0.494473 0.414912i −0.0210271 0.0176439i
\(554\) 7.47387 + 6.27132i 0.317534 + 0.266443i
\(555\) −16.3757 4.47810i −0.695111 0.190085i
\(556\) 10.5523 + 3.84072i 0.447517 + 0.162883i
\(557\) −18.2259 + 31.5682i −0.772256 + 1.33759i 0.164067 + 0.986449i \(0.447539\pi\)
−0.936324 + 0.351138i \(0.885795\pi\)
\(558\) −1.54500 4.38440i −0.0654049 0.185606i
\(559\) −0.0750139 0.129928i −0.00317275 0.00549537i
\(560\) −1.51985 8.61952i −0.0642256 0.364241i
\(561\) −16.1121 23.2637i −0.680253 0.982196i
\(562\) −7.95334 + 2.89478i −0.335491 + 0.122109i
\(563\) 4.60450 26.1134i 0.194056 1.10055i −0.719700 0.694285i \(-0.755721\pi\)
0.913756 0.406263i \(-0.133168\pi\)
\(564\) 2.07290 22.3700i 0.0872847 0.941945i
\(565\) 21.3108 17.8819i 0.896552 0.752296i
\(566\) −4.81938 −0.202574
\(567\) 2.30210 11.6514i 0.0966791 0.489313i
\(568\) −9.67492 −0.405950
\(569\) 17.5941 14.7632i 0.737581 0.618904i −0.194606 0.980882i \(-0.562343\pi\)
0.932187 + 0.361978i \(0.117898\pi\)
\(570\) −0.0613854 + 0.662450i −0.00257115 + 0.0277470i
\(571\) −0.833165 + 4.72511i −0.0348669 + 0.197740i −0.997266 0.0739009i \(-0.976455\pi\)
0.962399 + 0.271641i \(0.0875662\pi\)
\(572\) 0.161722 0.0588619i 0.00676193 0.00246114i
\(573\) −10.7949 15.5865i −0.450965 0.651134i
\(574\) −0.349871 1.98422i −0.0146033 0.0828197i
\(575\) −0.0480718 0.0832628i −0.00200473 0.00347230i
\(576\) −8.10043 + 9.45484i −0.337518 + 0.393952i
\(577\) 2.15666 3.73545i 0.0897831 0.155509i −0.817636 0.575735i \(-0.804716\pi\)
0.907419 + 0.420226i \(0.138049\pi\)
\(578\) −2.80533 1.02106i −0.116686 0.0424704i
\(579\) 18.0536 + 4.93693i 0.750283 + 0.205172i
\(580\) 24.2098 + 20.3145i 1.00526 + 0.843512i
\(581\) −4.66393 3.91351i −0.193493 0.162360i
\(582\) −1.81606 6.91954i −0.0752782 0.286824i
\(583\) −6.37369 2.31983i −0.263971 0.0960777i
\(584\) 0.434885 0.753242i 0.0179957 0.0311694i
\(585\) −0.103309 0.0610685i −0.00427131 0.00252487i
\(586\) 6.55900 + 11.3605i 0.270950 + 0.469299i
\(587\) 7.26235 + 41.1868i 0.299749 + 1.69996i 0.647246 + 0.762281i \(0.275921\pi\)
−0.347497 + 0.937681i \(0.612968\pi\)
\(588\) 16.5880 1.36548i 0.684076 0.0563116i
\(589\) −1.46271 + 0.532383i −0.0602699 + 0.0219365i
\(590\) 0.591603 3.35515i 0.0243559 0.138129i
\(591\) 34.7326 15.9795i 1.42871 0.657309i
\(592\) 10.1488 8.51582i 0.417111 0.349998i
\(593\) −31.5370 −1.29507 −0.647536 0.762035i \(-0.724200\pi\)
−0.647536 + 0.762035i \(0.724200\pi\)
\(594\) −0.808405 11.2296i −0.0331693 0.460757i
\(595\) 9.15786 0.375436
\(596\) −1.23583 + 1.03698i −0.0506214 + 0.0424764i
\(597\) 18.2179 + 12.8962i 0.745611 + 0.527807i
\(598\) −0.00134763 + 0.00764279i −5.51087e−5 + 0.000312537i
\(599\) 11.8686 4.31982i 0.484938 0.176503i −0.0879695 0.996123i \(-0.528038\pi\)
0.572907 + 0.819620i \(0.305816\pi\)
\(600\) 0.109379 0.231454i 0.00446538 0.00944909i
\(601\) 3.56725 + 20.2309i 0.145511 + 0.825235i 0.966955 + 0.254946i \(0.0820577\pi\)
−0.821444 + 0.570289i \(0.806831\pi\)
\(602\) 2.27744 + 3.94465i 0.0928216 + 0.160772i
\(603\) 21.0023 + 25.5580i 0.855282 + 1.04080i
\(604\) 7.51556 13.0173i 0.305804 0.529668i
\(605\) −33.7180 12.2724i −1.37083 0.498942i
\(606\) −7.05769 + 6.98559i −0.286699 + 0.283770i
\(607\) 9.89160 + 8.30003i 0.401487 + 0.336888i 0.821068 0.570830i \(-0.193378\pi\)
−0.419581 + 0.907718i \(0.637823\pi\)
\(608\) −1.41448 1.18689i −0.0573648 0.0481348i
\(609\) 12.6827 12.5532i 0.513930 0.508680i
\(610\) 5.97966 + 2.17642i 0.242109 + 0.0881205i
\(611\) −0.0640889 + 0.111005i −0.00259276 + 0.00449079i
\(612\) −10.9039 13.2691i −0.440763 0.536371i
\(613\) 15.5799 + 26.9851i 0.629265 + 1.08992i 0.987699 + 0.156364i \(0.0499774\pi\)
−0.358434 + 0.933555i \(0.616689\pi\)
\(614\) 0.585856 + 3.32255i 0.0236432 + 0.134087i
\(615\) 6.02447 12.7482i 0.242930 0.514059i
\(616\) −10.2836 + 3.74293i −0.414339 + 0.150807i
\(617\) −1.23998 + 7.03230i −0.0499199 + 0.283110i −0.999541 0.0302901i \(-0.990357\pi\)
0.949621 + 0.313400i \(0.101468\pi\)
\(618\) −2.68129 1.89805i −0.107857 0.0763506i
\(619\) −7.68412 + 6.44774i −0.308851 + 0.259157i −0.784017 0.620740i \(-0.786832\pi\)
0.475166 + 0.879896i \(0.342388\pi\)
\(620\) −15.0977 −0.606338
\(621\) −4.83569 2.34625i −0.194049 0.0941520i
\(622\) 9.90827 0.397285
\(623\) 3.40981 2.86117i 0.136611 0.114630i
\(624\) 0.0850787 0.0391423i 0.00340587 0.00156695i
\(625\) −4.25900 + 24.1540i −0.170360 + 0.966160i
\(626\) 10.5061 3.82392i 0.419909 0.152835i
\(627\) −3.75722 + 0.309286i −0.150049 + 0.0123517i
\(628\) −3.98552 22.6030i −0.159039 0.901957i
\(629\) 6.93093 + 12.0047i 0.276354 + 0.478660i
\(630\) 3.13650 + 1.85405i 0.124961 + 0.0738673i
\(631\) 3.53780 6.12765i 0.140838 0.243938i −0.786975 0.616985i \(-0.788354\pi\)
0.927812 + 0.373047i \(0.121687\pi\)
\(632\) −0.730905 0.266028i −0.0290738 0.0105820i
\(633\) −10.5507 40.2002i −0.419353 1.59781i
\(634\) 2.65189 + 2.22520i 0.105320 + 0.0883741i
\(635\) −14.2457 11.9536i −0.565324 0.474363i
\(636\) −3.97070 1.08582i −0.157448 0.0430557i
\(637\) −0.0892352 0.0324790i −0.00353563 0.00128686i
\(638\) 8.45809 14.6498i 0.334859 0.579993i
\(639\) −11.8756 + 13.8613i −0.469793 + 0.548344i
\(640\) −11.7103 20.2828i −0.462890 0.801750i
\(641\) −0.870188 4.93508i −0.0343704 0.194924i 0.962788 0.270258i \(-0.0871089\pi\)
−0.997158 + 0.0753337i \(0.975998\pi\)
\(642\) −4.62838 6.68277i −0.182667 0.263748i
\(643\) −1.53960 + 0.560367i −0.0607157 + 0.0220987i −0.372199 0.928153i \(-0.621396\pi\)
0.311484 + 0.950251i \(0.399174\pi\)
\(644\) −0.433147 + 2.45650i −0.0170684 + 0.0967997i
\(645\) −2.94115 + 31.7398i −0.115807 + 1.24975i
\(646\) 0.416126 0.349171i 0.0163722 0.0137379i
\(647\) 34.4927 1.35605 0.678024 0.735040i \(-0.262836\pi\)
0.678024 + 0.735040i \(0.262836\pi\)
\(648\) −2.19521 14.1420i −0.0862359 0.555550i
\(649\) 19.3056 0.757813
\(650\) −0.000534207 0 0.000448253i −2.09533e−5 0 1.75819e-5i
\(651\) −0.786571 + 8.48840i −0.0308282 + 0.332687i
\(652\) −1.05182 + 5.96515i −0.0411923 + 0.233613i
\(653\) −36.4230 + 13.2569i −1.42534 + 0.518783i −0.935593 0.353080i \(-0.885134\pi\)
−0.489751 + 0.871862i \(0.662912\pi\)
\(654\) 5.94223 + 8.57980i 0.232360 + 0.335497i
\(655\) −5.97570 33.8899i −0.233490 1.32419i
\(656\) 5.50161 + 9.52907i 0.214802 + 0.372048i
\(657\) −0.545365 1.54764i −0.0212767 0.0603792i
\(658\) 1.94575 3.37015i 0.0758534 0.131382i
\(659\) −8.82552 3.21223i −0.343794 0.125131i 0.164352 0.986402i \(-0.447447\pi\)
−0.508146 + 0.861271i \(0.669669\pi\)
\(660\) −35.2705 9.64505i −1.37290 0.375433i
\(661\) −18.4980 15.5217i −0.719489 0.603723i 0.207755 0.978181i \(-0.433384\pi\)
−0.927244 + 0.374458i \(0.877829\pi\)
\(662\) 2.04335 + 1.71457i 0.0794169 + 0.0666387i
\(663\) 0.0248750 + 0.0947785i 0.000966065 + 0.00368089i
\(664\) −6.89399 2.50921i −0.267539 0.0973761i
\(665\) 0.610007 1.05656i 0.0236551 0.0409718i
\(666\) −0.0566265 + 5.51472i −0.00219423 + 0.213691i
\(667\) −4.03784 6.99375i −0.156346 0.270799i
\(668\) 6.52510 + 37.0057i 0.252464 + 1.43179i
\(669\) 37.3935 3.07815i 1.44572 0.119008i
\(670\) −9.53633 + 3.47094i −0.368421 + 0.134094i
\(671\) −6.26159 + 35.5112i −0.241726 + 1.37090i
\(672\) −9.18674 + 4.22656i −0.354386 + 0.163043i
\(673\) −20.2742 + 17.0121i −0.781514 + 0.655768i −0.943630 0.331003i \(-0.892613\pi\)
0.162115 + 0.986772i \(0.448168\pi\)
\(674\) −3.10557 −0.119622
\(675\) −0.197346 0.440811i −0.00759585 0.0169668i
\(676\) 23.7554 0.913671
\(677\) 23.7986 19.9694i 0.914654 0.767486i −0.0583448 0.998296i \(-0.518582\pi\)
0.972999 + 0.230811i \(0.0741378\pi\)
\(678\) −7.37609 5.22143i −0.283277 0.200528i
\(679\) −2.27807 + 12.9196i −0.0874245 + 0.495809i
\(680\) 10.3697 3.77426i 0.397660 0.144736i
\(681\) −16.0160 + 33.8910i −0.613734 + 1.29871i
\(682\) 1.40328 + 7.95842i 0.0537345 + 0.304744i
\(683\) −19.0681 33.0268i −0.729619 1.26374i −0.957044 0.289942i \(-0.906364\pi\)
0.227425 0.973796i \(-0.426969\pi\)
\(684\) −2.25719 + 0.374149i −0.0863060 + 0.0143060i
\(685\) −13.2993 + 23.0351i −0.508140 + 0.880125i
\(686\) 6.31558 + 2.29868i 0.241130 + 0.0877642i
\(687\) −13.3016 + 13.1657i −0.507487 + 0.502303i
\(688\) −19.0552 15.9892i −0.726472 0.609583i
\(689\) 0.0179917 + 0.0150968i 0.000685428 + 0.000575142i
\(690\) 1.17191 1.15993i 0.0446137 0.0441579i
\(691\) −30.9436 11.2626i −1.17715 0.428448i −0.321957 0.946754i \(-0.604341\pi\)
−0.855195 + 0.518306i \(0.826563\pi\)
\(692\) 12.8221 22.2085i 0.487424 0.844242i
\(693\) −7.26030 + 19.3277i −0.275796 + 0.734198i
\(694\) −6.53414 11.3175i −0.248033 0.429605i
\(695\) 2.36380 + 13.4058i 0.0896641 + 0.508510i
\(696\) 9.18742 19.4413i 0.348248 0.736919i
\(697\) −10.8185 + 3.93762i −0.409781 + 0.149148i
\(698\) −0.855130 + 4.84968i −0.0323672 + 0.183563i
\(699\) 10.7992 + 7.64461i 0.408463 + 0.289146i
\(700\) −0.171702 + 0.144075i −0.00648971 + 0.00544551i
\(701\) −2.30710 −0.0871381 −0.0435690 0.999050i \(-0.513873\pi\)
−0.0435690 + 0.999050i \(0.513873\pi\)
\(702\) −0.0106689 + 0.0374969i −0.000402671 + 0.00141523i
\(703\) 1.84668 0.0696490
\(704\) 16.5800 13.9123i 0.624881 0.524338i
\(705\) 24.7406 11.3825i 0.931784 0.428688i
\(706\) 0.592100 3.35796i 0.0222840 0.126379i
\(707\) 17.1120 6.22826i 0.643563 0.234238i
\(708\) 11.6772 0.961241i 0.438857 0.0361257i
\(709\) −1.93654 10.9826i −0.0727281 0.412462i −0.999336 0.0364329i \(-0.988400\pi\)
0.926608 0.376029i \(-0.122711\pi\)
\(710\) −2.79979 4.84937i −0.105074 0.181994i
\(711\) −1.27830 + 0.720629i −0.0479400 + 0.0270257i
\(712\) 2.68184 4.64508i 0.100506 0.174082i
\(713\) 3.62525 + 1.31948i 0.135767 + 0.0494151i
\(714\) −0.755212 2.87750i −0.0282631 0.107688i
\(715\) 0.159815 + 0.134100i 0.00597673 + 0.00501507i
\(716\) −14.2646 11.9694i −0.533092 0.447317i
\(717\) 5.39888 + 1.47637i 0.201625 + 0.0551362i
\(718\) 6.92093 + 2.51901i 0.258287 + 0.0940087i
\(719\) 16.0850 27.8600i 0.599869 1.03900i −0.392971 0.919551i \(-0.628553\pi\)
0.992840 0.119453i \(-0.0381140\pi\)
\(720\) −19.5588 3.65620i −0.728914 0.136259i
\(721\) 3.01213 + 5.21717i 0.112178 + 0.194297i
\(722\) 1.35819 + 7.70267i 0.0505465 + 0.286664i
\(723\) 26.1777 + 37.7972i 0.973560 + 1.40569i
\(724\) 41.3064 15.0343i 1.53514 0.558745i
\(725\) 0.126010 0.714637i 0.00467989 0.0265410i
\(726\) −1.07552 + 11.6066i −0.0399163 + 0.430762i
\(727\) −4.11022 + 3.44888i −0.152440 + 0.127912i −0.715818 0.698287i \(-0.753946\pi\)
0.563378 + 0.826199i \(0.309501\pi\)
\(728\) 0.0378942 0.00140445
\(729\) −22.9558 14.2138i −0.850215 0.526435i
\(730\) 0.503399 0.0186316
\(731\) 19.9377 16.7297i 0.737424 0.618772i
\(732\) −2.01926 + 21.7911i −0.0746338 + 0.805422i
\(733\) −2.53463 + 14.3746i −0.0936187 + 0.530938i 0.901543 + 0.432689i \(0.142435\pi\)
−0.995162 + 0.0982489i \(0.968676\pi\)
\(734\) −7.93296 + 2.88736i −0.292811 + 0.106574i
\(735\) 11.4876 + 16.5866i 0.423726 + 0.611805i
\(736\) 0.794682 + 4.50687i 0.0292924 + 0.166125i
\(737\) −28.7534 49.8023i −1.05915 1.83449i
\(738\) −4.50245 0.841659i −0.165737 0.0309819i
\(739\) 21.6083 37.4266i 0.794873 1.37676i −0.128047 0.991768i \(-0.540871\pi\)
0.922920 0.384992i \(-0.125796\pi\)
\(740\) 16.8312 + 6.12607i 0.618729 + 0.225199i
\(741\) 0.0125917 + 0.00344333i 0.000462569 + 0.000126494i
\(742\) −0.546231 0.458343i −0.0200528 0.0168263i
\(743\) 6.21431 + 5.21443i 0.227981 + 0.191299i 0.749622 0.661866i \(-0.230235\pi\)
−0.521641 + 0.853165i \(0.674680\pi\)
\(744\) 2.60770 + 9.93582i 0.0956028 + 0.364265i
\(745\) −1.83767 0.668859i −0.0673272 0.0245051i
\(746\) −2.01116 + 3.48342i −0.0736336 + 0.127537i
\(747\) −12.0571 + 6.79706i −0.441146 + 0.248692i
\(748\) 14.9280 + 25.8561i 0.545823 + 0.945393i
\(749\) 2.58860 + 14.6807i 0.0945854 + 0.536420i
\(750\) 8.09113 0.666044i 0.295446 0.0243205i
\(751\) −8.22744 + 2.99454i −0.300223 + 0.109272i −0.487740 0.872989i \(-0.662178\pi\)
0.187516 + 0.982261i \(0.439956\pi\)
\(752\) −3.69037 + 20.9291i −0.134574 + 0.763207i
\(753\) 7.07968 3.25717i 0.257998 0.118698i
\(754\) −0.0448713 + 0.0376515i −0.00163412 + 0.00137119i
\(755\) 18.2210 0.663129
\(756\) −3.42913 + 12.0520i −0.124716 + 0.438329i
\(757\) −32.1511 −1.16855 −0.584276 0.811555i \(-0.698622\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(758\) 1.31414 1.10269i 0.0477316 0.0400515i
\(759\) 7.62620 + 5.39848i 0.276813 + 0.195952i
\(760\) 0.255283 1.44778i 0.00926008 0.0525165i
\(761\) 23.0656 8.39520i 0.836128 0.304326i 0.111756 0.993736i \(-0.464352\pi\)
0.724371 + 0.689410i \(0.242130\pi\)
\(762\) −2.58116 + 5.46192i −0.0935054 + 0.197865i
\(763\) −3.32342 18.8481i −0.120316 0.682346i