Properties

Label 27.2.e.a.16.2
Level $27$
Weight $2$
Character 27.16
Analytic conductor $0.216$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,2,Mod(4,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 27.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.215596085457\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 16.2
Root \(0.500000 - 2.22827i\) of defining polynomial
Character \(\chi\) \(=\) 27.16
Dual form 27.2.e.a.22.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.318266 - 0.267057i) q^{2} +(0.159815 + 1.72466i) q^{3} +(-0.317323 - 1.79963i) q^{4} +(-2.08159 - 0.757639i) q^{5} +(0.409719 - 0.591580i) q^{6} +(-0.229151 + 1.29958i) q^{7} +(-0.795075 + 1.37711i) q^{8} +(-2.94892 + 0.551252i) q^{9} +O(q^{10})\) \(q+(-0.318266 - 0.267057i) q^{2} +(0.159815 + 1.72466i) q^{3} +(-0.317323 - 1.79963i) q^{4} +(-2.08159 - 0.757639i) q^{5} +(0.409719 - 0.591580i) q^{6} +(-0.229151 + 1.29958i) q^{7} +(-0.795075 + 1.37711i) q^{8} +(-2.94892 + 0.551252i) q^{9} +(0.460168 + 0.797034i) q^{10} +(4.90067 - 1.78370i) q^{11} +(3.05303 - 0.834881i) q^{12} +(-0.0138336 + 0.0116078i) q^{13} +(0.419993 - 0.352416i) q^{14} +(0.974001 - 3.71113i) q^{15} +(-2.81355 + 1.02405i) q^{16} +(1.56640 + 2.71308i) q^{17} +(1.08575 + 0.612083i) q^{18} +(-0.208676 + 0.361438i) q^{19} +(-0.702929 + 3.98651i) q^{20} +(-2.27796 - 0.187516i) q^{21} +(-2.03606 - 0.741067i) q^{22} +(-0.179619 - 1.01867i) q^{23} +(-2.50212 - 1.15115i) q^{24} +(-0.0712019 - 0.0597455i) q^{25} +0.00750270 q^{26} +(-1.42200 - 4.99779i) q^{27} +2.41147 q^{28} +(-5.98068 - 5.01839i) q^{29} +(-1.30107 + 0.921011i) q^{30} +(0.647649 + 3.67300i) q^{31} +(4.15744 + 1.51319i) q^{32} +(3.85948 + 8.16694i) q^{33} +(0.226015 - 1.28180i) q^{34} +(1.46161 - 2.53159i) q^{35} +(1.92781 + 5.13202i) q^{36} +(-2.21238 - 3.83195i) q^{37} +(0.162939 - 0.0593049i) q^{38} +(-0.0222303 - 0.0220032i) q^{39} +(2.69838 - 2.26421i) q^{40} +(-2.81517 + 2.36221i) q^{41} +(0.674919 + 0.668024i) q^{42} +(7.80685 - 2.84146i) q^{43} +(-4.76508 - 8.25337i) q^{44} +(6.55610 + 1.08673i) q^{45} +(-0.214876 + 0.372177i) q^{46} +(-1.23254 + 6.99008i) q^{47} +(-2.21579 - 4.68877i) q^{48} +(4.94145 + 1.79854i) q^{49} +(0.00670569 + 0.0380299i) q^{50} +(-4.42881 + 3.13510i) q^{51} +(0.0252794 + 0.0212119i) q^{52} -1.30057 q^{53} +(-0.882118 + 1.97038i) q^{54} -11.5526 q^{55} +(-1.60747 - 1.34883i) q^{56} +(-0.656707 - 0.302133i) q^{57} +(0.563252 + 3.19436i) q^{58} +(3.47856 + 1.26609i) q^{59} +(-6.98772 - 0.575213i) q^{60} +(1.20064 - 6.80919i) q^{61} +(0.774775 - 1.34195i) q^{62} +(-0.0406486 - 3.95868i) q^{63} +(2.07506 + 3.59410i) q^{64} +(0.0375905 - 0.0136818i) q^{65} +(0.952697 - 3.62996i) q^{66} +(-8.44702 + 7.08789i) q^{67} +(4.38548 - 3.67985i) q^{68} +(1.72816 - 0.472581i) q^{69} +(-1.14126 + 0.415384i) q^{70} +(3.04214 + 5.26914i) q^{71} +(1.58548 - 4.49927i) q^{72} +(0.273486 - 0.473692i) q^{73} +(-0.319224 + 1.81041i) q^{74} +(0.0916617 - 0.132347i) q^{75} +(0.716670 + 0.260847i) q^{76} +(1.19507 + 6.77756i) q^{77} +(0.00119904 + 0.0129396i) q^{78} +(0.374706 + 0.314416i) q^{79} +6.63254 q^{80} +(8.39224 - 3.25120i) q^{81} +1.52681 q^{82} +(3.53428 + 2.96561i) q^{83} +(0.385389 + 4.15898i) q^{84} +(-1.20507 - 6.83430i) q^{85} +(-3.24348 - 1.18053i) q^{86} +(7.69922 - 11.1167i) q^{87} +(-1.44005 + 8.16694i) q^{88} +(1.68653 - 2.92116i) q^{89} +(-1.79636 - 2.09672i) q^{90} +(-0.0119153 - 0.0206379i) q^{91} +(-1.77623 + 0.646495i) q^{92} +(-6.23118 + 1.70398i) q^{93} +(2.25902 - 1.89554i) q^{94} +(0.708218 - 0.594266i) q^{95} +(-1.94531 + 7.41201i) q^{96} +(-9.34182 + 3.40014i) q^{97} +(-1.09238 - 1.89206i) q^{98} +(-13.4684 + 7.96149i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 6 q^{8} - 3 q^{10} + 3 q^{11} + 12 q^{12} - 6 q^{13} + 15 q^{14} + 9 q^{15} + 9 q^{17} + 9 q^{18} - 3 q^{19} - 3 q^{20} - 12 q^{21} + 3 q^{22} - 12 q^{23} - 18 q^{24} + 3 q^{25} - 30 q^{26} - 9 q^{27} - 12 q^{28} - 6 q^{29} - 9 q^{30} + 3 q^{31} + 9 q^{34} + 12 q^{35} + 18 q^{36} - 3 q^{37} + 42 q^{38} + 33 q^{39} + 21 q^{40} + 15 q^{41} + 18 q^{42} + 3 q^{43} + 3 q^{44} - 9 q^{45} - 3 q^{46} - 15 q^{47} - 15 q^{48} + 12 q^{49} - 33 q^{50} - 18 q^{51} + 9 q^{52} - 18 q^{53} - 54 q^{54} - 12 q^{55} - 33 q^{56} - 3 q^{57} + 21 q^{58} - 12 q^{59} + 12 q^{61} - 12 q^{62} + 9 q^{63} + 12 q^{64} + 3 q^{65} - 9 q^{66} - 15 q^{67} + 9 q^{68} + 9 q^{69} - 15 q^{70} + 27 q^{71} + 18 q^{72} + 6 q^{73} + 33 q^{74} + 39 q^{75} - 48 q^{76} + 15 q^{77} + 18 q^{78} - 42 q^{79} + 42 q^{80} + 36 q^{81} - 12 q^{82} + 39 q^{83} + 6 q^{84} - 27 q^{85} + 51 q^{86} + 9 q^{87} - 30 q^{88} + 9 q^{89} + 18 q^{90} + 6 q^{91} - 39 q^{92} - 39 q^{93} - 15 q^{94} - 33 q^{95} + 3 q^{97} - 45 q^{98} - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.318266 0.267057i −0.225048 0.188837i 0.523291 0.852154i \(-0.324704\pi\)
−0.748339 + 0.663316i \(0.769148\pi\)
\(3\) 0.159815 + 1.72466i 0.0922690 + 0.995734i
\(4\) −0.317323 1.79963i −0.158661 0.899813i
\(5\) −2.08159 0.757639i −0.930917 0.338826i −0.168344 0.985728i \(-0.553842\pi\)
−0.762573 + 0.646902i \(0.776064\pi\)
\(6\) 0.409719 0.591580i 0.167267 0.241512i
\(7\) −0.229151 + 1.29958i −0.0866110 + 0.491195i 0.910386 + 0.413759i \(0.135784\pi\)
−0.996997 + 0.0774361i \(0.975327\pi\)
\(8\) −0.795075 + 1.37711i −0.281102 + 0.486882i
\(9\) −2.94892 + 0.551252i −0.982973 + 0.183751i
\(10\) 0.460168 + 0.797034i 0.145518 + 0.252044i
\(11\) 4.90067 1.78370i 1.47761 0.537805i 0.527454 0.849584i \(-0.323147\pi\)
0.950155 + 0.311778i \(0.100925\pi\)
\(12\) 3.05303 0.834881i 0.881335 0.241009i
\(13\) −0.0138336 + 0.0116078i −0.00383676 + 0.00321942i −0.644704 0.764432i \(-0.723019\pi\)
0.640867 + 0.767652i \(0.278575\pi\)
\(14\) 0.419993 0.352416i 0.112248 0.0941870i
\(15\) 0.974001 3.71113i 0.251486 0.958209i
\(16\) −2.81355 + 1.02405i −0.703389 + 0.256012i
\(17\) 1.56640 + 2.71308i 0.379907 + 0.658019i 0.991048 0.133503i \(-0.0426226\pi\)
−0.611141 + 0.791522i \(0.709289\pi\)
\(18\) 1.08575 + 0.612083i 0.255915 + 0.144269i
\(19\) −0.208676 + 0.361438i −0.0478736 + 0.0829195i −0.888969 0.457967i \(-0.848578\pi\)
0.841096 + 0.540886i \(0.181911\pi\)
\(20\) −0.702929 + 3.98651i −0.157180 + 0.891410i
\(21\) −2.27796 0.187516i −0.497092 0.0409194i
\(22\) −2.03606 0.741067i −0.434090 0.157996i
\(23\) −0.179619 1.01867i −0.0374532 0.212408i 0.960338 0.278839i \(-0.0899497\pi\)
−0.997791 + 0.0664316i \(0.978839\pi\)
\(24\) −2.50212 1.15115i −0.510742 0.234978i
\(25\) −0.0712019 0.0597455i −0.0142404 0.0119491i
\(26\) 0.00750270 0.00147140
\(27\) −1.42200 4.99779i −0.273665 0.961825i
\(28\) 2.41147 0.455726
\(29\) −5.98068 5.01839i −1.11058 0.931891i −0.112493 0.993652i \(-0.535884\pi\)
−0.998091 + 0.0617615i \(0.980328\pi\)
\(30\) −1.30107 + 0.921011i −0.237542 + 0.168153i
\(31\) 0.647649 + 3.67300i 0.116321 + 0.659691i 0.986088 + 0.166227i \(0.0531584\pi\)
−0.869766 + 0.493464i \(0.835730\pi\)
\(32\) 4.15744 + 1.51319i 0.734939 + 0.267496i
\(33\) 3.85948 + 8.16694i 0.671849 + 1.42168i
\(34\) 0.226015 1.28180i 0.0387613 0.219826i
\(35\) 1.46161 2.53159i 0.247058 0.427916i
\(36\) 1.92781 + 5.13202i 0.321301 + 0.855337i
\(37\) −2.21238 3.83195i −0.363713 0.629969i 0.624856 0.780740i \(-0.285158\pi\)
−0.988569 + 0.150771i \(0.951824\pi\)
\(38\) 0.162939 0.0593049i 0.0264322 0.00962052i
\(39\) −0.0222303 0.0220032i −0.00355970 0.00352334i
\(40\) 2.69838 2.26421i 0.426651 0.358002i
\(41\) −2.81517 + 2.36221i −0.439655 + 0.368915i −0.835580 0.549368i \(-0.814868\pi\)
0.395925 + 0.918283i \(0.370424\pi\)
\(42\) 0.674919 + 0.668024i 0.104142 + 0.103078i
\(43\) 7.80685 2.84146i 1.19053 0.433319i 0.330622 0.943763i \(-0.392741\pi\)
0.859911 + 0.510445i \(0.170519\pi\)
\(44\) −4.76508 8.25337i −0.718363 1.24424i
\(45\) 6.55610 + 1.08673i 0.977326 + 0.162000i
\(46\) −0.214876 + 0.372177i −0.0316818 + 0.0548745i
\(47\) −1.23254 + 6.99008i −0.179784 + 1.01961i 0.752691 + 0.658374i \(0.228755\pi\)
−0.932475 + 0.361234i \(0.882356\pi\)
\(48\) −2.21579 4.68877i −0.319821 0.676766i
\(49\) 4.94145 + 1.79854i 0.705921 + 0.256934i
\(50\) 0.00670569 + 0.0380299i 0.000948328 + 0.00537824i
\(51\) −4.42881 + 3.13510i −0.620158 + 0.439001i
\(52\) 0.0252794 + 0.0212119i 0.00350562 + 0.00294157i
\(53\) −1.30057 −0.178648 −0.0893238 0.996003i \(-0.528471\pi\)
−0.0893238 + 0.996003i \(0.528471\pi\)
\(54\) −0.882118 + 1.97038i −0.120041 + 0.268135i
\(55\) −11.5526 −1.55775
\(56\) −1.60747 1.34883i −0.214808 0.180245i
\(57\) −0.656707 0.302133i −0.0869830 0.0400185i
\(58\) 0.563252 + 3.19436i 0.0739586 + 0.419440i
\(59\) 3.47856 + 1.26609i 0.452871 + 0.164831i 0.558377 0.829587i \(-0.311424\pi\)
−0.105507 + 0.994419i \(0.533646\pi\)
\(60\) −6.98772 0.575213i −0.902110 0.0742596i
\(61\) 1.20064 6.80919i 0.153727 0.871828i −0.806214 0.591624i \(-0.798487\pi\)
0.959941 0.280204i \(-0.0904020\pi\)
\(62\) 0.774775 1.34195i 0.0983965 0.170428i
\(63\) −0.0406486 3.95868i −0.00512125 0.498747i
\(64\) 2.07506 + 3.59410i 0.259382 + 0.449263i
\(65\) 0.0375905 0.0136818i 0.00466253 0.00169702i
\(66\) 0.952697 3.62996i 0.117269 0.446817i
\(67\) −8.44702 + 7.08789i −1.03197 + 0.865923i −0.991084 0.133241i \(-0.957462\pi\)
−0.0408835 + 0.999164i \(0.513017\pi\)
\(68\) 4.38548 3.67985i 0.531817 0.446247i
\(69\) 1.72816 0.472581i 0.208046 0.0568921i
\(70\) −1.14126 + 0.415384i −0.136406 + 0.0496479i
\(71\) 3.04214 + 5.26914i 0.361035 + 0.625332i 0.988132 0.153610i \(-0.0490900\pi\)
−0.627096 + 0.778942i \(0.715757\pi\)
\(72\) 1.58548 4.49927i 0.186850 0.530245i
\(73\) 0.273486 0.473692i 0.0320092 0.0554415i −0.849577 0.527465i \(-0.823143\pi\)
0.881586 + 0.472023i \(0.156476\pi\)
\(74\) −0.319224 + 1.81041i −0.0371090 + 0.210456i
\(75\) 0.0916617 0.132347i 0.0105842 0.0152822i
\(76\) 0.716670 + 0.260847i 0.0822077 + 0.0299212i
\(77\) 1.19507 + 6.77756i 0.136190 + 0.772374i
\(78\) 0.00119904 + 0.0129396i 0.000135765 + 0.00146512i
\(79\) 0.374706 + 0.314416i 0.0421577 + 0.0353745i 0.663623 0.748067i \(-0.269018\pi\)
−0.621465 + 0.783442i \(0.713462\pi\)
\(80\) 6.63254 0.741540
\(81\) 8.39224 3.25120i 0.932471 0.361244i
\(82\) 1.52681 0.168608
\(83\) 3.53428 + 2.96561i 0.387937 + 0.325518i 0.815809 0.578321i \(-0.196292\pi\)
−0.427872 + 0.903839i \(0.640737\pi\)
\(84\) 0.385389 + 4.15898i 0.0420493 + 0.453782i
\(85\) −1.20507 6.83430i −0.130708 0.741284i
\(86\) −3.24348 1.18053i −0.349754 0.127300i
\(87\) 7.69922 11.1167i 0.825443 1.19183i
\(88\) −1.44005 + 8.16694i −0.153510 + 0.870599i
\(89\) 1.68653 2.92116i 0.178772 0.309642i −0.762688 0.646766i \(-0.776121\pi\)
0.941460 + 0.337124i \(0.109454\pi\)
\(90\) −1.79636 2.09672i −0.189353 0.221014i
\(91\) −0.0119153 0.0206379i −0.00124906 0.00216344i
\(92\) −1.77623 + 0.646495i −0.185185 + 0.0674018i
\(93\) −6.23118 + 1.70398i −0.646144 + 0.176694i
\(94\) 2.25902 1.89554i 0.233000 0.195510i
\(95\) 0.708218 0.594266i 0.0726617 0.0609704i
\(96\) −1.94531 + 7.41201i −0.198543 + 0.756485i
\(97\) −9.34182 + 3.40014i −0.948518 + 0.345232i −0.769524 0.638618i \(-0.779507\pi\)
−0.178994 + 0.983850i \(0.557284\pi\)
\(98\) −1.09238 1.89206i −0.110347 0.191127i
\(99\) −13.4684 + 7.96149i −1.35363 + 0.800160i
\(100\) −0.0849256 + 0.147095i −0.00849256 + 0.0147095i
\(101\) 2.39626 13.5898i 0.238436 1.35224i −0.596818 0.802377i \(-0.703569\pi\)
0.835255 0.549863i \(-0.185320\pi\)
\(102\) 2.24679 + 0.184950i 0.222465 + 0.0183128i
\(103\) −4.28981 1.56136i −0.422687 0.153846i 0.121914 0.992541i \(-0.461097\pi\)
−0.544601 + 0.838695i \(0.683319\pi\)
\(104\) −0.00498644 0.0282795i −0.000488961 0.00277303i
\(105\) 4.59972 + 2.11620i 0.448887 + 0.206520i
\(106\) 0.413928 + 0.347327i 0.0402042 + 0.0337354i
\(107\) −11.2965 −1.09207 −0.546035 0.837762i \(-0.683864\pi\)
−0.546035 + 0.837762i \(0.683864\pi\)
\(108\) −8.54292 + 4.14499i −0.822043 + 0.398851i
\(109\) 14.5032 1.38915 0.694577 0.719419i \(-0.255592\pi\)
0.694577 + 0.719419i \(0.255592\pi\)
\(110\) 3.67680 + 3.08520i 0.350569 + 0.294162i
\(111\) 6.25525 4.42801i 0.593722 0.420288i
\(112\) −0.686107 3.89110i −0.0648310 0.367675i
\(113\) −11.8011 4.29523i −1.11015 0.404062i −0.279102 0.960262i \(-0.590037\pi\)
−0.831049 + 0.556200i \(0.812259\pi\)
\(114\) 0.128321 + 0.271536i 0.0120183 + 0.0254317i
\(115\) −0.397890 + 2.25655i −0.0371035 + 0.210424i
\(116\) −7.13341 + 12.3554i −0.662321 + 1.14717i
\(117\) 0.0343954 0.0418563i 0.00317986 0.00386961i
\(118\) −0.768989 1.33193i −0.0707912 0.122614i
\(119\) −3.88481 + 1.41395i −0.356120 + 0.129617i
\(120\) 4.33623 + 4.29193i 0.395842 + 0.391798i
\(121\) 12.4085 10.4120i 1.12805 0.946544i
\(122\) −2.20056 + 1.84649i −0.199230 + 0.167174i
\(123\) −4.52391 4.47770i −0.407907 0.403740i
\(124\) 6.40452 2.33105i 0.575143 0.209335i
\(125\) 5.64092 + 9.77035i 0.504539 + 0.873887i
\(126\) −1.04425 + 1.27077i −0.0930295 + 0.113209i
\(127\) 4.19749 7.27027i 0.372467 0.645132i −0.617477 0.786589i \(-0.711845\pi\)
0.989944 + 0.141456i \(0.0451785\pi\)
\(128\) 1.83594 10.4121i 0.162276 0.920310i
\(129\) 6.14821 + 13.0101i 0.541319 + 1.14547i
\(130\) −0.0156176 0.00568434i −0.00136975 0.000498549i
\(131\) −2.69761 15.2989i −0.235691 1.33667i −0.841154 0.540796i \(-0.818123\pi\)
0.605463 0.795874i \(-0.292988\pi\)
\(132\) 13.4727 9.53717i 1.17265 0.830104i
\(133\) −0.421899 0.354015i −0.0365833 0.0306970i
\(134\) 4.58126 0.395761
\(135\) −0.826482 + 11.4807i −0.0711323 + 0.988105i
\(136\) −4.98162 −0.427170
\(137\) 9.19820 + 7.71820i 0.785855 + 0.659411i 0.944716 0.327890i \(-0.106338\pi\)
−0.158861 + 0.987301i \(0.550782\pi\)
\(138\) −0.676219 0.311110i −0.0575636 0.0264834i
\(139\) 1.06709 + 6.05176i 0.0905093 + 0.513304i 0.996031 + 0.0890042i \(0.0283685\pi\)
−0.905522 + 0.424299i \(0.860520\pi\)
\(140\) −5.01971 1.82703i −0.424243 0.154412i
\(141\) −12.2525 1.00860i −1.03185 0.0849392i
\(142\) 0.438950 2.48941i 0.0368359 0.208907i
\(143\) −0.0470893 + 0.0815610i −0.00393780 + 0.00682047i
\(144\) 7.73243 4.57082i 0.644369 0.380901i
\(145\) 8.64723 + 14.9774i 0.718113 + 1.24381i
\(146\) −0.213544 + 0.0777237i −0.0176730 + 0.00643246i
\(147\) −2.31216 + 8.80976i −0.190704 + 0.726617i
\(148\) −6.19404 + 5.19742i −0.509147 + 0.427225i
\(149\) 0.676280 0.567466i 0.0554030 0.0464886i −0.614666 0.788788i \(-0.710709\pi\)
0.670069 + 0.742299i \(0.266265\pi\)
\(150\) −0.0645170 + 0.0176428i −0.00526779 + 0.00144053i
\(151\) −7.72942 + 2.81328i −0.629011 + 0.228941i −0.636801 0.771028i \(-0.719743\pi\)
0.00778980 + 0.999970i \(0.497520\pi\)
\(152\) −0.331826 0.574740i −0.0269147 0.0466176i
\(153\) −6.11477 7.13717i −0.494350 0.577006i
\(154\) 1.42964 2.47621i 0.115204 0.199539i
\(155\) 1.43466 8.13639i 0.115235 0.653530i
\(156\) −0.0325434 + 0.0469884i −0.00260556 + 0.00376208i
\(157\) −11.8024 4.29571i −0.941932 0.342835i −0.175003 0.984568i \(-0.555994\pi\)
−0.766928 + 0.641733i \(0.778216\pi\)
\(158\) −0.0352893 0.200135i −0.00280746 0.0159219i
\(159\) −0.207851 2.24305i −0.0164836 0.177886i
\(160\) −7.50766 6.29968i −0.593533 0.498033i
\(161\) 1.36501 0.107578
\(162\) −3.53922 1.20646i −0.278067 0.0947884i
\(163\) 3.31466 0.259624 0.129812 0.991539i \(-0.458563\pi\)
0.129812 + 0.991539i \(0.458563\pi\)
\(164\) 5.14440 + 4.31667i 0.401710 + 0.337075i
\(165\) −1.84628 19.9244i −0.143732 1.55111i
\(166\) −0.332853 1.88770i −0.0258344 0.146514i
\(167\) 19.3229 + 7.03295i 1.49525 + 0.544226i 0.954826 0.297167i \(-0.0960417\pi\)
0.540424 + 0.841393i \(0.318264\pi\)
\(168\) 2.06938 2.98791i 0.159656 0.230522i
\(169\) −2.25737 + 12.8022i −0.173644 + 0.984783i
\(170\) −1.44161 + 2.49694i −0.110567 + 0.191507i
\(171\) 0.416126 1.18088i 0.0318219 0.0903044i
\(172\) −7.59085 13.1477i −0.578797 1.00251i
\(173\) −13.1870 + 4.79966i −1.00259 + 0.364911i −0.790581 0.612357i \(-0.790221\pi\)
−0.212005 + 0.977269i \(0.567999\pi\)
\(174\) −5.41917 + 1.48192i −0.410827 + 0.112344i
\(175\) 0.0939601 0.0788419i 0.00710272 0.00595989i
\(176\) −11.9617 + 10.0371i −0.901648 + 0.756572i
\(177\) −1.62766 + 6.20169i −0.122342 + 0.466148i
\(178\) −1.31688 + 0.479305i −0.0987043 + 0.0359254i
\(179\) −5.09500 8.82479i −0.380818 0.659596i 0.610361 0.792123i \(-0.291024\pi\)
−0.991179 + 0.132527i \(0.957691\pi\)
\(180\) −0.124691 12.1434i −0.00929392 0.905114i
\(181\) −12.0274 + 20.8320i −0.893987 + 1.54843i −0.0589331 + 0.998262i \(0.518770\pi\)
−0.835054 + 0.550169i \(0.814563\pi\)
\(182\) −0.00171925 + 0.00975037i −0.000127440 + 0.000722746i
\(183\) 11.9354 + 0.982498i 0.882293 + 0.0726283i
\(184\) 1.54563 + 0.562565i 0.113946 + 0.0414728i
\(185\) 1.70204 + 9.65275i 0.125137 + 0.709685i
\(186\) 2.43823 + 1.12176i 0.178780 + 0.0822516i
\(187\) 12.5157 + 10.5019i 0.915240 + 0.767978i
\(188\) 12.9706 0.945981
\(189\) 6.82089 0.702760i 0.496146 0.0511182i
\(190\) −0.384104 −0.0278658
\(191\) 8.38541 + 7.03619i 0.606747 + 0.509121i 0.893606 0.448852i \(-0.148167\pi\)
−0.286860 + 0.957973i \(0.592611\pi\)
\(192\) −5.86699 + 4.15316i −0.423414 + 0.299729i
\(193\) −1.87644 10.6418i −0.135069 0.766013i −0.974812 0.223029i \(-0.928405\pi\)
0.839743 0.542984i \(-0.182706\pi\)
\(194\) 3.88121 + 1.41265i 0.278655 + 0.101422i
\(195\) 0.0296040 + 0.0626444i 0.00211999 + 0.00448606i
\(196\) 1.66867 9.46347i 0.119190 0.675962i
\(197\) 11.0367 19.1161i 0.786331 1.36196i −0.141870 0.989885i \(-0.545311\pi\)
0.928201 0.372080i \(-0.121355\pi\)
\(198\) 6.41270 + 1.06296i 0.455731 + 0.0755413i
\(199\) −6.44338 11.1603i −0.456759 0.791130i 0.542028 0.840360i \(-0.317657\pi\)
−0.998787 + 0.0492301i \(0.984323\pi\)
\(200\) 0.138887 0.0505508i 0.00982080 0.00357448i
\(201\) −13.5742 13.4355i −0.957448 0.947667i
\(202\) −4.39190 + 3.68524i −0.309013 + 0.259293i
\(203\) 7.89228 6.62241i 0.553929 0.464802i
\(204\) 7.04736 + 6.97537i 0.493414 + 0.488374i
\(205\) 7.64974 2.78428i 0.534281 0.194462i
\(206\) 0.948326 + 1.64255i 0.0660730 + 0.114442i
\(207\) 1.09123 + 2.90496i 0.0758456 + 0.201909i
\(208\) 0.0270347 0.0468255i 0.00187452 0.00324676i
\(209\) −0.377957 + 2.14350i −0.0261439 + 0.148269i
\(210\) −0.898786 1.90190i −0.0620222 0.131244i
\(211\) 22.5485 + 8.20699i 1.55230 + 0.564992i 0.968957 0.247230i \(-0.0795204\pi\)
0.583347 + 0.812223i \(0.301743\pi\)
\(212\) 0.412702 + 2.34055i 0.0283445 + 0.160749i
\(213\) −8.60131 + 6.08875i −0.589352 + 0.417194i
\(214\) 3.59528 + 3.01680i 0.245768 + 0.206224i
\(215\) −18.4035 −1.25511
\(216\) 8.01311 + 2.01536i 0.545223 + 0.137128i
\(217\) −4.92177 −0.334112
\(218\) −4.61587 3.87317i −0.312626 0.262324i
\(219\) 0.860667 + 0.395969i 0.0581585 + 0.0267571i
\(220\) 3.66590 + 20.7904i 0.247155 + 1.40169i
\(221\) −0.0531618 0.0193493i −0.00357605 0.00130158i
\(222\) −3.17336 0.261224i −0.212982 0.0175322i
\(223\) 3.76160 21.3331i 0.251895 1.42857i −0.552023 0.833829i \(-0.686144\pi\)
0.803918 0.594740i \(-0.202745\pi\)
\(224\) −2.91919 + 5.05618i −0.195047 + 0.337831i
\(225\) 0.242903 + 0.136934i 0.0161936 + 0.00912896i
\(226\) 2.60880 + 4.51858i 0.173535 + 0.300571i
\(227\) −20.3367 + 7.40196i −1.34979 + 0.491285i −0.912884 0.408220i \(-0.866150\pi\)
−0.436911 + 0.899505i \(0.643928\pi\)
\(228\) −0.335338 + 1.27770i −0.0222083 + 0.0846178i
\(229\) −8.27739 + 6.94555i −0.546985 + 0.458975i −0.873919 0.486072i \(-0.838429\pi\)
0.326934 + 0.945047i \(0.393985\pi\)
\(230\) 0.729261 0.611922i 0.0480860 0.0403490i
\(231\) −11.4980 + 3.14424i −0.756513 + 0.206876i
\(232\) 11.6660 4.24606i 0.765908 0.278768i
\(233\) −3.81950 6.61557i −0.250224 0.433400i 0.713364 0.700794i \(-0.247171\pi\)
−0.963587 + 0.267394i \(0.913838\pi\)
\(234\) −0.0221249 + 0.00413588i −0.00144635 + 0.000270371i
\(235\) 7.86160 13.6167i 0.512834 0.888255i
\(236\) 1.17467 6.66187i 0.0764644 0.433651i
\(237\) −0.482377 + 0.696490i −0.0313338 + 0.0452419i
\(238\) 1.61401 + 0.587451i 0.104621 + 0.0380788i
\(239\) −0.561143 3.18240i −0.0362973 0.205852i 0.961266 0.275623i \(-0.0888842\pi\)
−0.997563 + 0.0697711i \(0.977773\pi\)
\(240\) 1.05998 + 11.4389i 0.0684212 + 0.738377i
\(241\) −20.3346 17.0628i −1.30987 1.09911i −0.988349 0.152206i \(-0.951362\pi\)
−0.321518 0.946903i \(-0.604193\pi\)
\(242\) −6.72979 −0.432608
\(243\) 6.94842 + 13.9542i 0.445741 + 0.895162i
\(244\) −12.6350 −0.808873
\(245\) −8.92345 7.48766i −0.570098 0.478369i
\(246\) 0.244007 + 2.63324i 0.0155573 + 0.167889i
\(247\) −0.00130875 0.00742226i −8.32735e−5 0.000472267i
\(248\) −5.57306 2.02843i −0.353890 0.128805i
\(249\) −4.54985 + 6.56938i −0.288335 + 0.416318i
\(250\) 0.813927 4.61601i 0.0514773 0.291942i
\(251\) 2.24965 3.89651i 0.141997 0.245945i −0.786252 0.617906i \(-0.787981\pi\)
0.928248 + 0.371961i \(0.121314\pi\)
\(252\) −7.11124 + 1.32933i −0.447966 + 0.0837399i
\(253\) −2.69726 4.67179i −0.169575 0.293713i
\(254\) −3.27749 + 1.19291i −0.205648 + 0.0748498i
\(255\) 11.5943 3.17056i 0.726061 0.198548i
\(256\) 2.99340 2.51176i 0.187088 0.156985i
\(257\) 10.5219 8.82895i 0.656340 0.550735i −0.252647 0.967559i \(-0.581301\pi\)
0.908987 + 0.416824i \(0.136857\pi\)
\(258\) 1.51766 5.78258i 0.0944854 0.360007i
\(259\) 5.48690 1.99707i 0.340939 0.124092i
\(260\) −0.0365505 0.0633073i −0.00226677 0.00392615i
\(261\) 20.4029 + 11.5020i 1.26291 + 0.711953i
\(262\) −3.22711 + 5.58952i −0.199372 + 0.345322i
\(263\) −4.20273 + 23.8349i −0.259151 + 1.46972i 0.526036 + 0.850462i \(0.323678\pi\)
−0.785187 + 0.619258i \(0.787433\pi\)
\(264\) −14.3154 1.17841i −0.881049 0.0725260i
\(265\) 2.70727 + 0.985365i 0.166306 + 0.0605305i
\(266\) 0.0397339 + 0.225342i 0.00243624 + 0.0138166i
\(267\) 5.30755 + 2.44185i 0.324817 + 0.149439i
\(268\) 15.4360 + 12.9523i 0.942902 + 0.791189i
\(269\) 12.0062 0.732032 0.366016 0.930609i \(-0.380722\pi\)
0.366016 + 0.930609i \(0.380722\pi\)
\(270\) 3.32905 3.43321i 0.202599 0.208938i
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) −7.18547 6.02933i −0.435683 0.365582i
\(273\) 0.0336891 0.0238481i 0.00203896 0.00144335i
\(274\) −0.866273 4.91288i −0.0523335 0.296798i
\(275\) −0.455505 0.165790i −0.0274680 0.00999753i
\(276\) −1.39885 2.96008i −0.0842011 0.178176i
\(277\) −4.07780 + 23.1264i −0.245011 + 1.38953i 0.575455 + 0.817833i \(0.304825\pi\)
−0.820466 + 0.571695i \(0.806286\pi\)
\(278\) 1.27654 2.21104i 0.0765621 0.132609i
\(279\) −3.93462 10.4744i −0.235559 0.627084i
\(280\) 2.32418 + 4.02560i 0.138897 + 0.240576i
\(281\) 19.1432 6.96754i 1.14199 0.415649i 0.299356 0.954142i \(-0.403228\pi\)
0.842630 + 0.538493i \(0.181006\pi\)
\(282\) 3.63020 + 3.59311i 0.216175 + 0.213967i
\(283\) 8.88607 7.45630i 0.528222 0.443231i −0.339265 0.940691i \(-0.610178\pi\)
0.867487 + 0.497460i \(0.165734\pi\)
\(284\) 8.51714 7.14673i 0.505399 0.424080i
\(285\) 1.13809 + 1.12646i 0.0674147 + 0.0667260i
\(286\) 0.0367683 0.0133826i 0.00217416 0.000791328i
\(287\) −2.42478 4.19984i −0.143130 0.247909i
\(288\) −13.0941 2.17046i −0.771578 0.127896i
\(289\) 3.59280 6.22291i 0.211341 0.366053i
\(290\) 1.24771 7.07610i 0.0732679 0.415523i
\(291\) −7.35706 15.5681i −0.431279 0.912618i
\(292\) −0.939253 0.341860i −0.0549656 0.0200058i
\(293\) 5.48280 + 31.0945i 0.320308 + 1.81656i 0.540779 + 0.841165i \(0.318130\pi\)
−0.220470 + 0.975394i \(0.570759\pi\)
\(294\) 3.08858 2.18637i 0.180130 0.127511i
\(295\) −6.28172 5.27099i −0.365736 0.306889i
\(296\) 7.03603 0.408961
\(297\) −15.8833 21.9561i −0.921644 1.27402i
\(298\) −0.366782 −0.0212471
\(299\) 0.0143093 + 0.0120069i 0.000827529 + 0.000694379i
\(300\) −0.267262 0.122960i −0.0154304 0.00709909i
\(301\) 1.90376 + 10.7968i 0.109731 + 0.622315i
\(302\) 3.21131 + 1.16882i 0.184790 + 0.0672581i
\(303\) 23.8208 + 1.96088i 1.36847 + 0.112649i
\(304\) 0.216991 1.23062i 0.0124453 0.0705809i
\(305\) −7.65816 + 13.2643i −0.438505 + 0.759513i
\(306\) 0.0400924 + 3.90451i 0.00229193 + 0.223206i
\(307\) 4.06027 + 7.03259i 0.231732 + 0.401371i 0.958318 0.285704i \(-0.0922275\pi\)
−0.726586 + 0.687075i \(0.758894\pi\)
\(308\) 11.8178 4.30134i 0.673384 0.245092i
\(309\) 2.00725 7.64800i 0.114188 0.435079i
\(310\) −2.62948 + 2.20640i −0.149344 + 0.125315i
\(311\) −18.2691 + 15.3296i −1.03594 + 0.869259i −0.991546 0.129754i \(-0.958581\pi\)
−0.0443970 + 0.999014i \(0.514137\pi\)
\(312\) 0.0479757 0.0131194i 0.00271609 0.000742740i
\(313\) −25.2876 + 9.20392i −1.42934 + 0.520236i −0.936742 0.350022i \(-0.886174\pi\)
−0.492596 + 0.870258i \(0.663952\pi\)
\(314\) 2.60909 + 4.51908i 0.147240 + 0.255026i
\(315\) −2.91463 + 8.27116i −0.164221 + 0.466027i
\(316\) 0.446928 0.774102i 0.0251417 0.0435466i
\(317\) −1.44689 + 8.20574i −0.0812657 + 0.460881i 0.916834 + 0.399268i \(0.130736\pi\)
−0.998100 + 0.0616130i \(0.980376\pi\)
\(318\) −0.532870 + 0.769394i −0.0298819 + 0.0431455i
\(319\) −38.2606 13.9257i −2.14218 0.779692i
\(320\) −1.59640 9.05361i −0.0892412 0.506112i
\(321\) −1.80534 19.4826i −0.100764 1.08741i
\(322\) −0.434435 0.364534i −0.0242101 0.0203147i
\(323\) −1.30748 −0.0727501
\(324\) −8.51398 14.0712i −0.472999 0.781734i
\(325\) 0.00167849 9.31061e−5
\(326\) −1.05494 0.885201i −0.0584278 0.0490268i
\(327\) 2.31782 + 25.0131i 0.128176 + 1.38323i
\(328\) −1.01475 5.75493i −0.0560301 0.317763i
\(329\) −8.80173 3.20357i −0.485255 0.176618i
\(330\) −4.73332 + 6.83430i −0.260561 + 0.376216i
\(331\) −1.11487 + 6.32272i −0.0612786 + 0.347528i 0.938717 + 0.344688i \(0.112015\pi\)
−0.999996 + 0.00284030i \(0.999096\pi\)
\(332\) 4.21548 7.30143i 0.231355 0.400718i
\(333\) 8.63650 + 10.0805i 0.473277 + 0.552410i
\(334\) −4.27161 7.39865i −0.233732 0.404836i
\(335\) 22.9533 8.35432i 1.25407 0.456446i
\(336\) 6.60119 1.80516i 0.360124 0.0984794i
\(337\) 5.72610 4.80477i 0.311921 0.261732i −0.473365 0.880867i \(-0.656961\pi\)
0.785285 + 0.619134i \(0.212516\pi\)
\(338\) 4.13735 3.47165i 0.225042 0.188833i
\(339\) 5.52185 21.0393i 0.299906 1.14270i
\(340\) −11.9168 + 4.33735i −0.646278 + 0.235226i
\(341\) 9.72545 + 16.8450i 0.526663 + 0.912206i
\(342\) −0.447801 + 0.264706i −0.0242143 + 0.0143136i
\(343\) −8.08839 + 14.0095i −0.436732 + 0.756442i
\(344\) −2.29403 + 13.0101i −0.123686 + 0.701456i
\(345\) −3.95537 0.325597i −0.212950 0.0175296i
\(346\) 5.47874 + 1.99410i 0.294539 + 0.107203i
\(347\) −5.46202 30.9766i −0.293216 1.66291i −0.674364 0.738399i \(-0.735582\pi\)
0.381148 0.924514i \(-0.375529\pi\)
\(348\) −22.4490 10.3281i −1.20339 0.553647i
\(349\) 9.07988 + 7.61893i 0.486035 + 0.407832i 0.852603 0.522560i \(-0.175023\pi\)
−0.366568 + 0.930391i \(0.619467\pi\)
\(350\) −0.0509595 −0.00272390
\(351\) 0.0776848 + 0.0526312i 0.00414651 + 0.00280925i
\(352\) 23.0733 1.22981
\(353\) −6.28699 5.27541i −0.334623 0.280782i 0.459958 0.887941i \(-0.347865\pi\)
−0.794580 + 0.607159i \(0.792309\pi\)
\(354\) 2.17423 1.53911i 0.115559 0.0818026i
\(355\) −2.34040 13.2731i −0.124215 0.704461i
\(356\) −5.79217 2.10818i −0.306984 0.111733i
\(357\) −3.05944 6.47401i −0.161923 0.342641i
\(358\) −0.735157 + 4.16928i −0.0388542 + 0.220353i
\(359\) −8.86365 + 15.3523i −0.467806 + 0.810263i −0.999323 0.0367840i \(-0.988289\pi\)
0.531517 + 0.847047i \(0.321622\pi\)
\(360\) −6.70914 + 8.16445i −0.353603 + 0.430304i
\(361\) 9.41291 + 16.3036i 0.495416 + 0.858086i
\(362\) 9.39122 3.41812i 0.493591 0.179653i
\(363\) 19.9402 + 19.7365i 1.04659 + 1.03590i
\(364\) −0.0333594 + 0.0279919i −0.00174851 + 0.00146717i
\(365\) −0.928176 + 0.778832i −0.0485829 + 0.0407659i
\(366\) −3.53626 3.50013i −0.184843 0.182955i
\(367\) 19.0941 6.94969i 0.996704 0.362771i 0.208392 0.978045i \(-0.433177\pi\)
0.788313 + 0.615275i \(0.210955\pi\)
\(368\) 1.54854 + 2.68215i 0.0807232 + 0.139817i
\(369\) 6.99953 8.51782i 0.364381 0.443420i
\(370\) 2.03613 3.52668i 0.105853 0.183343i
\(371\) 0.298028 1.69020i 0.0154728 0.0877509i
\(372\) 5.04381 + 10.6731i 0.261510 + 0.553374i
\(373\) 9.09758 + 3.31125i 0.471055 + 0.171450i 0.566630 0.823972i \(-0.308247\pi\)
−0.0955754 + 0.995422i \(0.530469\pi\)
\(374\) −1.17871 6.68481i −0.0609498 0.345663i
\(375\) −15.9491 + 11.2901i −0.823606 + 0.583019i
\(376\) −8.64615 7.25498i −0.445891 0.374147i
\(377\) 0.140987 0.00726119
\(378\) −2.35853 1.59790i −0.121310 0.0821870i
\(379\) −4.12905 −0.212095 −0.106048 0.994361i \(-0.533820\pi\)
−0.106048 + 0.994361i \(0.533820\pi\)
\(380\) −1.29419 1.08595i −0.0663905 0.0557083i
\(381\) 13.2096 + 6.07736i 0.676748 + 0.311353i
\(382\) −0.789725 4.47876i −0.0404059 0.229153i
\(383\) −4.46371 1.62466i −0.228085 0.0830162i 0.225450 0.974255i \(-0.427615\pi\)
−0.453535 + 0.891239i \(0.649837\pi\)
\(384\) 18.2508 + 1.50236i 0.931357 + 0.0766672i
\(385\) 2.64729 15.0136i 0.134919 0.765162i
\(386\) −2.24476 + 3.88803i −0.114255 + 0.197896i
\(387\) −21.4554 + 12.6828i −1.09064 + 0.644702i
\(388\) 9.08336 + 15.7328i 0.461138 + 0.798714i
\(389\) 20.4978 7.46059i 1.03928 0.378267i 0.234673 0.972074i \(-0.424598\pi\)
0.804607 + 0.593807i \(0.202376\pi\)
\(390\) 0.00730764 0.0278435i 0.000370037 0.00140991i
\(391\) 2.48238 2.08297i 0.125539 0.105340i
\(392\) −6.40561 + 5.37495i −0.323532 + 0.271476i
\(393\) 25.9543 7.09745i 1.30922 0.358019i
\(394\) −8.61767 + 3.13658i −0.434152 + 0.158018i
\(395\) −0.541773 0.938378i −0.0272595 0.0472149i
\(396\) 18.6015 + 21.7117i 0.934762 + 1.09106i
\(397\) 17.4245 30.1802i 0.874512 1.51470i 0.0172294 0.999852i \(-0.494515\pi\)
0.857282 0.514847i \(-0.172151\pi\)
\(398\) −0.929715 + 5.27268i −0.0466024 + 0.264295i
\(399\) 0.543131 0.784210i 0.0271906 0.0392596i
\(400\) 0.261513 + 0.0951829i 0.0130756 + 0.00475914i
\(401\) −3.26911 18.5401i −0.163252 0.925847i −0.950849 0.309656i \(-0.899786\pi\)
0.787597 0.616191i \(-0.211325\pi\)
\(402\) 0.732152 + 7.90113i 0.0365164 + 0.394072i
\(403\) −0.0515948 0.0432932i −0.00257012 0.00215659i
\(404\) −25.2170 −1.25459
\(405\) −19.9325 + 0.409386i −0.990453 + 0.0203426i
\(406\) −4.28040 −0.212433
\(407\) −17.6772 14.8329i −0.876226 0.735241i
\(408\) −0.796135 8.59160i −0.0394145 0.425348i
\(409\) −1.10439 6.26334i −0.0546088 0.309702i 0.945253 0.326339i \(-0.105815\pi\)
−0.999862 + 0.0166371i \(0.994704\pi\)
\(410\) −3.17821 1.15677i −0.156960 0.0571289i
\(411\) −11.8413 + 17.0973i −0.584088 + 0.843346i
\(412\) −1.44862 + 8.21551i −0.0713682 + 0.404749i
\(413\) −2.44251 + 4.23055i −0.120188 + 0.208172i
\(414\) 0.428490 1.21597i 0.0210591 0.0597617i
\(415\) −5.11007 8.85090i −0.250843 0.434474i
\(416\) −0.0750772 + 0.0273259i −0.00368096 + 0.00133976i
\(417\) −10.2667 + 2.80753i −0.502763 + 0.137485i
\(418\) 0.692727 0.581267i 0.0338824 0.0284307i
\(419\) −18.6286 + 15.6313i −0.910069 + 0.763638i −0.972132 0.234434i \(-0.924676\pi\)
0.0620632 + 0.998072i \(0.480232\pi\)
\(420\) 2.34878 8.94929i 0.114609 0.436681i
\(421\) 7.50818 2.73275i 0.365926 0.133186i −0.152511 0.988302i \(-0.548736\pi\)
0.518438 + 0.855115i \(0.326514\pi\)
\(422\) −4.98469 8.63373i −0.242651 0.420283i
\(423\) −0.218637 21.2926i −0.0106305 1.03528i
\(424\) 1.03405 1.79103i 0.0502181 0.0869803i
\(425\) 0.0505638 0.286762i 0.00245271 0.0139100i
\(426\) 4.36354 + 0.359197i 0.211414 + 0.0174031i
\(427\) 8.57397 + 3.12067i 0.414924 + 0.151020i
\(428\) 3.58462 + 20.3294i 0.173269 + 0.982659i
\(429\) −0.148191 0.0681784i −0.00715472 0.00329169i
\(430\) 5.85720 + 4.91477i 0.282459 + 0.237011i
\(431\) 9.87124 0.475481 0.237740 0.971329i \(-0.423593\pi\)
0.237740 + 0.971329i \(0.423593\pi\)
\(432\) 9.11887 + 12.6053i 0.438732 + 0.606475i
\(433\) −6.10369 −0.293325 −0.146662 0.989187i \(-0.546853\pi\)
−0.146662 + 0.989187i \(0.546853\pi\)
\(434\) 1.56643 + 1.31439i 0.0751911 + 0.0630928i
\(435\) −24.4491 + 17.3072i −1.17224 + 0.829815i
\(436\) −4.60219 26.1003i −0.220405 1.24998i
\(437\) 0.405669 + 0.147651i 0.0194058 + 0.00706312i
\(438\) −0.168174 0.355870i −0.00803569 0.0170041i
\(439\) −2.62800 + 14.9041i −0.125427 + 0.711334i 0.855626 + 0.517595i \(0.173173\pi\)
−0.981053 + 0.193739i \(0.937938\pi\)
\(440\) 9.18520 15.9092i 0.437887 0.758443i
\(441\) −15.5634 2.57976i −0.741113 0.122846i
\(442\) 0.0117522 + 0.0203554i 0.000558996 + 0.000968210i
\(443\) 0.679204 0.247210i 0.0322699 0.0117453i −0.325835 0.945427i \(-0.605645\pi\)
0.358105 + 0.933681i \(0.383423\pi\)
\(444\) −9.95369 9.85201i −0.472381 0.467555i
\(445\) −5.72386 + 4.80289i −0.271337 + 0.227679i
\(446\) −6.89432 + 5.78502i −0.326456 + 0.273929i
\(447\) 1.08677 + 1.07566i 0.0514023 + 0.0508772i
\(448\) −5.14633 + 1.87311i −0.243141 + 0.0884962i
\(449\) −0.834224 1.44492i −0.0393695 0.0681899i 0.845669 0.533707i \(-0.179202\pi\)
−0.885039 + 0.465517i \(0.845868\pi\)
\(450\) −0.0407386 0.108450i −0.00192044 0.00511240i
\(451\) −9.58275 + 16.5978i −0.451234 + 0.781560i
\(452\) −3.98507 + 22.6005i −0.187442 + 1.06304i
\(453\) −6.08723 12.8810i −0.286003 0.605204i
\(454\) 8.44922 + 3.07526i 0.396541 + 0.144329i
\(455\) 0.00916673 + 0.0519871i 0.000429743 + 0.00243719i
\(456\) 0.938202 0.664140i 0.0439353 0.0311012i
\(457\) 8.49041 + 7.12430i 0.397165 + 0.333261i 0.819397 0.573227i \(-0.194309\pi\)
−0.422232 + 0.906488i \(0.638753\pi\)
\(458\) 4.48926 0.209769
\(459\) 11.3320 11.6865i 0.528932 0.545481i
\(460\) 4.18720 0.195229
\(461\) −16.7644 14.0670i −0.780797 0.655166i 0.162653 0.986683i \(-0.447995\pi\)
−0.943449 + 0.331517i \(0.892439\pi\)
\(462\) 4.49911 + 2.06992i 0.209318 + 0.0963012i
\(463\) 4.31546 + 24.4742i 0.200556 + 1.13741i 0.904281 + 0.426938i \(0.140408\pi\)
−0.703724 + 0.710473i \(0.748481\pi\)
\(464\) 21.9660 + 7.99499i 1.01975 + 0.371158i
\(465\) 14.2618 + 1.17400i 0.661375 + 0.0544429i
\(466\) −0.551115 + 3.12553i −0.0255299 + 0.144787i
\(467\) 5.91777 10.2499i 0.273842 0.474308i −0.696001 0.718041i \(-0.745039\pi\)
0.969842 + 0.243734i \(0.0783722\pi\)
\(468\) −0.0862400 0.0486170i −0.00398645 0.00224732i
\(469\) −7.27564 12.6018i −0.335958 0.581896i
\(470\) −6.13850 + 2.23423i −0.283148 + 0.103057i
\(471\) 5.52246 21.0416i 0.254462 0.969547i
\(472\) −4.50927 + 3.78373i −0.207556 + 0.174160i
\(473\) 33.1905 27.8501i 1.52610 1.28055i
\(474\) 0.339526 0.0928466i 0.0155950 0.00426459i
\(475\) 0.0364524 0.0132676i 0.00167255 0.000608759i
\(476\) 3.77733 + 6.54252i 0.173134 + 0.299876i
\(477\) 3.83529 0.716944i 0.175606 0.0328266i
\(478\) −0.671288 + 1.16270i −0.0307040 + 0.0531809i
\(479\) 0.501383 2.84349i 0.0229088 0.129922i −0.971209 0.238231i \(-0.923432\pi\)
0.994117 + 0.108309i \(0.0345436\pi\)
\(480\) 9.66498 13.9550i 0.441144 0.636954i
\(481\) 0.0750857 + 0.0273290i 0.00342361 + 0.00124609i
\(482\) 1.91508 + 10.8610i 0.0872297 + 0.494704i
\(483\) 0.218148 + 2.35417i 0.00992607 + 0.107119i
\(484\) −22.6752 19.0267i −1.03069 0.864852i
\(485\) 22.0220 0.999966
\(486\) 1.51512 6.29676i 0.0687271 0.285627i
\(487\) 8.75903 0.396910 0.198455 0.980110i \(-0.436408\pi\)
0.198455 + 0.980110i \(0.436408\pi\)
\(488\) 8.42241 + 7.06724i 0.381265 + 0.319919i
\(489\) 0.529731 + 5.71667i 0.0239553 + 0.258517i
\(490\) 0.840397 + 4.76613i 0.0379653 + 0.215312i
\(491\) 21.2117 + 7.72044i 0.957272 + 0.348418i 0.772964 0.634450i \(-0.218773\pi\)
0.184308 + 0.982869i \(0.440996\pi\)
\(492\) −6.62264 + 9.56222i −0.298572 + 0.431098i
\(493\) 4.24716 24.0869i 0.191283 1.08482i
\(494\) −0.00156564 + 0.00271176i −7.04413e−5 + 0.000122008i
\(495\) 34.0677 6.36840i 1.53123 0.286238i
\(496\) −5.58354 9.67097i −0.250708 0.434239i
\(497\) −7.54478 + 2.74608i −0.338430 + 0.123178i
\(498\) 3.20246 0.875741i 0.143505 0.0392429i
\(499\) −19.4061 + 16.2836i −0.868734 + 0.728955i −0.963831 0.266513i \(-0.914128\pi\)
0.0950968 + 0.995468i \(0.469684\pi\)
\(500\) 15.7930 13.2519i 0.706284 0.592642i
\(501\) −9.04139 + 34.4494i −0.403940 + 1.53909i
\(502\) −1.75657 + 0.639340i −0.0783997 + 0.0285352i
\(503\) −1.87207 3.24252i −0.0834714 0.144577i 0.821267 0.570543i \(-0.193267\pi\)
−0.904739 + 0.425967i \(0.859934\pi\)
\(504\) 5.48386 + 3.09147i 0.244270 + 0.137705i
\(505\) −15.2842 + 26.4731i −0.680139 + 1.17804i
\(506\) −0.389187 + 2.20719i −0.0173015 + 0.0981216i
\(507\) −22.4402 1.84723i −0.996604 0.0820382i
\(508\) −14.4157 5.24690i −0.639595 0.232793i
\(509\) 4.22831 + 23.9800i 0.187417 + 1.06289i 0.922811 + 0.385253i \(0.125886\pi\)
−0.735394 + 0.677640i \(0.763003\pi\)
\(510\) −4.53677 2.08724i −0.200892 0.0924247i
\(511\) 0.552932 + 0.463965i 0.0244603 + 0.0205246i
\(512\) −22.7690 −1.00626
\(513\) 2.10313 + 0.528954i 0.0928554 + 0.0233539i
\(514\) −5.70660 −0.251707
\(515\) 7.74669 + 6.50025i 0.341360 + 0.286435i
\(516\) 21.4623 15.1929i 0.944824 0.668828i
\(517\) 6.42792 + 36.4546i 0.282700 + 1.60327i
\(518\) −2.27962 0.829715i −0.100161 0.0364556i
\(519\) −10.3853 21.9760i −0.455862 0.964639i
\(520\) −0.0110459 + 0.0626444i −0.000484395 + 0.00274714i
\(521\) −9.81046 + 16.9922i −0.429804 + 0.744443i −0.996856 0.0792397i \(-0.974751\pi\)
0.567051 + 0.823682i \(0.308084\pi\)
\(522\) −3.42188 9.10941i −0.149772 0.398708i
\(523\) −10.4077 18.0267i −0.455097 0.788251i 0.543597 0.839346i \(-0.317062\pi\)
−0.998694 + 0.0510956i \(0.983729\pi\)
\(524\) −26.6763 + 9.70937i −1.16536 + 0.424156i
\(525\) 0.150992 + 0.149449i 0.00658982 + 0.00652251i
\(526\) 7.70284 6.46345i 0.335860 0.281820i
\(527\) −8.95067 + 7.51051i −0.389897 + 0.327163i
\(528\) −19.2222 19.0258i −0.836539 0.827993i
\(529\) 20.6075 7.50052i 0.895978 0.326109i
\(530\) −0.598482 1.03660i −0.0259964 0.0450271i
\(531\) −10.9559 1.81604i −0.475447 0.0788095i
\(532\) −0.503217 + 0.871598i −0.0218172 + 0.0377886i
\(533\) 0.0115240 0.0653558i 0.000499159 0.00283087i
\(534\) −1.03710 2.19457i −0.0448795 0.0949685i
\(535\) 23.5147 + 8.55864i 1.01663 + 0.370022i
\(536\) −3.04479 17.2679i −0.131515 0.745859i
\(537\) 14.4055 10.1975i 0.621645 0.440054i
\(538\) −3.82117 3.20634i −0.164742 0.138235i
\(539\) 27.4245 1.18126
\(540\) 20.9233 2.15574i 0.900395 0.0927682i
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) −1.18324 0.992856i −0.0508245 0.0426468i
\(543\) −37.8503 17.4139i −1.62431 0.747301i
\(544\) 2.40681 + 13.6497i 0.103191 + 0.585227i
\(545\) −30.1898 10.9882i −1.29319 0.470682i
\(546\) −0.0170909 0.00140688i −0.000731421 6.02089e-5i
\(547\) 3.93273 22.3036i 0.168151 0.953633i −0.777604 0.628754i \(-0.783565\pi\)
0.945756 0.324879i \(-0.105324\pi\)
\(548\) 10.9711 19.0025i 0.468661 0.811745i
\(549\) 0.212980 + 20.7416i 0.00908976 + 0.885231i
\(550\) 0.100696 + 0.174411i 0.00429370 + 0.00743691i
\(551\) 3.06186 1.11443i 0.130440 0.0474761i
\(552\) −0.723220 + 2.75560i −0.0307823 + 0.117286i
\(553\) −0.494473 + 0.414912i −0.0210271 + 0.0176439i
\(554\) 7.47387 6.27132i 0.317534 0.266443i
\(555\) −16.3757 + 4.47810i −0.695111 + 0.190085i
\(556\) 10.5523 3.84072i 0.447517 0.162883i
\(557\) −18.2259 31.5682i −0.772256 1.33759i −0.936324 0.351138i \(-0.885795\pi\)
0.164067 0.986449i \(-0.447539\pi\)
\(558\) −1.54500 + 4.38440i −0.0654049 + 0.185606i
\(559\) −0.0750139 + 0.129928i −0.00317275 + 0.00549537i
\(560\) −1.51985 + 8.61952i −0.0642256 + 0.364241i
\(561\) −16.1121 + 23.2637i −0.680253 + 0.982196i
\(562\) −7.95334 2.89478i −0.335491 0.122109i
\(563\) 4.60450 + 26.1134i 0.194056 + 1.10055i 0.913756 + 0.406263i \(0.133168\pi\)
−0.719700 + 0.694285i \(0.755721\pi\)
\(564\) 2.07290 + 22.3700i 0.0872847 + 0.941945i
\(565\) 21.3108 + 17.8819i 0.896552 + 0.752296i
\(566\) −4.81938 −0.202574
\(567\) 2.30210 + 11.6514i 0.0966791 + 0.489313i
\(568\) −9.67492 −0.405950
\(569\) 17.5941 + 14.7632i 0.737581 + 0.618904i 0.932187 0.361978i \(-0.117898\pi\)
−0.194606 + 0.980882i \(0.562343\pi\)
\(570\) −0.0613854 0.662450i −0.00257115 0.0277470i
\(571\) −0.833165 4.72511i −0.0348669 0.197740i 0.962399 0.271641i \(-0.0875662\pi\)
−0.997266 + 0.0739009i \(0.976455\pi\)
\(572\) 0.161722 + 0.0588619i 0.00676193 + 0.00246114i
\(573\) −10.7949 + 15.5865i −0.450965 + 0.651134i
\(574\) −0.349871 + 1.98422i −0.0146033 + 0.0828197i
\(575\) −0.0480718 + 0.0832628i −0.00200473 + 0.00347230i
\(576\) −8.10043 9.45484i −0.337518 0.393952i
\(577\) 2.15666 + 3.73545i 0.0897831 + 0.155509i 0.907419 0.420226i \(-0.138049\pi\)
−0.817636 + 0.575735i \(0.804716\pi\)
\(578\) −2.80533 + 1.02106i −0.116686 + 0.0424704i
\(579\) 18.0536 4.93693i 0.750283 0.205172i
\(580\) 24.2098 20.3145i 1.00526 0.843512i
\(581\) −4.66393 + 3.91351i −0.193493 + 0.162360i
\(582\) −1.81606 + 6.91954i −0.0752782 + 0.286824i
\(583\) −6.37369 + 2.31983i −0.263971 + 0.0960777i
\(584\) 0.434885 + 0.753242i 0.0179957 + 0.0311694i
\(585\) −0.103309 + 0.0610685i −0.00427131 + 0.00252487i
\(586\) 6.55900 11.3605i 0.270950 0.469299i
\(587\) 7.26235 41.1868i 0.299749 1.69996i −0.347497 0.937681i \(-0.612968\pi\)
0.647246 0.762281i \(-0.275921\pi\)
\(588\) 16.5880 + 1.36548i 0.684076 + 0.0563116i
\(589\) −1.46271 0.532383i −0.0602699 0.0219365i
\(590\) 0.591603 + 3.35515i 0.0243559 + 0.138129i
\(591\) 34.7326 + 15.9795i 1.42871 + 0.657309i
\(592\) 10.1488 + 8.51582i 0.417111 + 0.349998i
\(593\) −31.5370 −1.29507 −0.647536 0.762035i \(-0.724200\pi\)
−0.647536 + 0.762035i \(0.724200\pi\)
\(594\) −0.808405 + 11.2296i −0.0331693 + 0.460757i
\(595\) 9.15786 0.375436
\(596\) −1.23583 1.03698i −0.0506214 0.0424764i
\(597\) 18.2179 12.8962i 0.745611 0.527807i
\(598\) −0.00134763 0.00764279i −5.51087e−5 0.000312537i
\(599\) 11.8686 + 4.31982i 0.484938 + 0.176503i 0.572907 0.819620i \(-0.305816\pi\)
−0.0879695 + 0.996123i \(0.528038\pi\)
\(600\) 0.109379 + 0.231454i 0.00446538 + 0.00944909i
\(601\) 3.56725 20.2309i 0.145511 0.825235i −0.821444 0.570289i \(-0.806831\pi\)
0.966955 0.254946i \(-0.0820577\pi\)
\(602\) 2.27744 3.94465i 0.0928216 0.160772i
\(603\) 21.0023 25.5580i 0.855282 1.04080i
\(604\) 7.51556 + 13.0173i 0.305804 + 0.529668i
\(605\) −33.7180 + 12.2724i −1.37083 + 0.498942i
\(606\) −7.05769 6.98559i −0.286699 0.283770i
\(607\) 9.89160 8.30003i 0.401487 0.336888i −0.419581 0.907718i \(-0.637823\pi\)
0.821068 + 0.570830i \(0.193378\pi\)
\(608\) −1.41448 + 1.18689i −0.0573648 + 0.0481348i
\(609\) 12.6827 + 12.5532i 0.513930 + 0.508680i
\(610\) 5.97966 2.17642i 0.242109 0.0881205i
\(611\) −0.0640889 0.111005i −0.00259276 0.00449079i
\(612\) −10.9039 + 13.2691i −0.440763 + 0.536371i
\(613\) 15.5799 26.9851i 0.629265 1.08992i −0.358434 0.933555i \(-0.616689\pi\)
0.987699 0.156364i \(-0.0499774\pi\)
\(614\) 0.585856 3.32255i 0.0236432 0.134087i
\(615\) 6.02447 + 12.7482i 0.242930 + 0.514059i
\(616\) −10.2836 3.74293i −0.414339 0.150807i
\(617\) −1.23998 7.03230i −0.0499199 0.283110i 0.949621 0.313400i \(-0.101468\pi\)
−0.999541 + 0.0302901i \(0.990357\pi\)
\(618\) −2.68129 + 1.89805i −0.107857 + 0.0763506i
\(619\) −7.68412 6.44774i −0.308851 0.259157i 0.475166 0.879896i \(-0.342388\pi\)
−0.784017 + 0.620740i \(0.786832\pi\)
\(620\) −15.0977 −0.606338
\(621\) −4.83569 + 2.34625i −0.194049 + 0.0941520i
\(622\) 9.90827 0.397285
\(623\) 3.40981 + 2.86117i 0.136611 + 0.114630i
\(624\) 0.0850787 + 0.0391423i 0.00340587 + 0.00156695i
\(625\) −4.25900 24.1540i −0.170360 0.966160i
\(626\) 10.5061 + 3.82392i 0.419909 + 0.152835i
\(627\) −3.75722 0.309286i −0.150049 0.0123517i
\(628\) −3.98552 + 22.6030i −0.159039 + 0.901957i
\(629\) 6.93093 12.0047i 0.276354 0.478660i
\(630\) 3.13650 1.85405i 0.124961 0.0738673i
\(631\) 3.53780 + 6.12765i 0.140838 + 0.243938i 0.927812 0.373047i \(-0.121687\pi\)
−0.786975 + 0.616985i \(0.788354\pi\)
\(632\) −0.730905 + 0.266028i −0.0290738 + 0.0105820i
\(633\) −10.5507 + 40.2002i −0.419353 + 1.59781i
\(634\) 2.65189 2.22520i 0.105320 0.0883741i
\(635\) −14.2457 + 11.9536i −0.565324 + 0.474363i
\(636\) −3.97070 + 1.08582i −0.157448 + 0.0430557i
\(637\) −0.0892352 + 0.0324790i −0.00353563 + 0.00128686i
\(638\) 8.45809 + 14.6498i 0.334859 + 0.579993i
\(639\) −11.8756 13.8613i −0.469793 0.548344i
\(640\) −11.7103 + 20.2828i −0.462890 + 0.801750i
\(641\) −0.870188 + 4.93508i −0.0343704 + 0.194924i −0.997158 0.0753337i \(-0.975998\pi\)
0.962788 + 0.270258i \(0.0871089\pi\)
\(642\) −4.62838 + 6.68277i −0.182667 + 0.263748i
\(643\) −1.53960 0.560367i −0.0607157 0.0220987i 0.311484 0.950251i \(-0.399174\pi\)
−0.372199 + 0.928153i \(0.621396\pi\)
\(644\) −0.433147 2.45650i −0.0170684 0.0967997i
\(645\) −2.94115 31.7398i −0.115807 1.24975i
\(646\) 0.416126 + 0.349171i 0.0163722 + 0.0137379i
\(647\) 34.4927 1.35605 0.678024 0.735040i \(-0.262836\pi\)
0.678024 + 0.735040i \(0.262836\pi\)
\(648\) −2.19521 + 14.1420i −0.0862359 + 0.555550i
\(649\) 19.3056 0.757813
\(650\) −0.000534207 0 0.000448253i −2.09533e−5 0 1.75819e-5i
\(651\) −0.786571 8.48840i −0.0308282 0.332687i
\(652\) −1.05182 5.96515i −0.0411923 0.233613i
\(653\) −36.4230 13.2569i −1.42534 0.518783i −0.489751 0.871862i \(-0.662912\pi\)
−0.935593 + 0.353080i \(0.885134\pi\)
\(654\) 5.94223 8.57980i 0.232360 0.335497i
\(655\) −5.97570 + 33.8899i −0.233490 + 1.32419i
\(656\) 5.50161 9.52907i 0.214802 0.372048i
\(657\) −0.545365 + 1.54764i −0.0212767 + 0.0603792i
\(658\) 1.94575 + 3.37015i 0.0758534 + 0.131382i
\(659\) −8.82552 + 3.21223i −0.343794 + 0.125131i −0.508146 0.861271i \(-0.669669\pi\)
0.164352 + 0.986402i \(0.447447\pi\)
\(660\) −35.2705 + 9.64505i −1.37290 + 0.375433i
\(661\) −18.4980 + 15.5217i −0.719489 + 0.603723i −0.927244 0.374458i \(-0.877829\pi\)
0.207755 + 0.978181i \(0.433384\pi\)
\(662\) 2.04335 1.71457i 0.0794169 0.0666387i
\(663\) 0.0248750 0.0947785i 0.000966065 0.00368089i
\(664\) −6.89399 + 2.50921i −0.267539 + 0.0973761i
\(665\) 0.610007 + 1.05656i 0.0236551 + 0.0409718i
\(666\) −0.0566265 5.51472i −0.00219423 0.213691i
\(667\) −4.03784 + 6.99375i −0.156346 + 0.270799i
\(668\) 6.52510 37.0057i 0.252464 1.43179i
\(669\) 37.3935 + 3.07815i 1.44572 + 0.119008i
\(670\) −9.53633 3.47094i −0.368421 0.134094i
\(671\) −6.26159 35.5112i −0.241726 1.37090i
\(672\) −9.18674 4.22656i −0.354386 0.163043i
\(673\) −20.2742 17.0121i −0.781514 0.655768i 0.162115 0.986772i \(-0.448168\pi\)
−0.943630 + 0.331003i \(0.892613\pi\)
\(674\) −3.10557 −0.119622
\(675\) −0.197346 + 0.440811i −0.00759585 + 0.0169668i
\(676\) 23.7554 0.913671
\(677\) 23.7986 + 19.9694i 0.914654 + 0.767486i 0.972999 0.230811i \(-0.0741378\pi\)
−0.0583448 + 0.998296i \(0.518582\pi\)
\(678\) −7.37609 + 5.22143i −0.283277 + 0.200528i
\(679\) −2.27807 12.9196i −0.0874245 0.495809i
\(680\) 10.3697 + 3.77426i 0.397660 + 0.144736i
\(681\) −16.0160 33.8910i −0.613734 1.29871i
\(682\) 1.40328 7.95842i 0.0537345 0.304744i
\(683\) −19.0681 + 33.0268i −0.729619 + 1.26374i 0.227425 + 0.973796i \(0.426969\pi\)
−0.957044 + 0.289942i \(0.906364\pi\)
\(684\) −2.25719 0.374149i −0.0863060 0.0143060i
\(685\) −13.2993 23.0351i −0.508140 0.880125i
\(686\) 6.31558 2.29868i 0.241130 0.0877642i
\(687\) −13.3016 13.1657i −0.507487 0.502303i
\(688\) −19.0552 + 15.9892i −0.726472 + 0.609583i
\(689\) 0.0179917 0.0150968i 0.000685428 0.000575142i
\(690\) 1.17191 + 1.15993i 0.0446137 + 0.0441579i
\(691\) −30.9436 + 11.2626i −1.17715 + 0.428448i −0.855195 0.518306i \(-0.826563\pi\)
−0.321957 + 0.946754i \(0.604341\pi\)
\(692\) 12.8221 + 22.2085i 0.487424 + 0.844242i
\(693\) −7.26030 19.3277i −0.275796 0.734198i
\(694\) −6.53414 + 11.3175i −0.248033 + 0.429605i
\(695\) 2.36380 13.4058i 0.0896641 0.508510i
\(696\) 9.18742 + 19.4413i 0.348248 + 0.736919i
\(697\) −10.8185 3.93762i −0.409781 0.149148i
\(698\) −0.855130 4.84968i −0.0323672 0.183563i
\(699\) 10.7992 7.64461i 0.408463 0.289146i
\(700\) −0.171702 0.144075i −0.00648971 0.00544551i
\(701\) −2.30710 −0.0871381 −0.0435690 0.999050i \(-0.513873\pi\)
−0.0435690 + 0.999050i \(0.513873\pi\)
\(702\) −0.0106689 0.0374969i −0.000402671 0.00141523i
\(703\) 1.84668 0.0696490
\(704\) 16.5800 + 13.9123i 0.624881 + 0.524338i
\(705\) 24.7406 + 11.3825i 0.931784 + 0.428688i
\(706\) 0.592100 + 3.35796i 0.0222840 + 0.126379i
\(707\) 17.1120 + 6.22826i 0.643563 + 0.234238i
\(708\) 11.6772 + 0.961241i 0.438857 + 0.0361257i
\(709\) −1.93654 + 10.9826i −0.0727281 + 0.412462i 0.926608 + 0.376029i \(0.122711\pi\)
−0.999336 + 0.0364329i \(0.988400\pi\)
\(710\) −2.79979 + 4.84937i −0.105074 + 0.181994i
\(711\) −1.27830 0.720629i −0.0479400 0.0270257i
\(712\) 2.68184 + 4.64508i 0.100506 + 0.174082i
\(713\) 3.62525 1.31948i 0.135767 0.0494151i
\(714\) −0.755212 + 2.87750i −0.0282631 + 0.107688i
\(715\) 0.159815 0.134100i 0.00597673 0.00501507i
\(716\) −14.2646 + 11.9694i −0.533092 + 0.447317i
\(717\) 5.39888 1.47637i 0.201625 0.0551362i
\(718\) 6.92093 2.51901i 0.258287 0.0940087i
\(719\) 16.0850 + 27.8600i 0.599869 + 1.03900i 0.992840 + 0.119453i \(0.0381140\pi\)
−0.392971 + 0.919551i \(0.628553\pi\)
\(720\) −19.5588 + 3.65620i −0.728914 + 0.136259i
\(721\) 3.01213 5.21717i 0.112178 0.194297i
\(722\) 1.35819 7.70267i 0.0505465 0.286664i
\(723\) 26.1777 37.7972i 0.973560 1.40569i
\(724\) 41.3064 + 15.0343i 1.53514 + 0.558745i
\(725\) 0.126010 + 0.714637i 0.00467989 + 0.0265410i
\(726\) −1.07552 11.6066i −0.0399163 0.430762i
\(727\) −4.11022 3.44888i −0.152440 0.127912i 0.563378 0.826199i \(-0.309501\pi\)
−0.715818 + 0.698287i \(0.753946\pi\)
\(728\) 0.0378942 0.00140445
\(729\) −22.9558 + 14.2138i −0.850215 + 0.526435i
\(730\) 0.503399 0.0186316
\(731\) 19.9377 + 16.7297i 0.737424 + 0.618772i
\(732\) −2.01926 21.7911i −0.0746338 0.805422i
\(733\) −2.53463 14.3746i −0.0936187 0.530938i −0.995162 0.0982489i \(-0.968676\pi\)
0.901543 0.432689i \(-0.142435\pi\)
\(734\) −7.93296 2.88736i −0.292811 0.106574i
\(735\) 11.4876 16.5866i 0.423726 0.611805i
\(736\) 0.794682 4.50687i 0.0292924 0.166125i
\(737\) −28.7534 + 49.8023i −1.05915 + 1.83449i
\(738\) −4.50245 + 0.841659i −0.165737 + 0.0309819i
\(739\) 21.6083 + 37.4266i 0.794873 + 1.37676i 0.922920 + 0.384992i \(0.125796\pi\)
−0.128047 + 0.991768i \(0.540871\pi\)
\(740\) 16.8312 6.12607i 0.618729 0.225199i
\(741\) 0.0125917 0.00344333i 0.000462569 0.000126494i
\(742\) −0.546231 + 0.458343i −0.0200528 + 0.0168263i
\(743\) 6.21431 5.21443i 0.227981 0.191299i −0.521641 0.853165i \(-0.674680\pi\)
0.749622 + 0.661866i \(0.230235\pi\)
\(744\) 2.60770 9.93582i 0.0956028 0.364265i
\(745\) −1.83767 + 0.668859i −0.0673272 + 0.0245051i
\(746\) −2.01116 3.48342i −0.0736336 0.127537i
\(747\) −12.0571 6.79706i −0.441146 0.248692i
\(748\) 14.9280 25.8561i 0.545823 0.945393i
\(749\) 2.58860 14.6807i 0.0945854 0.536420i
\(750\) 8.09113 + 0.666044i 0.295446 + 0.0243205i
\(751\) −8.22744 2.99454i −0.300223 0.109272i 0.187516 0.982261i \(-0.439956\pi\)
−0.487740 + 0.872989i \(0.662178\pi\)
\(752\) −3.69037 20.9291i −0.134574 0.763207i
\(753\) 7.07968 + 3.25717i 0.257998 + 0.118698i
\(754\) −0.0448713 0.0376515i −0.00163412 0.00137119i
\(755\) 18.2210 0.663129
\(756\) −3.42913 12.0520i −0.124716 0.438329i
\(757\) −32.1511 −1.16855 −0.584276 0.811555i \(-0.698622\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(758\) 1.31414 + 1.10269i 0.0477316 + 0.0400515i
\(759\) 7.62620 5.39848i 0.276813 0.195952i
\(760\) 0.255283 + 1.44778i 0.00926008 + 0.0525165i
\(761\) 23.0656 + 8.39520i 0.836128 + 0.304326i 0.724371 0.689410i \(-0.242130\pi\)
0.111756 + 0.993736i \(0.464352\pi\)
\(762\) −2.58116 5.46192i −0.0935054 0.197865i
\(763\) −3.32342 + 18.8481i −0.120316 + 0.682346i