Properties

Label 27.2.e
Level $27$
Weight $2$
Character orbit 27.e
Rep. character $\chi_{27}(4,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $12$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 27.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(27, [\chi])\).

Total New Old
Modular forms 24 24 0
Cusp forms 12 12 0
Eisenstein series 12 12 0

Trace form

\( 12 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 6 q^{8} - 3 q^{10} + 3 q^{11} + 12 q^{12} - 6 q^{13} + 15 q^{14} + 9 q^{15} + 9 q^{17} + 9 q^{18} - 3 q^{19} - 3 q^{20} - 12 q^{21} + 3 q^{22} - 12 q^{23}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.2.e.a 27.e 27.e $12$ $0.216$ 12.0.\(\cdots\).1 None 27.2.e.a \(-6\) \(-6\) \(-3\) \(-6\) $\mathrm{SU}(2)[C_{9}]$ \(q+(-1-\beta _{3}+\beta _{8})q^{2}+(-1-\beta _{2}+\beta _{6}+\cdots)q^{3}+\cdots\)