Properties

Label 27.2.a
Level 27
Weight 2
Character orbit a
Rep. character \(\chi_{27}(1,\cdot)\)
Character field \(\Q\)
Dimension 1
Newforms 1
Sturm bound 6
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 27.a (trivial)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(27))\).

Total New Old
Modular forms 6 1 5
Cusp forms 1 1 0
Eisenstein series 5 0 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim.
\(-\)\(1\)

Trace form

\( q - 2q^{4} - q^{7} + O(q^{10}) \) \( q - 2q^{4} - q^{7} + 5q^{13} + 4q^{16} - 7q^{19} - 5q^{25} + 2q^{28} - 4q^{31} + 11q^{37} + 8q^{43} - 6q^{49} - 10q^{52} - q^{61} - 8q^{64} + 5q^{67} - 7q^{73} + 14q^{76} + 17q^{79} - 5q^{91} - 19q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 3
27.2.a.a \(1\) \(0.216\) \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(-1\) \(-\) \(q-2q^{4}-q^{7}+5q^{13}+4q^{16}-7q^{19}+\cdots\)