Properties

Label 27.2
Level 27
Weight 2
Dimension 13
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 108
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(108\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(27))\).

Total New Old
Modular forms 42 29 13
Cusp forms 13 13 0
Eisenstein series 29 16 13

Trace form

\( 13 q - 6 q^{2} - 6 q^{3} - 8 q^{4} - 3 q^{5} - 7 q^{7} + 6 q^{8} - 3 q^{10} + 3 q^{11} + 12 q^{12} - q^{13} + 15 q^{14} + 9 q^{15} + 4 q^{16} + 9 q^{17} + 9 q^{18} - 10 q^{19} - 3 q^{20} - 12 q^{21} + 3 q^{22}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
27.2.a \(\chi_{27}(1, \cdot)\) 27.2.a.a 1 1
27.2.c \(\chi_{27}(10, \cdot)\) None 0 2
27.2.e \(\chi_{27}(4, \cdot)\) 27.2.e.a 12 6