Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [27,11,Mod(2,27)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 11, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("27.2");
S:= CuspForms(chi, 11);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.f (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(17.1546458222\) |
Analytic rank: | \(0\) |
Dimension: | \(174\) |
Relative dimension: | \(29\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −56.8307 | − | 10.0208i | −240.581 | + | 34.2027i | 2167.07 | + | 788.750i | 3512.61 | + | 4186.16i | 14015.1 | + | 467.049i | −10298.5 | + | 3748.35i | −64076.9 | − | 36994.8i | 56709.4 | − | 16457.0i | −157675. | − | 273102.i |
2.2 | −56.1659 | − | 9.90357i | −197.148 | − | 142.062i | 2094.29 | + | 762.257i | −3678.77 | − | 4384.19i | 9666.10 | + | 9931.50i | 4723.20 | − | 1719.10i | −59501.5 | − | 34353.2i | 18685.9 | + | 56014.5i | 163203. | + | 282675.i |
2.3 | −54.5581 | − | 9.62006i | 241.646 | + | 25.6213i | 1921.79 | + | 699.476i | −1536.17 | − | 1830.74i | −12937.2 | − | 3722.49i | −13051.0 | + | 4750.19i | −48991.4 | − | 28285.2i | 57736.1 | + | 12382.5i | 66198.7 | + | 114660.i |
2.4 | −54.1567 | − | 9.54929i | 57.4013 | + | 236.123i | 1879.52 | + | 684.088i | 613.604 | + | 731.264i | −853.859 | − | 13335.8i | 30273.5 | − | 11018.7i | −46488.3 | − | 26840.0i | −52459.2 | + | 27107.5i | −26247.7 | − | 45462.4i |
2.5 | −50.9348 | − | 8.98117i | 58.0426 | − | 235.966i | 1551.44 | + | 564.679i | 1305.93 | + | 1556.34i | −5075.64 | + | 11497.6i | 599.564 | − | 218.223i | −28084.6 | − | 16214.7i | −52311.1 | − | 27392.2i | −52539.3 | − | 91000.7i |
2.6 | −41.9909 | − | 7.40413i | −31.5484 | + | 240.943i | 746.171 | + | 271.584i | −460.776 | − | 549.132i | 3108.72 | − | 9883.84i | −25768.4 | + | 9378.91i | 8490.87 | + | 4902.20i | −57058.4 | − | 15202.7i | 15282.6 | + | 26470.2i |
2.7 | −34.9718 | − | 6.16647i | −206.178 | + | 128.606i | 222.756 | + | 81.0766i | −1482.02 | − | 1766.21i | 8003.47 | − | 3226.20i | 4406.20 | − | 1603.73i | 24201.5 | + | 13972.8i | 25969.9 | − | 53031.6i | 40937.8 | + | 70906.3i |
2.8 | −29.9307 | − | 5.27758i | 216.698 | − | 109.959i | −94.2540 | − | 34.3057i | 378.278 | + | 450.814i | −7066.23 | + | 2147.50i | 11074.9 | − | 4030.93i | 29592.3 | + | 17085.1i | 34867.1 | − | 47655.7i | −8942.89 | − | 15489.5i |
2.9 | −27.8667 | − | 4.91365i | −146.293 | − | 194.029i | −209.837 | − | 76.3742i | 287.607 | + | 342.757i | 3123.30 | + | 6125.79i | 15362.6 | − | 5591.54i | 30565.9 | + | 17647.2i | −16245.9 | + | 56770.2i | −6330.48 | − | 10964.7i |
2.10 | −26.8887 | − | 4.74121i | 199.948 | + | 138.094i | −261.720 | − | 95.2582i | 3602.84 | + | 4293.69i | −4721.61 | − | 4661.16i | −9989.71 | + | 3635.96i | 30798.7 | + | 17781.7i | 20909.3 | + | 55223.1i | −76518.4 | − | 132534.i |
2.11 | −19.7178 | − | 3.47679i | −201.076 | − | 136.446i | −585.540 | − | 213.119i | 1387.93 | + | 1654.07i | 3490.39 | + | 3389.51i | −22901.7 | + | 8335.55i | 28560.3 | + | 16489.3i | 21814.1 | + | 54871.9i | −21616.2 | − | 37440.3i |
2.12 | −18.0069 | − | 3.17510i | 88.7734 | − | 226.204i | −648.078 | − | 235.881i | −3624.02 | − | 4318.93i | −2316.76 | + | 3791.37i | −24038.2 | + | 8749.19i | 27136.0 | + | 15667.0i | −43287.6 | − | 40161.8i | 51544.2 | + | 89277.3i |
2.13 | −15.0843 | − | 2.65976i | 178.198 | + | 165.210i | −741.784 | − | 269.987i | −2989.41 | − | 3562.64i | −2248.57 | − | 2966.04i | 13386.2 | − | 4872.18i | 24054.4 | + | 13887.8i | 4460.33 | + | 58880.3i | 35617.3 | + | 61691.0i |
2.14 | −6.94178 | − | 1.22402i | −197.177 | + | 142.021i | −915.555 | − | 333.235i | 3117.17 | + | 3714.90i | 1542.60 | − | 744.531i | 24236.9 | − | 8821.52i | 12198.7 | + | 7042.92i | 18708.9 | − | 56006.8i | −17091.6 | − | 29603.5i |
2.15 | 2.92749 | + | 0.516196i | −14.4961 | + | 242.567i | −953.942 | − | 347.206i | 237.873 | + | 283.486i | −167.649 | + | 702.630i | −6094.69 | + | 2218.29i | −5249.61 | − | 3030.86i | −58628.7 | − | 7032.56i | 550.037 | + | 952.692i |
2.16 | 9.76434 | + | 1.72172i | 232.294 | − | 71.3331i | −869.867 | − | 316.606i | 730.470 | + | 870.540i | 2391.01 | − | 296.575i | 5090.69 | − | 1852.86i | −16741.3 | − | 9665.57i | 48872.2 | − | 33140.5i | 5633.73 | + | 9757.91i |
2.17 | 9.99045 | + | 1.76159i | 58.8240 | − | 235.773i | −865.539 | − | 315.031i | 2619.44 | + | 3121.73i | 1003.01 | − | 2251.85i | −15129.3 | + | 5506.60i | −17088.5 | − | 9866.04i | −52128.5 | − | 27738.2i | 20670.2 | + | 35801.9i |
2.18 | 12.7838 | + | 2.25414i | −11.4870 | − | 242.728i | −803.900 | − | 292.596i | −1623.88 | − | 1935.26i | 400.294 | − | 3128.89i | 27986.1 | − | 10186.1i | −21129.1 | − | 12198.9i | −58785.1 | + | 5576.46i | −16397.0 | − | 28400.5i |
2.19 | 12.8751 | + | 2.27023i | −242.999 | + | 0.792606i | −801.631 | − | 291.770i | −2001.83 | − | 2385.69i | −3130.43 | − | 541.458i | −5414.20 | + | 1970.61i | −21252.6 | − | 12270.2i | 59047.7 | − | 385.204i | −20357.7 | − | 35260.6i |
2.20 | 24.9445 | + | 4.39838i | 228.011 | + | 84.0242i | −359.365 | − | 130.798i | −928.191 | − | 1106.17i | 5318.04 | + | 3098.82i | −25337.3 | + | 9222.03i | −30851.1 | − | 17811.9i | 44928.9 | + | 38316.9i | −18287.8 | − | 31675.5i |
See next 80 embeddings (of 174 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 27.11.f.a | ✓ | 174 |
3.b | odd | 2 | 1 | 81.11.f.a | 174 | ||
27.e | even | 9 | 1 | 81.11.f.a | 174 | ||
27.f | odd | 18 | 1 | inner | 27.11.f.a | ✓ | 174 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.11.f.a | ✓ | 174 | 1.a | even | 1 | 1 | trivial |
27.11.f.a | ✓ | 174 | 27.f | odd | 18 | 1 | inner |
81.11.f.a | 174 | 3.b | odd | 2 | 1 | ||
81.11.f.a | 174 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{11}^{\mathrm{new}}(27, [\chi])\).