Properties

Label 27.11.f
Level $27$
Weight $11$
Character orbit 27.f
Rep. character $\chi_{27}(2,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $174$
Newform subspaces $1$
Sturm bound $33$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 27.f (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(33\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(27, [\chi])\).

Total New Old
Modular forms 186 186 0
Cusp forms 174 174 0
Eisenstein series 12 12 0

Trace form

\( 174 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 4965 q^{5} + 18234 q^{6} - 6 q^{7} - 9 q^{8} + 119124 q^{9} - 3 q^{10} - 978 q^{11} - 1015107 q^{12} - 6 q^{13} + 2134569 q^{14} - 2548539 q^{15} - 3078 q^{16} - 9 q^{17}+ \cdots - 72892391589 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.11.f.a 27.f 27.f $174$ $17.155$ None 27.11.f.a \(-6\) \(-6\) \(-4965\) \(-6\) $\mathrm{SU}(2)[C_{18}]$