Properties

Label 27.11.d.a.8.3
Level $27$
Weight $11$
Character 27.8
Analytic conductor $17.155$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,11,Mod(8,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.8"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 11, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1546458222\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 2219 x^{16} + 4286 x^{15} + 3372866 x^{14} + 7237076 x^{13} + 2694115412 x^{12} + \cdots + 64\!\cdots\!96 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{52} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 8.3
Root \(-9.48684 - 16.4317i\) of defining polynomial
Character \(\chi\) \(=\) 27.8
Dual form 27.11.d.a.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-28.4605 - 16.4317i) q^{2} +(28.0010 + 48.4991i) q^{4} +(4600.38 - 2656.03i) q^{5} +(-1786.25 + 3093.87i) q^{7} +31811.7i q^{8} -174572. q^{10} +(169079. + 97617.9i) q^{11} +(220523. + 381956. i) q^{13} +(101675. - 58702.1i) q^{14} +(551393. - 955040. i) q^{16} -265563. i q^{17} -811519. q^{19} +(257630. + 148743. i) q^{20} +(-3.20805e6 - 5.55651e6i) q^{22} +(9.14778e6 - 5.28147e6i) q^{23} +(9.22616e6 - 1.59802e7i) q^{25} -1.44942e7i q^{26} -200066. q^{28} +(1.13762e7 + 6.56804e6i) q^{29} +(-4.61108e6 - 7.98662e6i) q^{31} +(-3.17493e6 + 1.83305e6i) q^{32} +(-4.36365e6 + 7.55807e6i) q^{34} +1.89773e7i q^{35} -4.13264e7 q^{37} +(2.30963e7 + 1.33346e7i) q^{38} +(8.44928e7 + 1.46346e8i) q^{40} +(-2.10108e7 + 1.21306e7i) q^{41} +(5.44344e7 - 9.42832e7i) q^{43} +1.09336e7i q^{44} -3.47134e8 q^{46} +(-5.13663e7 - 2.96563e7i) q^{47} +(1.34856e8 + 2.33578e8i) q^{49} +(-5.25163e8 + 3.03203e8i) q^{50} +(-1.23497e7 + 2.13903e7i) q^{52} -4.16883e8i q^{53} +1.03710e9 q^{55} +(-9.84212e7 - 5.68235e7i) q^{56} +(-2.15848e8 - 3.73859e8i) q^{58} +(5.12892e7 - 2.96118e7i) q^{59} +(-5.98641e8 + 1.03688e9i) q^{61} +3.03071e8i q^{62} -1.00877e9 q^{64} +(2.02897e9 + 1.17143e9i) q^{65} +(-8.05765e8 - 1.39563e9i) q^{67} +(1.28796e7 - 7.43602e6i) q^{68} +(3.11829e8 - 5.40103e8i) q^{70} -2.21707e9i q^{71} +1.54099e9 q^{73} +(1.17617e9 + 6.79063e8i) q^{74} +(-2.27233e7 - 3.93579e7i) q^{76} +(-6.04034e8 + 3.48739e8i) q^{77} +(2.40338e9 - 4.16277e9i) q^{79} -5.85806e9i q^{80} +7.97306e8 q^{82} +(-3.47374e8 - 2.00556e8i) q^{83} +(-7.05343e8 - 1.22169e9i) q^{85} +(-3.09847e9 + 1.78890e9i) q^{86} +(-3.10539e9 + 5.37870e9i) q^{88} +6.44300e9i q^{89} -1.57563e9 q^{91} +(5.12293e8 + 2.95773e8i) q^{92} +(9.74608e8 + 1.68807e9i) q^{94} +(-3.73329e9 + 2.15542e9i) q^{95} +(-2.76286e9 + 4.78541e9i) q^{97} -8.86367e9i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 3 q^{2} + 4095 q^{4} - 4956 q^{5} - 6120 q^{7} - 2052 q^{10} - 969 q^{11} + 140274 q^{13} + 2134578 q^{14} - 1571841 q^{16} + 2771370 q^{19} - 14542734 q^{20} - 3475521 q^{22} + 9944382 q^{23} + 14726277 q^{25}+ \cdots - 14510723337 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −28.4605 16.4317i −0.889391 0.513490i −0.0156480 0.999878i \(-0.504981\pi\)
−0.873743 + 0.486387i \(0.838314\pi\)
\(3\) 0 0
\(4\) 28.0010 + 48.4991i 0.0273447 + 0.0473624i
\(5\) 4600.38 2656.03i 1.47212 0.849929i 0.472612 0.881271i \(-0.343311\pi\)
0.999509 + 0.0313416i \(0.00997798\pi\)
\(6\) 0 0
\(7\) −1786.25 + 3093.87i −0.106280 + 0.184082i −0.914260 0.405127i \(-0.867227\pi\)
0.807981 + 0.589209i \(0.200561\pi\)
\(8\) 31811.7i 0.970816i
\(9\) 0 0
\(10\) −174572. −1.74572
\(11\) 169079. + 97617.9i 1.04985 + 0.606130i 0.922607 0.385741i \(-0.126054\pi\)
0.127242 + 0.991872i \(0.459388\pi\)
\(12\) 0 0
\(13\) 220523. + 381956.i 0.593931 + 1.02872i 0.993697 + 0.112102i \(0.0357583\pi\)
−0.399765 + 0.916618i \(0.630908\pi\)
\(14\) 101675. 58702.1i 0.189049 0.109147i
\(15\) 0 0
\(16\) 551393. 955040.i 0.525849 0.910798i
\(17\) 265563.i 0.187035i −0.995618 0.0935176i \(-0.970189\pi\)
0.995618 0.0935176i \(-0.0298111\pi\)
\(18\) 0 0
\(19\) −811519. −0.327741 −0.163871 0.986482i \(-0.552398\pi\)
−0.163871 + 0.986482i \(0.552398\pi\)
\(20\) 257630. + 148743.i 0.0805093 + 0.0464821i
\(21\) 0 0
\(22\) −3.20805e6 5.55651e6i −0.622484 1.07817i
\(23\) 9.14778e6 5.28147e6i 1.42127 0.820570i 0.424862 0.905258i \(-0.360323\pi\)
0.996408 + 0.0846876i \(0.0269892\pi\)
\(24\) 0 0
\(25\) 9.22616e6 1.59802e7i 0.944759 1.63637i
\(26\) 1.44942e7i 1.21991i
\(27\) 0 0
\(28\) −200066. −0.0116248
\(29\) 1.13762e7 + 6.56804e6i 0.554634 + 0.320218i 0.750989 0.660315i \(-0.229577\pi\)
−0.196355 + 0.980533i \(0.562911\pi\)
\(30\) 0 0
\(31\) −4.61108e6 7.98662e6i −0.161062 0.278968i 0.774188 0.632956i \(-0.218159\pi\)
−0.935250 + 0.353988i \(0.884825\pi\)
\(32\) −3.17493e6 + 1.83305e6i −0.0946204 + 0.0546291i
\(33\) 0 0
\(34\) −4.36365e6 + 7.55807e6i −0.0960408 + 0.166347i
\(35\) 1.89773e7i 0.361322i
\(36\) 0 0
\(37\) −4.13264e7 −0.595963 −0.297981 0.954572i \(-0.596313\pi\)
−0.297981 + 0.954572i \(0.596313\pi\)
\(38\) 2.30963e7 + 1.33346e7i 0.291490 + 0.168292i
\(39\) 0 0
\(40\) 8.44928e7 + 1.46346e8i 0.825125 + 1.42916i
\(41\) −2.10108e7 + 1.21306e7i −0.181353 + 0.104704i −0.587928 0.808913i \(-0.700056\pi\)
0.406575 + 0.913617i \(0.366723\pi\)
\(42\) 0 0
\(43\) 5.44344e7 9.42832e7i 0.370281 0.641346i −0.619328 0.785133i \(-0.712595\pi\)
0.989609 + 0.143787i \(0.0459280\pi\)
\(44\) 1.09336e7i 0.0662978i
\(45\) 0 0
\(46\) −3.47134e8 −1.68542
\(47\) −5.13663e7 2.96563e7i −0.223970 0.129309i 0.383817 0.923409i \(-0.374609\pi\)
−0.607787 + 0.794100i \(0.707943\pi\)
\(48\) 0 0
\(49\) 1.34856e8 + 2.33578e8i 0.477409 + 0.826897i
\(50\) −5.25163e8 + 3.03203e8i −1.68052 + 0.970249i
\(51\) 0 0
\(52\) −1.23497e7 + 2.13903e7i −0.0324817 + 0.0562600i
\(53\) 4.16883e8i 0.996860i −0.866930 0.498430i \(-0.833910\pi\)
0.866930 0.498430i \(-0.166090\pi\)
\(54\) 0 0
\(55\) 1.03710e9 2.06067
\(56\) −9.84212e7 5.68235e7i −0.178710 0.103178i
\(57\) 0 0
\(58\) −2.15848e8 3.73859e8i −0.328858 0.569598i
\(59\) 5.12892e7 2.96118e7i 0.0717407 0.0414195i −0.463701 0.885992i \(-0.653479\pi\)
0.535441 + 0.844572i \(0.320145\pi\)
\(60\) 0 0
\(61\) −5.98641e8 + 1.03688e9i −0.708790 + 1.22766i 0.256517 + 0.966540i \(0.417425\pi\)
−0.965306 + 0.261120i \(0.915908\pi\)
\(62\) 3.03071e8i 0.330816i
\(63\) 0 0
\(64\) −1.00877e9 −0.939492
\(65\) 2.02897e9 + 1.17143e9i 1.74868 + 1.00960i
\(66\) 0 0
\(67\) −8.05765e8 1.39563e9i −0.596807 1.03370i −0.993289 0.115658i \(-0.963102\pi\)
0.396482 0.918043i \(-0.370231\pi\)
\(68\) 1.28796e7 7.43602e6i 0.00885843 0.00511442i
\(69\) 0 0
\(70\) 3.11829e8 5.40103e8i 0.185535 0.321356i
\(71\) 2.21707e9i 1.22882i −0.788988 0.614408i \(-0.789395\pi\)
0.788988 0.614408i \(-0.210605\pi\)
\(72\) 0 0
\(73\) 1.54099e9 0.743338 0.371669 0.928365i \(-0.378786\pi\)
0.371669 + 0.928365i \(0.378786\pi\)
\(74\) 1.17617e9 + 6.79063e8i 0.530044 + 0.306021i
\(75\) 0 0
\(76\) −2.27233e7 3.93579e7i −0.00896197 0.0155226i
\(77\) −6.04034e8 + 3.48739e8i −0.223156 + 0.128839i
\(78\) 0 0
\(79\) 2.40338e9 4.16277e9i 0.781064 1.35284i −0.150258 0.988647i \(-0.548010\pi\)
0.931322 0.364196i \(-0.118656\pi\)
\(80\) 5.85806e9i 1.78774i
\(81\) 0 0
\(82\) 7.97306e8 0.215058
\(83\) −3.47374e8 2.00556e8i −0.0881875 0.0509151i 0.455258 0.890360i \(-0.349547\pi\)
−0.543445 + 0.839445i \(0.682880\pi\)
\(84\) 0 0
\(85\) −7.05343e8 1.22169e9i −0.158967 0.275338i
\(86\) −3.09847e9 + 1.78890e9i −0.658650 + 0.380272i
\(87\) 0 0
\(88\) −3.10539e9 + 5.37870e9i −0.588441 + 1.01921i
\(89\) 6.44300e9i 1.15382i 0.816808 + 0.576910i \(0.195742\pi\)
−0.816808 + 0.576910i \(0.804258\pi\)
\(90\) 0 0
\(91\) −1.57563e9 −0.252492
\(92\) 5.12293e8 + 2.95773e8i 0.0777283 + 0.0448765i
\(93\) 0 0
\(94\) 9.74608e8 + 1.68807e9i 0.132798 + 0.230012i
\(95\) −3.73329e9 + 2.15542e9i −0.482474 + 0.278557i
\(96\) 0 0
\(97\) −2.76286e9 + 4.78541e9i −0.321736 + 0.557263i −0.980846 0.194783i \(-0.937600\pi\)
0.659110 + 0.752046i \(0.270933\pi\)
\(98\) 8.86367e9i 0.980580i
\(99\) 0 0
\(100\) 1.03337e9 0.103337
\(101\) 1.51991e10 + 8.77521e9i 1.44614 + 0.834931i 0.998249 0.0591555i \(-0.0188408\pi\)
0.447894 + 0.894087i \(0.352174\pi\)
\(102\) 0 0
\(103\) 7.24041e9 + 1.25408e10i 0.624564 + 1.08178i 0.988625 + 0.150402i \(0.0480567\pi\)
−0.364061 + 0.931375i \(0.618610\pi\)
\(104\) −1.21507e10 + 7.01520e9i −0.998697 + 0.576598i
\(105\) 0 0
\(106\) −6.85008e9 + 1.18647e10i −0.511878 + 0.886599i
\(107\) 1.55323e10i 1.10743i 0.832705 + 0.553717i \(0.186791\pi\)
−0.832705 + 0.553717i \(0.813209\pi\)
\(108\) 0 0
\(109\) −1.19798e10 −0.778607 −0.389303 0.921110i \(-0.627284\pi\)
−0.389303 + 0.921110i \(0.627284\pi\)
\(110\) −2.95165e10 1.70414e10i −1.83274 1.05814i
\(111\) 0 0
\(112\) 1.96985e9 + 3.41187e9i 0.111774 + 0.193599i
\(113\) 5.23508e9 3.02248e9i 0.284139 0.164048i −0.351157 0.936317i \(-0.614212\pi\)
0.635296 + 0.772269i \(0.280878\pi\)
\(114\) 0 0
\(115\) 2.80555e10 4.85935e10i 1.39485 2.41596i
\(116\) 7.35645e8i 0.0350250i
\(117\) 0 0
\(118\) −1.94629e9 −0.0850741
\(119\) 8.21618e8 + 4.74361e8i 0.0344298 + 0.0198781i
\(120\) 0 0
\(121\) 6.08980e9 + 1.05478e10i 0.234788 + 0.406665i
\(122\) 3.40753e10 1.96734e10i 1.26078 0.727913i
\(123\) 0 0
\(124\) 2.58229e8 4.47266e8i 0.00880839 0.0152566i
\(125\) 4.61443e10i 1.51205i
\(126\) 0 0
\(127\) −6.98534e9 −0.211431 −0.105716 0.994396i \(-0.533713\pi\)
−0.105716 + 0.994396i \(0.533713\pi\)
\(128\) 3.19613e10 + 1.84529e10i 0.930197 + 0.537049i
\(129\) 0 0
\(130\) −3.84971e10 6.66789e10i −1.03684 1.79586i
\(131\) 1.99015e10 1.14901e10i 0.515858 0.297831i −0.219381 0.975639i \(-0.570404\pi\)
0.735238 + 0.677809i \(0.237070\pi\)
\(132\) 0 0
\(133\) 1.44957e9 2.51073e9i 0.0348323 0.0603313i
\(134\) 5.29603e10i 1.22582i
\(135\) 0 0
\(136\) 8.44802e9 0.181577
\(137\) −3.22308e10 1.86085e10i −0.667834 0.385574i 0.127422 0.991849i \(-0.459330\pi\)
−0.795255 + 0.606275i \(0.792663\pi\)
\(138\) 0 0
\(139\) 7.67071e9 + 1.32861e10i 0.147830 + 0.256048i 0.930425 0.366482i \(-0.119438\pi\)
−0.782595 + 0.622531i \(0.786105\pi\)
\(140\) −9.20381e8 + 5.31382e8i −0.0171130 + 0.00988022i
\(141\) 0 0
\(142\) −3.64302e10 + 6.30989e10i −0.630986 + 1.09290i
\(143\) 8.61078e10i 1.44000i
\(144\) 0 0
\(145\) 6.97796e10 1.08865
\(146\) −4.38575e10 2.53211e10i −0.661118 0.381697i
\(147\) 0 0
\(148\) −1.15718e9 2.00429e9i −0.0162964 0.0282262i
\(149\) 1.08699e11 6.27575e10i 1.48011 0.854543i 0.480366 0.877068i \(-0.340504\pi\)
0.999746 + 0.0225252i \(0.00717061\pi\)
\(150\) 0 0
\(151\) −1.84674e10 + 3.19865e10i −0.235246 + 0.407458i −0.959344 0.282239i \(-0.908923\pi\)
0.724098 + 0.689697i \(0.242256\pi\)
\(152\) 2.58158e10i 0.318176i
\(153\) 0 0
\(154\) 2.29215e10 0.264630
\(155\) −4.24254e10 2.44943e10i −0.474206 0.273783i
\(156\) 0 0
\(157\) −3.91244e9 6.77655e9i −0.0410156 0.0710412i 0.844789 0.535100i \(-0.179726\pi\)
−0.885804 + 0.464059i \(0.846393\pi\)
\(158\) −1.36803e11 + 7.89832e10i −1.38934 + 0.802138i
\(159\) 0 0
\(160\) −9.73726e9 + 1.68654e10i −0.0928617 + 0.160841i
\(161\) 3.77360e10i 0.348841i
\(162\) 0 0
\(163\) −5.11323e10 −0.444383 −0.222192 0.975003i \(-0.571321\pi\)
−0.222192 + 0.975003i \(0.571321\pi\)
\(164\) −1.17665e9 6.79337e8i −0.00991806 0.00572619i
\(165\) 0 0
\(166\) 6.59096e9 + 1.14159e10i 0.0522888 + 0.0905668i
\(167\) −6.69019e10 + 3.86258e10i −0.515058 + 0.297369i −0.734910 0.678164i \(-0.762776\pi\)
0.219852 + 0.975533i \(0.429442\pi\)
\(168\) 0 0
\(169\) −2.83312e10 + 4.90710e10i −0.205509 + 0.355952i
\(170\) 4.63599e10i 0.326511i
\(171\) 0 0
\(172\) 6.09687e9 0.0405009
\(173\) −1.09000e11 6.29310e10i −0.703387 0.406101i 0.105220 0.994449i \(-0.466445\pi\)
−0.808608 + 0.588348i \(0.799779\pi\)
\(174\) 0 0
\(175\) 3.29604e10 + 5.70891e10i 0.200818 + 0.347827i
\(176\) 1.86458e11 1.07652e11i 1.10412 0.637466i
\(177\) 0 0
\(178\) 1.05869e11 1.83371e11i 0.592475 1.02620i
\(179\) 6.27752e10i 0.341604i −0.985305 0.170802i \(-0.945364\pi\)
0.985305 0.170802i \(-0.0546358\pi\)
\(180\) 0 0
\(181\) −1.47944e11 −0.761559 −0.380779 0.924666i \(-0.624344\pi\)
−0.380779 + 0.924666i \(0.624344\pi\)
\(182\) 4.48433e10 + 2.58903e10i 0.224564 + 0.129652i
\(183\) 0 0
\(184\) 1.68013e11 + 2.91006e11i 0.796623 + 1.37979i
\(185\) −1.90117e11 + 1.09764e11i −0.877329 + 0.506526i
\(186\) 0 0
\(187\) 2.59237e10 4.49012e10i 0.113368 0.196359i
\(188\) 3.32162e9i 0.0141436i
\(189\) 0 0
\(190\) 1.41669e11 0.572145
\(191\) 1.17276e11 + 6.77092e10i 0.461362 + 0.266367i 0.712617 0.701554i \(-0.247510\pi\)
−0.251255 + 0.967921i \(0.580843\pi\)
\(192\) 0 0
\(193\) −1.10408e11 1.91233e11i −0.412302 0.714127i 0.582839 0.812587i \(-0.301942\pi\)
−0.995141 + 0.0984601i \(0.968608\pi\)
\(194\) 1.57265e11 9.07969e10i 0.572299 0.330417i
\(195\) 0 0
\(196\) −7.55221e9 + 1.30808e10i −0.0261092 + 0.0452225i
\(197\) 4.46791e10i 0.150582i 0.997162 + 0.0752911i \(0.0239886\pi\)
−0.997162 + 0.0752911i \(0.976011\pi\)
\(198\) 0 0
\(199\) −4.46907e11 −1.43203 −0.716014 0.698086i \(-0.754035\pi\)
−0.716014 + 0.698086i \(0.754035\pi\)
\(200\) 5.08357e11 + 2.93500e11i 1.58861 + 0.917187i
\(201\) 0 0
\(202\) −2.88383e11 4.99494e11i −0.857458 1.48516i
\(203\) −4.06413e10 + 2.34643e10i −0.117893 + 0.0680654i
\(204\) 0 0
\(205\) −6.44385e10 + 1.11611e11i −0.177982 + 0.308274i
\(206\) 4.75889e11i 1.28283i
\(207\) 0 0
\(208\) 4.86378e11 1.24927
\(209\) −1.37211e11 7.92188e10i −0.344079 0.198654i
\(210\) 0 0
\(211\) 6.42362e10 + 1.11260e11i 0.153592 + 0.266028i 0.932545 0.361053i \(-0.117583\pi\)
−0.778954 + 0.627081i \(0.784249\pi\)
\(212\) 2.02184e10 1.16731e10i 0.0472137 0.0272588i
\(213\) 0 0
\(214\) 2.55223e11 4.42059e11i 0.568657 0.984943i
\(215\) 5.78318e11i 1.25885i
\(216\) 0 0
\(217\) 3.29461e10 0.0684707
\(218\) 3.40952e11 + 1.96849e11i 0.692486 + 0.399807i
\(219\) 0 0
\(220\) 2.90399e10 + 5.02986e10i 0.0563484 + 0.0975983i
\(221\) 1.01434e11 5.85627e10i 0.192407 0.111086i
\(222\) 0 0
\(223\) 2.10363e11 3.64359e11i 0.381456 0.660702i −0.609814 0.792544i \(-0.708756\pi\)
0.991271 + 0.131843i \(0.0420893\pi\)
\(224\) 1.30971e10i 0.0232239i
\(225\) 0 0
\(226\) −1.98658e11 −0.336948
\(227\) −7.33509e11 4.23491e11i −1.21696 0.702612i −0.252693 0.967547i \(-0.581316\pi\)
−0.964266 + 0.264935i \(0.914649\pi\)
\(228\) 0 0
\(229\) 4.59850e11 + 7.96484e11i 0.730195 + 1.26474i 0.956799 + 0.290749i \(0.0939044\pi\)
−0.226604 + 0.973987i \(0.572762\pi\)
\(230\) −1.59695e12 + 9.21998e11i −2.48114 + 1.43249i
\(231\) 0 0
\(232\) −2.08940e11 + 3.61895e11i −0.310872 + 0.538447i
\(233\) 8.27043e11i 1.20434i 0.798368 + 0.602169i \(0.205697\pi\)
−0.798368 + 0.602169i \(0.794303\pi\)
\(234\) 0 0
\(235\) −3.15072e11 −0.439614
\(236\) 2.87229e9 + 1.65832e9i 0.00392345 + 0.00226521i
\(237\) 0 0
\(238\) −1.55891e10 2.70011e10i −0.0204144 0.0353588i
\(239\) 4.09810e11 2.36604e11i 0.525524 0.303412i −0.213668 0.976906i \(-0.568541\pi\)
0.739192 + 0.673495i \(0.235208\pi\)
\(240\) 0 0
\(241\) −6.09297e11 + 1.05533e12i −0.749452 + 1.29809i 0.198633 + 0.980074i \(0.436350\pi\)
−0.948086 + 0.318015i \(0.896984\pi\)
\(242\) 4.00263e11i 0.482246i
\(243\) 0 0
\(244\) −6.70501e10 −0.0775265
\(245\) 1.24078e12 + 7.16364e11i 1.40561 + 0.811528i
\(246\) 0 0
\(247\) −1.78958e11 3.09965e11i −0.194656 0.337154i
\(248\) 2.54068e11 1.46686e11i 0.270827 0.156362i
\(249\) 0 0
\(250\) −7.58228e11 + 1.31329e12i −0.776426 + 1.34481i
\(251\) 2.44960e11i 0.245882i 0.992414 + 0.122941i \(0.0392326\pi\)
−0.992414 + 0.122941i \(0.960767\pi\)
\(252\) 0 0
\(253\) 2.06227e12 1.98949
\(254\) 1.98806e11 + 1.14781e11i 0.188045 + 0.108568i
\(255\) 0 0
\(256\) −8.99325e10 1.55768e11i −0.0817932 0.141670i
\(257\) −7.78492e11 + 4.49463e11i −0.694366 + 0.400892i −0.805246 0.592941i \(-0.797967\pi\)
0.110880 + 0.993834i \(0.464633\pi\)
\(258\) 0 0
\(259\) 7.38192e10 1.27859e11i 0.0633389 0.109706i
\(260\) 1.31204e11i 0.110429i
\(261\) 0 0
\(262\) −7.55210e11 −0.611732
\(263\) −1.39389e12 8.04761e11i −1.10777 0.639570i −0.169518 0.985527i \(-0.554221\pi\)
−0.938250 + 0.345957i \(0.887554\pi\)
\(264\) 0 0
\(265\) −1.10725e12 1.91782e12i −0.847261 1.46750i
\(266\) −8.25112e10 + 4.76379e10i −0.0619591 + 0.0357721i
\(267\) 0 0
\(268\) 4.51243e10 7.81577e10i 0.0326390 0.0565324i
\(269\) 2.61272e11i 0.185495i 0.995690 + 0.0927474i \(0.0295649\pi\)
−0.995690 + 0.0927474i \(0.970435\pi\)
\(270\) 0 0
\(271\) 5.12325e10 0.0350509 0.0175254 0.999846i \(-0.494421\pi\)
0.0175254 + 0.999846i \(0.494421\pi\)
\(272\) −2.53624e11 1.46430e11i −0.170351 0.0983523i
\(273\) 0 0
\(274\) 6.11537e11 + 1.05921e12i 0.395977 + 0.685852i
\(275\) 3.11990e12 1.80128e12i 1.98371 1.14529i
\(276\) 0 0
\(277\) 1.38895e12 2.40574e12i 0.851705 1.47520i −0.0279632 0.999609i \(-0.508902\pi\)
0.879668 0.475588i \(-0.157765\pi\)
\(278\) 5.04171e11i 0.303636i
\(279\) 0 0
\(280\) −6.03699e11 −0.350777
\(281\) −5.73785e11 3.31275e11i −0.327505 0.189085i 0.327228 0.944945i \(-0.393885\pi\)
−0.654733 + 0.755860i \(0.727219\pi\)
\(282\) 0 0
\(283\) 1.28301e11 + 2.22224e11i 0.0706803 + 0.122422i 0.899200 0.437539i \(-0.144150\pi\)
−0.828519 + 0.559960i \(0.810816\pi\)
\(284\) 1.07526e11 6.20800e10i 0.0581997 0.0336016i
\(285\) 0 0
\(286\) 1.41490e12 2.45067e12i 0.739426 1.28072i
\(287\) 8.66730e10i 0.0445117i
\(288\) 0 0
\(289\) 1.94547e12 0.965018
\(290\) −1.98596e12 1.14660e12i −0.968236 0.559011i
\(291\) 0 0
\(292\) 4.31493e10 + 7.47367e10i 0.0203263 + 0.0352062i
\(293\) 8.98407e11 5.18696e11i 0.416040 0.240201i −0.277342 0.960771i \(-0.589453\pi\)
0.693382 + 0.720571i \(0.256120\pi\)
\(294\) 0 0
\(295\) 1.57300e11 2.72451e11i 0.0704073 0.121949i
\(296\) 1.31466e12i 0.578570i
\(297\) 0 0
\(298\) −4.12484e12 −1.75520
\(299\) 4.03458e12 + 2.32937e12i 1.68827 + 0.974725i
\(300\) 0 0
\(301\) 1.94467e11 + 3.36826e11i 0.0787069 + 0.136324i
\(302\) 1.05119e12 6.06903e11i 0.418451 0.241593i
\(303\) 0 0
\(304\) −4.47466e11 + 7.75034e11i −0.172342 + 0.298506i
\(305\) 6.36003e12i 2.40968i
\(306\) 0 0
\(307\) −4.44346e12 −1.62941 −0.814703 0.579878i \(-0.803100\pi\)
−0.814703 + 0.579878i \(0.803100\pi\)
\(308\) −3.38271e10 1.95301e10i −0.0122042 0.00704612i
\(309\) 0 0
\(310\) 8.04965e11 + 1.39424e12i 0.281170 + 0.487001i
\(311\) 1.87220e12 1.08091e12i 0.643501 0.371525i −0.142461 0.989800i \(-0.545502\pi\)
0.785962 + 0.618275i \(0.212168\pi\)
\(312\) 0 0
\(313\) −1.68206e12 + 2.91341e12i −0.559912 + 0.969796i 0.437591 + 0.899174i \(0.355832\pi\)
−0.997503 + 0.0706222i \(0.977502\pi\)
\(314\) 2.57152e11i 0.0842446i
\(315\) 0 0
\(316\) 2.69188e11 0.0854318
\(317\) −4.82315e12 2.78465e12i −1.50673 0.869909i −0.999969 0.00782054i \(-0.997511\pi\)
−0.506757 0.862089i \(-0.669156\pi\)
\(318\) 0 0
\(319\) 1.28232e12 + 2.22104e12i 0.388188 + 0.672361i
\(320\) −4.64073e12 + 2.67933e12i −1.38305 + 0.798502i
\(321\) 0 0
\(322\) 6.20067e11 1.07399e12i 0.179126 0.310256i
\(323\) 2.15510e11i 0.0612991i
\(324\) 0 0
\(325\) 8.13831e12 2.24449
\(326\) 1.45525e12 + 8.40191e11i 0.395230 + 0.228186i
\(327\) 0 0
\(328\) −3.85895e11 6.68390e11i −0.101648 0.176060i
\(329\) 1.83506e11 1.05947e11i 0.0476069 0.0274859i
\(330\) 0 0
\(331\) −1.43482e12 + 2.48518e12i −0.361125 + 0.625487i −0.988146 0.153515i \(-0.950941\pi\)
0.627021 + 0.779002i \(0.284274\pi\)
\(332\) 2.24631e10i 0.00556902i
\(333\) 0 0
\(334\) 2.53875e12 0.610784
\(335\) −7.41364e12 4.28027e12i −1.75714 1.01449i
\(336\) 0 0
\(337\) −1.02801e12 1.78057e12i −0.236510 0.409647i 0.723201 0.690638i \(-0.242670\pi\)
−0.959710 + 0.280991i \(0.909337\pi\)
\(338\) 1.61264e12 9.31057e11i 0.365556 0.211054i
\(339\) 0 0
\(340\) 3.95006e10 6.84170e10i 0.00869378 0.0150581i
\(341\) 1.80049e12i 0.390499i
\(342\) 0 0
\(343\) −1.97269e12 −0.415516
\(344\) 2.99931e12 + 1.73165e12i 0.622629 + 0.359475i
\(345\) 0 0
\(346\) 2.06812e12 + 3.58210e12i 0.417058 + 0.722365i
\(347\) −6.95132e12 + 4.01335e12i −1.38172 + 0.797736i −0.992363 0.123351i \(-0.960636\pi\)
−0.389356 + 0.921087i \(0.627302\pi\)
\(348\) 0 0
\(349\) −1.34088e12 + 2.32247e12i −0.258978 + 0.448562i −0.965968 0.258661i \(-0.916719\pi\)
0.706991 + 0.707223i \(0.250052\pi\)
\(350\) 2.16638e12i 0.412472i
\(351\) 0 0
\(352\) −7.15754e11 −0.132449
\(353\) 4.48889e12 + 2.59166e12i 0.818965 + 0.472830i 0.850060 0.526687i \(-0.176566\pi\)
−0.0310943 + 0.999516i \(0.509899\pi\)
\(354\) 0 0
\(355\) −5.88859e12 1.01993e13i −1.04441 1.80897i
\(356\) −3.12479e11 + 1.80410e11i −0.0546476 + 0.0315508i
\(357\) 0 0
\(358\) −1.03150e12 + 1.78661e12i −0.175410 + 0.303820i
\(359\) 3.36392e12i 0.564122i 0.959396 + 0.282061i \(0.0910181\pi\)
−0.959396 + 0.282061i \(0.908982\pi\)
\(360\) 0 0
\(361\) −5.47250e12 −0.892586
\(362\) 4.21055e12 + 2.43096e12i 0.677324 + 0.391053i
\(363\) 0 0
\(364\) −4.41191e10 7.64166e10i −0.00690431 0.0119586i
\(365\) 7.08915e12 4.09292e12i 1.09428 0.631784i
\(366\) 0 0
\(367\) 3.32859e12 5.76529e12i 0.499954 0.865946i −0.500046 0.865999i \(-0.666684\pi\)
1.00000 5.29711e-5i \(1.68612e-5\pi\)
\(368\) 1.16487e13i 1.72599i
\(369\) 0 0
\(370\) 7.21444e12 1.04039
\(371\) 1.28978e12 + 7.44655e11i 0.183504 + 0.105946i
\(372\) 0 0
\(373\) 4.76065e12 + 8.24569e12i 0.659360 + 1.14204i 0.980782 + 0.195108i \(0.0625059\pi\)
−0.321422 + 0.946936i \(0.604161\pi\)
\(374\) −1.47561e12 + 8.51941e11i −0.201657 + 0.116426i
\(375\) 0 0
\(376\) 9.43418e11 1.63405e12i 0.125535 0.217433i
\(377\) 5.79360e12i 0.760750i
\(378\) 0 0
\(379\) −8.87221e10 −0.0113458 −0.00567291 0.999984i \(-0.501806\pi\)
−0.00567291 + 0.999984i \(0.501806\pi\)
\(380\) −2.09072e11 1.20708e11i −0.0263862 0.0152341i
\(381\) 0 0
\(382\) −2.22515e12 3.85408e12i −0.273554 0.473809i
\(383\) 5.86193e12 3.38439e12i 0.711290 0.410663i −0.100249 0.994962i \(-0.531964\pi\)
0.811538 + 0.584299i \(0.198630\pi\)
\(384\) 0 0
\(385\) −1.85252e12 + 3.20866e12i −0.219008 + 0.379333i
\(386\) 7.25678e12i 0.846851i
\(387\) 0 0
\(388\) −3.09451e11 −0.0351911
\(389\) 4.58918e12 + 2.64956e12i 0.515213 + 0.297458i 0.734974 0.678095i \(-0.237194\pi\)
−0.219761 + 0.975554i \(0.570528\pi\)
\(390\) 0 0
\(391\) −1.40256e12 2.42931e12i −0.153476 0.265827i
\(392\) −7.43051e12 + 4.29001e12i −0.802765 + 0.463476i
\(393\) 0 0
\(394\) 7.34154e11 1.27159e12i 0.0773225 0.133926i
\(395\) 2.55338e13i 2.65540i
\(396\) 0 0
\(397\) −3.13721e12 −0.318120 −0.159060 0.987269i \(-0.550846\pi\)
−0.159060 + 0.987269i \(0.550846\pi\)
\(398\) 1.27192e13 + 7.34344e12i 1.27363 + 0.735333i
\(399\) 0 0
\(400\) −1.01745e13 1.76227e13i −0.993602 1.72097i
\(401\) −1.27712e13 + 7.37343e12i −1.23171 + 0.711128i −0.967386 0.253306i \(-0.918482\pi\)
−0.264324 + 0.964434i \(0.585149\pi\)
\(402\) 0 0
\(403\) 2.03369e12 3.52246e12i 0.191320 0.331376i
\(404\) 9.82857e11i 0.0913237i
\(405\) 0 0
\(406\) 1.54223e12 0.139804
\(407\) −6.98744e12 4.03420e12i −0.625671 0.361231i
\(408\) 0 0
\(409\) 1.09536e13 + 1.89723e13i 0.957066 + 1.65769i 0.729568 + 0.683908i \(0.239721\pi\)
0.227498 + 0.973779i \(0.426946\pi\)
\(410\) 3.66791e12 2.11767e12i 0.316591 0.182784i
\(411\) 0 0
\(412\) −4.05477e11 + 7.02307e11i −0.0341570 + 0.0591617i
\(413\) 2.11576e11i 0.0176082i
\(414\) 0 0
\(415\) −2.13074e12 −0.173097
\(416\) −1.40029e12 8.08457e11i −0.112396 0.0648919i
\(417\) 0 0
\(418\) 2.60340e12 + 4.50922e12i 0.204014 + 0.353362i
\(419\) 3.49651e12 2.01871e12i 0.270747 0.156316i −0.358480 0.933537i \(-0.616705\pi\)
0.629227 + 0.777221i \(0.283372\pi\)
\(420\) 0 0
\(421\) 8.17356e12 1.41570e13i 0.618017 1.07044i −0.371830 0.928301i \(-0.621270\pi\)
0.989847 0.142136i \(-0.0453971\pi\)
\(422\) 4.22204e12i 0.315471i
\(423\) 0 0
\(424\) 1.32617e13 0.967768
\(425\) −4.24375e12 2.45013e12i −0.306059 0.176703i
\(426\) 0 0
\(427\) −2.13864e12 3.70423e12i −0.150660 0.260951i
\(428\) −7.53304e11 + 4.34921e11i −0.0524507 + 0.0302825i
\(429\) 0 0
\(430\) −9.50274e12 + 1.64592e13i −0.646408 + 1.11961i
\(431\) 2.50079e12i 0.168148i −0.996460 0.0840739i \(-0.973207\pi\)
0.996460 0.0840739i \(-0.0267932\pi\)
\(432\) 0 0
\(433\) −2.23242e13 −1.46668 −0.733341 0.679861i \(-0.762040\pi\)
−0.733341 + 0.679861i \(0.762040\pi\)
\(434\) −9.37662e11 5.41360e11i −0.0608973 0.0351591i
\(435\) 0 0
\(436\) −3.35447e11 5.81011e11i −0.0212908 0.0368767i
\(437\) −7.42360e12 + 4.28602e12i −0.465808 + 0.268935i
\(438\) 0 0
\(439\) −6.20881e12 + 1.07540e13i −0.380790 + 0.659548i −0.991175 0.132557i \(-0.957681\pi\)
0.610385 + 0.792105i \(0.291015\pi\)
\(440\) 3.29920e13i 2.00053i
\(441\) 0 0
\(442\) −3.84914e12 −0.228166
\(443\) −1.60103e13 9.24354e12i −0.938383 0.541776i −0.0489299 0.998802i \(-0.515581\pi\)
−0.889453 + 0.457027i \(0.848914\pi\)
\(444\) 0 0
\(445\) 1.71128e13 + 2.96402e13i 0.980665 + 1.69856i
\(446\) −1.19741e13 + 6.91324e12i −0.678528 + 0.391748i
\(447\) 0 0
\(448\) 1.80192e12 3.12101e12i 0.0998491 0.172944i
\(449\) 2.39447e13i 1.31213i 0.754704 + 0.656065i \(0.227780\pi\)
−0.754704 + 0.656065i \(0.772220\pi\)
\(450\) 0 0
\(451\) −4.73666e12 −0.253857
\(452\) 2.93175e11 + 1.69264e11i 0.0155394 + 0.00897167i
\(453\) 0 0
\(454\) 1.39174e13 + 2.41056e13i 0.721568 + 1.24979i
\(455\) −7.24849e12 + 4.18492e12i −0.371698 + 0.214600i
\(456\) 0 0
\(457\) −7.61659e10 + 1.31923e11i −0.00382102 + 0.00661821i −0.867930 0.496687i \(-0.834550\pi\)
0.864109 + 0.503305i \(0.167883\pi\)
\(458\) 3.02245e13i 1.49979i
\(459\) 0 0
\(460\) 3.14232e12 0.152567
\(461\) 1.58511e13 + 9.15163e12i 0.761298 + 0.439535i 0.829761 0.558118i \(-0.188476\pi\)
−0.0684638 + 0.997654i \(0.521810\pi\)
\(462\) 0 0
\(463\) −1.66199e13 2.87865e13i −0.781130 1.35296i −0.931284 0.364294i \(-0.881310\pi\)
0.150154 0.988663i \(-0.452023\pi\)
\(464\) 1.25455e13 7.24314e12i 0.583307 0.336773i
\(465\) 0 0
\(466\) 1.35897e13 2.35381e13i 0.618416 1.07113i
\(467\) 7.43166e12i 0.334581i −0.985908 0.167291i \(-0.946498\pi\)
0.985908 0.167291i \(-0.0535018\pi\)
\(468\) 0 0
\(469\) 5.75718e12 0.253714
\(470\) 8.96713e12 + 5.17717e12i 0.390988 + 0.225737i
\(471\) 0 0
\(472\) 9.42002e11 + 1.63160e12i 0.0402107 + 0.0696470i
\(473\) 1.84075e13 1.06276e13i 0.777478 0.448877i
\(474\) 0 0
\(475\) −7.48721e12 + 1.29682e13i −0.309636 + 0.536306i
\(476\) 5.31303e10i 0.00217424i
\(477\) 0 0
\(478\) −1.55512e13 −0.623196
\(479\) −1.02071e13 5.89306e12i −0.404785 0.233703i 0.283762 0.958895i \(-0.408418\pi\)
−0.688546 + 0.725192i \(0.741751\pi\)
\(480\) 0 0
\(481\) −9.11341e12 1.57849e13i −0.353961 0.613079i
\(482\) 3.46818e13 2.00236e13i 1.33311 0.769673i
\(483\) 0 0
\(484\) −3.41041e11 + 5.90700e11i −0.0128404 + 0.0222403i
\(485\) 2.93529e13i 1.09381i
\(486\) 0 0
\(487\) 2.09936e13 0.766375 0.383187 0.923671i \(-0.374826\pi\)
0.383187 + 0.923671i \(0.374826\pi\)
\(488\) −3.29848e13 1.90438e13i −1.19183 0.688104i
\(489\) 0 0
\(490\) −2.35422e13 4.07762e13i −0.833424 1.44353i
\(491\) 3.28779e13 1.89821e13i 1.15212 0.665176i 0.202716 0.979238i \(-0.435023\pi\)
0.949403 + 0.314062i \(0.101690\pi\)
\(492\) 0 0
\(493\) 1.74423e12 3.02109e12i 0.0598920 0.103736i
\(494\) 1.17624e13i 0.399815i
\(495\) 0 0
\(496\) −1.01701e13 −0.338778
\(497\) 6.85932e12 + 3.96023e12i 0.226203 + 0.130599i
\(498\) 0 0
\(499\) −2.27482e13 3.94011e13i −0.735267 1.27352i −0.954606 0.297871i \(-0.903724\pi\)
0.219339 0.975649i \(-0.429610\pi\)
\(500\) 2.23795e12 1.29208e12i 0.0716145 0.0413467i
\(501\) 0 0
\(502\) 4.02511e12 6.97169e12i 0.126258 0.218685i
\(503\) 2.11543e12i 0.0656990i 0.999460 + 0.0328495i \(0.0104582\pi\)
−0.999460 + 0.0328495i \(0.989542\pi\)
\(504\) 0 0
\(505\) 9.32288e13 2.83853
\(506\) −5.86932e13 3.38865e13i −1.76944 1.02158i
\(507\) 0 0
\(508\) −1.95596e11 3.38782e11i −0.00578152 0.0100139i
\(509\) −2.50999e13 + 1.44914e13i −0.734653 + 0.424152i −0.820122 0.572189i \(-0.806095\pi\)
0.0854689 + 0.996341i \(0.472761\pi\)
\(510\) 0 0
\(511\) −2.75259e12 + 4.76763e12i −0.0790019 + 0.136835i
\(512\) 3.18805e13i 0.906099i
\(513\) 0 0
\(514\) 2.95417e13 0.823418
\(515\) 6.66172e13 + 3.84615e13i 1.83887 + 1.06167i
\(516\) 0 0
\(517\) −5.78998e12 1.00285e13i −0.156756 0.271510i
\(518\) −4.20186e12 + 2.42595e12i −0.112666 + 0.0650478i
\(519\) 0 0
\(520\) −3.72651e13 + 6.45451e13i −0.980135 + 1.69764i
\(521\) 4.68220e13i 1.21972i −0.792508 0.609861i \(-0.791225\pi\)
0.792508 0.609861i \(-0.208775\pi\)
\(522\) 0 0
\(523\) −7.10610e13 −1.81603 −0.908014 0.418939i \(-0.862402\pi\)
−0.908014 + 0.418939i \(0.862402\pi\)
\(524\) 1.11452e12 + 6.43470e11i 0.0282119 + 0.0162882i
\(525\) 0 0
\(526\) 2.64472e13 + 4.58079e13i 0.656827 + 1.13766i
\(527\) −2.12095e12 + 1.22453e12i −0.0521768 + 0.0301243i
\(528\) 0 0
\(529\) 3.50747e13 6.07511e13i 0.846672 1.46648i
\(530\) 7.27761e13i 1.74024i
\(531\) 0 0
\(532\) 1.62358e11 0.00380991
\(533\) −9.26672e12 5.35014e12i −0.215422 0.124374i
\(534\) 0 0
\(535\) 4.12544e13 + 7.14546e13i 0.941241 + 1.63028i
\(536\) 4.43972e13 2.56327e13i 1.00353 0.579390i
\(537\) 0 0
\(538\) 4.29314e12 7.43594e12i 0.0952498 0.164977i
\(539\) 5.26576e13i 1.15749i
\(540\) 0 0
\(541\) −5.91756e13 −1.27690 −0.638449 0.769664i \(-0.720424\pi\)
−0.638449 + 0.769664i \(0.720424\pi\)
\(542\) −1.45810e12 8.41836e11i −0.0311739 0.0179983i
\(543\) 0 0
\(544\) 4.86790e11 + 8.43146e11i 0.0102176 + 0.0176973i
\(545\) −5.51117e13 + 3.18188e13i −1.14620 + 0.661760i
\(546\) 0 0
\(547\) −2.68575e13 + 4.65185e13i −0.548439 + 0.949924i 0.449943 + 0.893057i \(0.351444\pi\)
−0.998382 + 0.0568668i \(0.981889\pi\)
\(548\) 2.08422e12i 0.0421736i
\(549\) 0 0
\(550\) −1.18392e14 −2.35239
\(551\) −9.23198e12 5.33009e12i −0.181776 0.104949i
\(552\) 0 0
\(553\) 8.58605e12 + 1.48715e13i 0.166023 + 0.287560i
\(554\) −7.90608e13 + 4.56458e13i −1.51500 + 0.874685i
\(555\) 0 0
\(556\) −4.29574e11 + 7.44045e11i −0.00808471 + 0.0140031i
\(557\) 2.77658e13i 0.517887i 0.965893 + 0.258943i \(0.0833743\pi\)
−0.965893 + 0.258943i \(0.916626\pi\)
\(558\) 0 0
\(559\) 4.80161e13 0.879686
\(560\) 1.81241e13 + 1.04639e13i 0.329091 + 0.190001i
\(561\) 0 0
\(562\) 1.08868e13 + 1.88565e13i 0.194187 + 0.336341i
\(563\) 3.27738e13 1.89219e13i 0.579408 0.334521i −0.181490 0.983393i \(-0.558092\pi\)
0.760898 + 0.648872i \(0.224759\pi\)
\(564\) 0 0
\(565\) 1.60556e13 2.78091e13i 0.278858 0.482997i
\(566\) 8.43282e12i 0.145175i
\(567\) 0 0
\(568\) 7.05287e13 1.19295
\(569\) 1.27885e12 + 7.38342e11i 0.0214416 + 0.0123793i 0.510682 0.859769i \(-0.329393\pi\)
−0.489241 + 0.872149i \(0.662726\pi\)
\(570\) 0 0
\(571\) −3.60446e12 6.24311e12i −0.0593827 0.102854i 0.834806 0.550545i \(-0.185580\pi\)
−0.894188 + 0.447691i \(0.852247\pi\)
\(572\) −4.17615e12 + 2.41110e12i −0.0682018 + 0.0393763i
\(573\) 0 0
\(574\) −1.42418e12 + 2.46676e12i −0.0228563 + 0.0395883i
\(575\) 1.94911e14i 3.10097i
\(576\) 0 0
\(577\) 7.54481e13 1.17969 0.589847 0.807515i \(-0.299188\pi\)
0.589847 + 0.807515i \(0.299188\pi\)
\(578\) −5.53691e13 3.19674e13i −0.858279 0.495527i
\(579\) 0 0
\(580\) 1.95389e12 + 3.38424e12i 0.0297688 + 0.0515610i
\(581\) 1.24099e12 7.16486e11i 0.0187451 0.0108225i
\(582\) 0 0
\(583\) 4.06952e13 7.04862e13i 0.604227 1.04655i
\(584\) 4.90216e13i 0.721644i
\(585\) 0 0
\(586\) −3.40922e13 −0.493363
\(587\) 3.98143e13 + 2.29868e13i 0.571279 + 0.329828i 0.757660 0.652650i \(-0.226343\pi\)
−0.186381 + 0.982478i \(0.559676\pi\)
\(588\) 0 0
\(589\) 3.74198e12 + 6.48129e12i 0.0527867 + 0.0914293i
\(590\) −8.95366e12 + 5.16940e12i −0.125239 + 0.0723069i
\(591\) 0 0
\(592\) −2.27871e13 + 3.94684e13i −0.313387 + 0.542802i
\(593\) 2.34722e13i 0.320096i −0.987109 0.160048i \(-0.948835\pi\)
0.987109 0.160048i \(-0.0511649\pi\)
\(594\) 0 0
\(595\) 5.03967e12 0.0675798
\(596\) 6.08736e12 + 3.51454e12i 0.0809464 + 0.0467344i
\(597\) 0 0
\(598\) −7.65509e13 1.32590e14i −1.00102 1.73382i
\(599\) −1.12967e14 + 6.52215e13i −1.46493 + 0.845779i −0.999233 0.0391640i \(-0.987531\pi\)
−0.465699 + 0.884943i \(0.654197\pi\)
\(600\) 0 0
\(601\) −4.46521e13 + 7.73397e13i −0.569468 + 0.986348i 0.427150 + 0.904181i \(0.359518\pi\)
−0.996619 + 0.0821673i \(0.973816\pi\)
\(602\) 1.27817e13i 0.161661i
\(603\) 0 0
\(604\) −2.06842e12 −0.0257309
\(605\) 5.60308e13 + 3.23494e13i 0.691273 + 0.399107i
\(606\) 0 0
\(607\) 3.08075e13 + 5.33601e13i 0.373863 + 0.647550i 0.990156 0.139967i \(-0.0446997\pi\)
−0.616293 + 0.787517i \(0.711366\pi\)
\(608\) 2.57652e12 1.48755e12i 0.0310110 0.0179042i
\(609\) 0 0
\(610\) 1.04506e14 1.81010e14i 1.23735 2.14315i
\(611\) 2.61596e13i 0.307202i
\(612\) 0 0
\(613\) −5.04824e13 −0.583227 −0.291613 0.956536i \(-0.594192\pi\)
−0.291613 + 0.956536i \(0.594192\pi\)
\(614\) 1.26463e14 + 7.30136e13i 1.44918 + 0.836685i
\(615\) 0 0
\(616\) −1.10940e13 1.92153e13i −0.125079 0.216643i
\(617\) 1.27328e14 7.35127e13i 1.42396 0.822123i 0.427324 0.904099i \(-0.359456\pi\)
0.996634 + 0.0819758i \(0.0261230\pi\)
\(618\) 0 0
\(619\) −2.95318e13 + 5.11506e13i −0.324965 + 0.562856i −0.981505 0.191435i \(-0.938686\pi\)
0.656540 + 0.754291i \(0.272019\pi\)
\(620\) 2.74345e12i 0.0299460i
\(621\) 0 0
\(622\) −7.10449e13 −0.763099
\(623\) −1.99338e13 1.15088e13i −0.212398 0.122628i
\(624\) 0 0
\(625\) −3.24612e13 5.62245e13i −0.340380 0.589556i
\(626\) 9.57446e13 5.52782e13i 0.995962 0.575019i
\(627\) 0 0
\(628\) 2.19104e11 3.79500e11i 0.00224312 0.00388520i
\(629\) 1.09748e13i 0.111466i
\(630\) 0 0
\(631\) −7.75492e13 −0.775230 −0.387615 0.921821i \(-0.626701\pi\)
−0.387615 + 0.921821i \(0.626701\pi\)
\(632\) 1.32425e14 + 7.64556e13i 1.31336 + 0.758270i
\(633\) 0 0
\(634\) 9.15129e13 + 1.58505e14i 0.893380 + 1.54738i
\(635\) −3.21352e13 + 1.85533e13i −0.311252 + 0.179701i
\(636\) 0 0
\(637\) −5.94777e13 + 1.03018e14i −0.567097 + 0.982240i
\(638\) 8.42825e13i 0.797322i
\(639\) 0 0
\(640\) 1.96045e14 1.82582
\(641\) 1.39437e13 + 8.05042e12i 0.128851 + 0.0743924i 0.563040 0.826429i \(-0.309632\pi\)
−0.434189 + 0.900822i \(0.642965\pi\)
\(642\) 0 0
\(643\) −9.17679e13 1.58947e14i −0.834903 1.44609i −0.894110 0.447848i \(-0.852190\pi\)
0.0592068 0.998246i \(-0.481143\pi\)
\(644\) −1.83016e12 + 1.05665e12i −0.0165219 + 0.00953893i
\(645\) 0 0
\(646\) 3.54119e12 6.13352e12i 0.0314765 0.0545189i
\(647\) 5.13585e13i 0.452992i 0.974012 + 0.226496i \(0.0727271\pi\)
−0.974012 + 0.226496i \(0.927273\pi\)
\(648\) 0 0
\(649\) 1.15626e13 0.100423
\(650\) −2.31621e14 1.33726e14i −1.99623 1.15252i
\(651\) 0 0
\(652\) −1.43175e12 2.47987e12i −0.0121515 0.0210470i
\(653\) −1.74591e14 + 1.00800e14i −1.47047 + 0.848975i −0.999450 0.0331487i \(-0.989447\pi\)
−0.471018 + 0.882124i \(0.656113\pi\)
\(654\) 0 0
\(655\) 6.10363e13 1.05718e14i 0.506270 0.876885i
\(656\) 2.67549e13i 0.220234i
\(657\) 0 0
\(658\) −6.96356e12 −0.0564549
\(659\) 4.33193e11 + 2.50104e11i 0.00348542 + 0.00201231i 0.501742 0.865017i \(-0.332693\pi\)
−0.498256 + 0.867030i \(0.666026\pi\)
\(660\) 0 0
\(661\) −5.50932e13 9.54243e13i −0.436607 0.756226i 0.560818 0.827939i \(-0.310487\pi\)
−0.997425 + 0.0717132i \(0.977153\pi\)
\(662\) 8.16715e13 4.71531e13i 0.642363 0.370869i
\(663\) 0 0
\(664\) 6.38004e12 1.10506e13i 0.0494291 0.0856138i
\(665\) 1.54004e13i 0.118420i
\(666\) 0 0
\(667\) 1.38756e14 1.05105
\(668\) −3.74664e12 2.16312e12i −0.0281682 0.0162629i
\(669\) 0 0
\(670\) 1.40664e14 + 2.43637e14i 1.04186 + 1.80455i
\(671\) −2.02435e14 + 1.16876e14i −1.48824 + 0.859238i
\(672\) 0 0
\(673\) −1.17227e14 + 2.03042e14i −0.849085 + 1.47066i 0.0329417 + 0.999457i \(0.489512\pi\)
−0.882026 + 0.471200i \(0.843821\pi\)
\(674\) 6.75679e13i 0.485782i
\(675\) 0 0
\(676\) −3.17320e12 −0.0224783
\(677\) −1.69905e14 9.80947e13i −1.19471 0.689767i −0.235340 0.971913i \(-0.575620\pi\)
−0.959371 + 0.282146i \(0.908954\pi\)
\(678\) 0 0
\(679\) −9.87029e12 1.70958e13i −0.0683882 0.118452i
\(680\) 3.88640e13 2.24382e13i 0.267303 0.154327i
\(681\) 0 0
\(682\) −2.95852e13 + 5.12430e13i −0.200517 + 0.347306i
\(683\) 1.69532e13i 0.114064i −0.998372 0.0570319i \(-0.981836\pi\)
0.998372 0.0570319i \(-0.0181637\pi\)
\(684\) 0 0
\(685\) −1.97698e14 −1.31084
\(686\) 5.61437e13 + 3.24146e13i 0.369556 + 0.213363i
\(687\) 0 0
\(688\) −6.00295e13 1.03974e14i −0.389424 0.674502i
\(689\) 1.59231e14 9.19320e13i 1.02549 0.592067i
\(690\) 0 0
\(691\) 3.84322e13 6.65665e13i 0.243952 0.422538i −0.717884 0.696162i \(-0.754889\pi\)
0.961837 + 0.273625i \(0.0882227\pi\)
\(692\) 7.04851e12i 0.0444188i
\(693\) 0 0
\(694\) 2.63784e14 1.63852
\(695\) 7.05763e13 + 4.07472e13i 0.435246 + 0.251289i
\(696\) 0 0
\(697\) 3.22144e12 + 5.57970e12i 0.0195833 + 0.0339193i
\(698\) 7.63242e13 4.40658e13i 0.460665 0.265965i
\(699\) 0 0
\(700\) −1.84585e12 + 3.19710e12i −0.0109826 + 0.0190224i
\(701\) 4.90611e13i 0.289833i −0.989444 0.144916i \(-0.953709\pi\)
0.989444 0.144916i \(-0.0462913\pi\)
\(702\) 0 0
\(703\) 3.35372e13 0.195322
\(704\) −1.70562e14 9.84742e13i −0.986325 0.569455i
\(705\) 0 0
\(706\) −8.51708e13 1.47520e14i −0.485587 0.841062i
\(707\) −5.42987e13 + 3.13494e13i −0.307392 + 0.177473i
\(708\) 0 0
\(709\) −1.44379e14 + 2.50072e14i −0.805884 + 1.39583i 0.109808 + 0.993953i \(0.464976\pi\)
−0.915692 + 0.401880i \(0.868357\pi\)
\(710\) 3.87038e14i 2.14517i
\(711\) 0 0
\(712\) −2.04963e14 −1.12015
\(713\) −8.43622e13 4.87065e13i −0.457826 0.264326i
\(714\) 0 0
\(715\) 2.28705e14 + 3.96128e14i 1.22390 + 2.11985i
\(716\) 3.04454e12 1.75776e12i 0.0161792 0.00934105i
\(717\) 0 0
\(718\) 5.52749e13 9.57389e13i 0.289671 0.501726i
\(719\) 3.60117e14i 1.87413i 0.349159 + 0.937063i \(0.386467\pi\)
−0.349159 + 0.937063i \(0.613533\pi\)
\(720\) 0 0
\(721\) −5.17326e13 −0.265514
\(722\) 1.55750e14 + 8.99225e13i 0.793858 + 0.458334i
\(723\) 0 0
\(724\) −4.14256e12 7.17513e12i −0.0208246 0.0360692i
\(725\) 2.09917e14 1.21196e14i 1.04799 0.605057i
\(726\) 0 0
\(727\) 2.06898e13 3.58358e13i 0.101879 0.176460i −0.810580 0.585628i \(-0.800848\pi\)
0.912459 + 0.409169i \(0.134181\pi\)
\(728\) 5.01235e13i 0.245123i
\(729\) 0 0
\(730\) −2.69014e14 −1.29766
\(731\) −2.50382e13 1.44558e13i −0.119954 0.0692556i
\(732\) 0 0
\(733\) −1.06927e14 1.85203e14i −0.505323 0.875244i −0.999981 0.00615689i \(-0.998040\pi\)
0.494659 0.869087i \(-0.335293\pi\)
\(734\) −1.89467e14 + 1.09389e14i −0.889310 + 0.513443i
\(735\) 0 0
\(736\) −1.93624e13 + 3.35366e13i −0.0896541 + 0.155285i
\(737\) 3.14628e14i 1.44697i
\(738\) 0 0
\(739\) 3.13831e13 0.142388 0.0711941 0.997462i \(-0.477319\pi\)
0.0711941 + 0.997462i \(0.477319\pi\)
\(740\) −1.06469e13 6.14700e12i −0.0479806 0.0277016i
\(741\) 0 0
\(742\) −2.44719e13 4.23865e13i −0.108805 0.188455i
\(743\) 2.67909e14 1.54677e14i 1.18316 0.683096i 0.226414 0.974031i \(-0.427300\pi\)
0.956743 + 0.290935i \(0.0939663\pi\)
\(744\) 0 0
\(745\) 3.33371e14 5.77416e14i 1.45260 2.51598i
\(746\) 3.12902e14i 1.35430i
\(747\) 0 0
\(748\) 2.90356e12 0.0124000
\(749\) −4.80550e13 2.77446e13i −0.203859 0.117698i
\(750\) 0 0
\(751\) 2.27578e14 + 3.94177e14i 0.952645 + 1.65003i 0.739669 + 0.672971i \(0.234982\pi\)
0.212976 + 0.977057i \(0.431684\pi\)
\(752\) −5.66460e13 + 3.27046e13i −0.235548 + 0.135994i
\(753\) 0 0
\(754\) 9.51986e13 1.64889e14i 0.390638 0.676604i
\(755\) 1.96200e14i 0.799769i
\(756\) 0 0
\(757\) 2.72559e14 1.09643 0.548214 0.836338i \(-0.315308\pi\)
0.548214 + 0.836338i \(0.315308\pi\)
\(758\) 2.52508e12 + 1.45785e12i 0.0100909 + 0.00582596i
\(759\) 0 0
\(760\) −6.85675e13 1.18762e14i −0.270427 0.468394i
\(761\) 2.81791e14 1.62692e14i 1.10409 0.637446i 0.166797 0.985991i \(-0.446658\pi\)
0.937292 + 0.348546i \(0.113324\pi\)
\(762\) 0 0
\(763\) 2.13989e13 3.70640e13i 0.0827502 0.143328i
\(764\) 7.58369e12i 0.0291349i
\(765\) 0 0
\(766\) −2.22445e14 −0.843487
\(767\) 2.26208e13 + 1.30601e13i 0.0852181 + 0.0492007i
\(768\) 0 0
\(769\) −3.42300e13 5.92881e13i −0.127284 0.220463i 0.795339 0.606165i \(-0.207293\pi\)
−0.922624 + 0.385702i \(0.873959\pi\)
\(770\) 1.05448e14 6.08802e13i 0.389568 0.224917i
\(771\) 0 0
\(772\) 6.18307e12 1.07094e13i 0.0225485 0.0390552i
\(773\) 1.34878e14i 0.488702i −0.969687 0.244351i \(-0.921425\pi\)
0.969687 0.244351i \(-0.0785749\pi\)
\(774\) 0 0
\(775\) −1.70170e14 −0.608660
\(776\) −1.52232e14 8.78912e13i −0.541000 0.312347i
\(777\) 0 0
\(778\) −8.70736e13 1.50816e14i −0.305484 0.529114i
\(779\) 1.70507e13 9.84422e12i 0.0594367 0.0343158i
\(780\) 0 0
\(781\) 2.16425e14 3.74860e14i 0.744823 1.29007i
\(782\) 9.21861e13i 0.315233i
\(783\) 0 0
\(784\) 2.97435e14 1.00418
\(785\) −3.59974e13 2.07831e13i −0.120760 0.0697208i
\(786\) 0 0
\(787\) −2.68184e14 4.64509e14i −0.888300 1.53858i −0.841883 0.539659i \(-0.818553\pi\)
−0.0464171 0.998922i \(-0.514780\pi\)
\(788\) −2.16690e12 + 1.25106e12i −0.00713193 + 0.00411762i
\(789\) 0 0
\(790\) −4.19563e14 + 7.26705e14i −1.36352 + 2.36169i
\(791\) 2.15955e13i 0.0697400i
\(792\) 0 0
\(793\) −5.28055e14 −1.68389
\(794\) 8.92866e13 + 5.15496e13i 0.282933 + 0.163351i
\(795\) 0 0
\(796\) −1.25138e13 2.16746e13i −0.0391584 0.0678243i
\(797\) −2.51255e14 + 1.45062e14i −0.781311 + 0.451090i −0.836895 0.547364i \(-0.815631\pi\)
0.0555838 + 0.998454i \(0.482298\pi\)
\(798\) 0 0
\(799\) −7.87563e12 + 1.36410e13i −0.0241853 + 0.0418902i
\(800\) 6.76480e13i 0.206445i
\(801\) 0 0
\(802\) 4.84632e14 1.46063
\(803\) 2.60550e14 + 1.50428e14i 0.780392 + 0.450560i
\(804\) 0 0
\(805\) 1.00228e14 + 1.73600e14i 0.296490 + 0.513535i
\(806\) −1.15760e14 + 6.68340e13i −0.340316 + 0.196482i
\(807\) 0 0
\(808\) −2.79154e14 + 4.83509e14i −0.810564 + 1.40394i
\(809\) 2.94489e14i 0.849820i 0.905236 + 0.424910i \(0.139694\pi\)
−0.905236 + 0.424910i \(0.860306\pi\)
\(810\) 0 0
\(811\) 3.53231e14 1.00682 0.503412 0.864046i \(-0.332078\pi\)
0.503412 + 0.864046i \(0.332078\pi\)
\(812\) −2.27599e12 1.31404e12i −0.00644748 0.00372245i
\(813\) 0 0
\(814\) 1.32577e14 + 2.29631e14i 0.370978 + 0.642552i
\(815\) −2.35228e14 + 1.35809e14i −0.654185 + 0.377694i
\(816\) 0 0
\(817\) −4.41746e13 + 7.65127e13i −0.121356 + 0.210195i
\(818\) 7.19947e14i 1.96578i
\(819\) 0 0
\(820\) −7.21736e12 −0.0194674
\(821\) −1.25805e14 7.26336e13i −0.337274 0.194725i 0.321792 0.946810i \(-0.395715\pi\)
−0.659066 + 0.752085i \(0.729048\pi\)
\(822\) 0 0
\(823\) 3.25505e14 + 5.63791e14i 0.862101 + 1.49320i 0.869898 + 0.493233i \(0.164185\pi\)
−0.00779686 + 0.999970i \(0.502482\pi\)
\(824\) −3.98943e14 + 2.30330e14i −1.05021 + 0.606337i
\(825\) 0 0
\(826\) 3.47655e12 6.02156e12i 0.00904166 0.0156606i
\(827\) 1.30511e14i 0.337381i 0.985669 + 0.168691i \(0.0539539\pi\)
−0.985669 + 0.168691i \(0.946046\pi\)
\(828\) 0 0
\(829\) 5.27820e14 1.34807 0.674036 0.738699i \(-0.264559\pi\)
0.674036 + 0.738699i \(0.264559\pi\)
\(830\) 6.06418e13 + 3.50116e13i 0.153951 + 0.0888835i
\(831\) 0 0
\(832\) −2.22457e14 3.85307e14i −0.557994 0.966474i
\(833\) 6.20297e13 3.58129e13i 0.154659 0.0892923i
\(834\) 0 0
\(835\) −2.05183e14 + 3.55387e14i −0.505485 + 0.875526i
\(836\) 8.87281e12i 0.0217285i
\(837\) 0 0
\(838\) −1.32683e14 −0.321067
\(839\) 6.49308e14 + 3.74878e14i 1.56186 + 0.901738i 0.997070 + 0.0765009i \(0.0243748\pi\)
0.564786 + 0.825237i \(0.308959\pi\)
\(840\) 0 0
\(841\) −1.24075e14 2.14905e14i −0.294921 0.510818i
\(842\) −4.65247e14 + 2.68611e14i −1.09932 + 0.634692i
\(843\) 0 0
\(844\) −3.59735e12 + 6.23079e12i −0.00839983 + 0.0145489i
\(845\) 3.00993e14i 0.698672i
\(846\) 0 0
\(847\) −4.35115e13 −0.0998131
\(848\) −3.98140e14 2.29866e14i −0.907938 0.524198i
\(849\) 0 0
\(850\) 8.05195e13 + 1.39464e14i 0.181471 + 0.314317i
\(851\) −3.78045e14 + 2.18264e14i −0.847024 + 0.489030i
\(852\) 0 0
\(853\) −1.56448e14 + 2.70976e14i −0.346437 + 0.600047i −0.985614 0.169013i \(-0.945942\pi\)
0.639176 + 0.769060i \(0.279275\pi\)
\(854\) 1.40566e14i 0.309450i
\(855\) 0 0
\(856\) −4.94110e14 −1.07512
\(857\) −4.91736e14 2.83904e14i −1.06372 0.614140i −0.137263 0.990535i \(-0.543830\pi\)
−0.926460 + 0.376394i \(0.877164\pi\)
\(858\) 0 0
\(859\) −8.21583e12 1.42302e13i −0.0175665 0.0304261i 0.857109 0.515136i \(-0.172259\pi\)
−0.874675 + 0.484710i \(0.838925\pi\)
\(860\) 2.80479e13 1.61935e13i 0.0596222 0.0344229i
\(861\) 0 0
\(862\) −4.10922e13 + 7.11739e13i −0.0863423 + 0.149549i
\(863\) 4.20844e14i 0.879158i −0.898204 0.439579i \(-0.855128\pi\)
0.898204 0.439579i \(-0.144872\pi\)
\(864\) 0 0
\(865\) −6.68586e14 −1.38063
\(866\) 6.35358e14 + 3.66824e14i 1.30445 + 0.753127i
\(867\) 0 0
\(868\) 9.22521e11 + 1.59785e12i 0.00187231 + 0.00324294i
\(869\) 8.12723e14 4.69226e14i 1.64000 0.946854i
\(870\) 0 0
\(871\) 3.55379e14 6.15534e14i 0.708925 1.22789i
\(872\) 3.81099e14i 0.755884i
\(873\) 0 0
\(874\) 2.81706e14 0.552381
\(875\) 1.42764e14 + 8.24250e13i 0.278342 + 0.160701i
\(876\) 0 0
\(877\) −2.05307e14 3.55602e14i −0.395736 0.685436i 0.597458 0.801900i \(-0.296177\pi\)
−0.993195 + 0.116464i \(0.962844\pi\)
\(878\) 3.53412e14 2.04042e14i 0.677343 0.391064i
\(879\) 0 0
\(880\) 5.71852e14 9.90476e14i 1.08360 1.87685i
\(881\) 2.02510e14i 0.381563i 0.981633 + 0.190782i \(0.0611022\pi\)
−0.981633 + 0.190782i \(0.938898\pi\)
\(882\) 0 0
\(883\) 4.02569e14 0.749957 0.374979 0.927033i \(-0.377650\pi\)
0.374979 + 0.927033i \(0.377650\pi\)
\(884\) 5.68047e12 + 3.27962e12i 0.0105226 + 0.00607523i
\(885\) 0 0
\(886\) 3.03774e14 + 5.26152e14i 0.556393 + 0.963701i
\(887\) −1.43038e14 + 8.25833e13i −0.260516 + 0.150409i −0.624570 0.780969i \(-0.714726\pi\)
0.364054 + 0.931378i \(0.381392\pi\)
\(888\) 0 0
\(889\) 1.24775e13 2.16117e13i 0.0224709 0.0389207i
\(890\) 1.12477e15i 2.01425i
\(891\) 0 0
\(892\) 2.35614e13 0.0417232
\(893\) 4.16847e13 + 2.40667e13i 0.0734040 + 0.0423798i
\(894\) 0 0
\(895\) −1.66733e14 2.88789e14i −0.290339 0.502882i
\(896\) −1.14182e14 + 6.59228e13i −0.197722 + 0.114155i
\(897\) 0 0
\(898\) 3.93451e14 6.81477e14i 0.673766 1.16700i
\(899\) 1.21143e14i 0.206300i
\(900\) 0 0
\(901\) −1.10709e14 −0.186448
\(902\) 1.34808e14 + 7.78313e13i 0.225778 + 0.130353i
\(903\) 0 0
\(904\) 9.61501e13 + 1.66537e14i 0.159260 + 0.275847i
\(905\) −6.80597e14 + 3.92943e14i −1.12111 + 0.647271i
\(906\) 0 0
\(907\) −2.08486e14 + 3.61109e14i −0.339658 + 0.588304i −0.984368 0.176122i \(-0.943645\pi\)
0.644711 + 0.764427i \(0.276978\pi\)
\(908\) 4.74326e13i 0.0768508i
\(909\) 0 0
\(910\) 2.75061e14 0.440780
\(911\) −8.19359e14 4.73057e14i −1.30582 0.753914i −0.324422 0.945913i \(-0.605170\pi\)
−0.981395 + 0.191999i \(0.938503\pi\)
\(912\) 0 0
\(913\) −3.91558e13 6.78199e13i −0.0617223 0.106906i
\(914\) 4.33544e12 2.50307e12i 0.00679677 0.00392412i
\(915\) 0 0
\(916\) −2.57525e13 + 4.46046e13i −0.0399339 + 0.0691676i
\(917\) 8.20969e13i 0.126614i
\(918\) 0 0
\(919\) −4.56833e14 −0.696914 −0.348457 0.937325i \(-0.613294\pi\)
−0.348457 + 0.937325i \(0.613294\pi\)
\(920\) 1.54584e15 + 8.92492e14i 2.34545 + 1.35415i
\(921\) 0 0
\(922\) −3.00754e14 5.20920e14i −0.451394 0.781838i
\(923\) 8.46823e14 4.88913e14i 1.26411 0.729833i
\(924\) 0 0
\(925\) −3.81284e14 + 6.60404e14i −0.563041 + 0.975216i
\(926\) 1.09237e15i 1.60441i
\(927\) 0 0
\(928\) −4.81581e13 −0.0699729
\(929\) 1.05626e14 + 6.09831e13i 0.152648 + 0.0881314i 0.574378 0.818590i \(-0.305244\pi\)
−0.421730 + 0.906721i \(0.638577\pi\)
\(930\) 0 0
\(931\) −1.09438e14 1.89553e14i −0.156467 0.271008i
\(932\) −4.01108e13 + 2.31580e13i −0.0570403 + 0.0329323i
\(933\) 0 0
\(934\) −1.22115e14 + 2.11509e14i −0.171804 + 0.297574i
\(935\) 2.75417e14i 0.385418i
\(936\) 0 0
\(937\) 1.70076e14 0.235475 0.117737 0.993045i \(-0.462436\pi\)
0.117737 + 0.993045i \(0.462436\pi\)
\(938\) −1.63852e14 9.46001e13i −0.225651 0.130280i
\(939\) 0 0
\(940\) −8.82233e12 1.52807e13i −0.0120211 0.0208211i
\(941\) 3.49074e14 2.01538e14i 0.473118 0.273155i −0.244426 0.969668i \(-0.578600\pi\)
0.717544 + 0.696513i \(0.245266\pi\)
\(942\) 0 0
\(943\) −1.28135e14 + 2.21936e14i −0.171834 + 0.297625i
\(944\) 6.53110e13i 0.0871217i
\(945\) 0 0
\(946\) −6.98515e14 −0.921977
\(947\) −9.23539e14 5.33205e14i −1.21257 0.700075i −0.249248 0.968440i \(-0.580184\pi\)
−0.963317 + 0.268365i \(0.913517\pi\)
\(948\) 0 0
\(949\) 3.39824e14 + 5.88592e14i 0.441492 + 0.764686i
\(950\) 4.26180e14 2.46055e14i 0.550776 0.317991i
\(951\) 0 0
\(952\) −1.50902e13 + 2.61371e13i −0.0192980 + 0.0334250i
\(953\) 1.49756e15i 1.90511i 0.304374 + 0.952553i \(0.401553\pi\)
−0.304374 + 0.952553i \(0.598447\pi\)
\(954\) 0 0
\(955\) 7.19350e14 0.905573
\(956\) 2.29501e13 + 1.32503e13i 0.0287406 + 0.0165934i
\(957\) 0 0
\(958\) 1.93666e14 + 3.35439e14i 0.240008 + 0.415706i
\(959\) 1.15144e14 6.64786e13i 0.141955 0.0819575i
\(960\) 0 0
\(961\) 3.67290e14 6.36165e14i 0.448118 0.776163i
\(962\) 5.98995e14i 0.727022i
\(963\) 0 0
\(964\) −6.82436e13 −0.0819741
\(965\) −1.01584e15 5.86495e14i −1.21392 0.700854i
\(966\) 0 0
\(967\) −1.35995e14 2.35550e14i −0.160839 0.278581i 0.774331 0.632781i \(-0.218087\pi\)
−0.935170 + 0.354200i \(0.884753\pi\)
\(968\) −3.35545e14 + 1.93727e14i −0.394797 + 0.227936i
\(969\) 0 0
\(970\) 4.82318e14 8.35400e14i 0.561662 0.972827i
\(971\) 8.53100e14i 0.988334i −0.869367 0.494167i \(-0.835473\pi\)
0.869367 0.494167i \(-0.164527\pi\)
\(972\) 0 0
\(973\) −5.48071e13 −0.0628453
\(974\) −5.97488e14 3.44960e14i −0.681607 0.393526i
\(975\) 0 0
\(976\) 6.60173e14 + 1.14345e15i 0.745433 + 1.29113i
\(977\) 5.42026e14 3.12939e14i 0.608902 0.351550i −0.163634 0.986521i \(-0.552321\pi\)
0.772536 + 0.634971i \(0.218988\pi\)
\(978\) 0 0
\(979\) −6.28952e14 + 1.08938e15i −0.699365 + 1.21134i
\(980\) 8.02355e13i 0.0887639i
\(981\) 0 0
\(982\) −1.24763e15 −1.36625
\(983\) 1.01027e15 + 5.83278e14i 1.10070 + 0.635489i 0.936405 0.350922i \(-0.114132\pi\)
0.164295 + 0.986411i \(0.447465\pi\)
\(984\) 0 0
\(985\) 1.18669e14 + 2.05541e14i 0.127984 + 0.221675i
\(986\) −9.92833e13 + 5.73212e13i −0.106535 + 0.0615079i
\(987\) 0 0
\(988\) 1.00220e13 1.73586e13i 0.0106456 0.0184387i
\(989\) 1.14998e15i 1.21537i
\(990\) 0 0
\(991\) −7.46502e14 −0.781021 −0.390511 0.920598i \(-0.627702\pi\)
−0.390511 + 0.920598i \(0.627702\pi\)
\(992\) 2.92797e13 + 1.69047e13i 0.0304795 + 0.0175974i
\(993\) 0 0
\(994\) −1.30146e14 2.25420e14i −0.134122 0.232306i
\(995\) −2.05594e15 + 1.18700e15i −2.10812 + 1.21712i
\(996\) 0 0
\(997\) 2.31616e14 4.01170e14i 0.235122 0.407242i −0.724186 0.689604i \(-0.757785\pi\)
0.959308 + 0.282362i \(0.0911178\pi\)
\(998\) 1.49517e15i 1.51021i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.11.d.a.8.3 18
3.2 odd 2 9.11.d.a.2.7 18
9.2 odd 6 81.11.b.a.80.5 18
9.4 even 3 9.11.d.a.5.7 yes 18
9.5 odd 6 inner 27.11.d.a.17.3 18
9.7 even 3 81.11.b.a.80.14 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.11.d.a.2.7 18 3.2 odd 2
9.11.d.a.5.7 yes 18 9.4 even 3
27.11.d.a.8.3 18 1.1 even 1 trivial
27.11.d.a.17.3 18 9.5 odd 6 inner
81.11.b.a.80.5 18 9.2 odd 6
81.11.b.a.80.14 18 9.7 even 3