Properties

Label 27.11.b.c.26.4
Level $27$
Weight $11$
Character 27.26
Analytic conductor $17.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,11,Mod(26,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.26");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1546458222\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 188x^{2} + 756 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.4
Root \(-2.02760i\) of defining polynomial
Character \(\chi\) \(=\) 27.26
Dual form 27.11.b.c.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+42.0446i q^{2} -743.750 q^{4} +4853.52i q^{5} +31826.0 q^{7} +11783.0i q^{8} -204064. q^{10} +114785. i q^{11} +266894. q^{13} +1.33811e6i q^{14} -1.25701e6 q^{16} -195246. i q^{17} -1.34484e6 q^{19} -3.60980e6i q^{20} -4.82607e6 q^{22} -9.10844e6i q^{23} -1.37910e7 q^{25} +1.12214e7i q^{26} -2.36706e7 q^{28} -9.95954e6i q^{29} -5.35116e6 q^{31} -4.07848e7i q^{32} +8.20904e6 q^{34} +1.54468e8i q^{35} +4.26102e7 q^{37} -5.65433e7i q^{38} -5.71891e7 q^{40} +1.71257e8i q^{41} -5.96642e7 q^{43} -8.53710e7i q^{44} +3.82961e8 q^{46} -3.45140e8i q^{47} +7.30418e8 q^{49} -5.79839e8i q^{50} -1.98502e8 q^{52} +3.02713e8i q^{53} -5.57109e8 q^{55} +3.75006e8i q^{56} +4.18745e8 q^{58} +4.87658e8i q^{59} -1.61436e8 q^{61} -2.24988e8i q^{62} +4.27600e8 q^{64} +1.29537e9i q^{65} -4.59991e8 q^{67} +1.45214e8i q^{68} -6.49455e9 q^{70} -2.12634e9i q^{71} +3.50692e9 q^{73} +1.79153e9i q^{74} +1.00023e9 q^{76} +3.65313e9i q^{77} -2.47582e8 q^{79} -6.10093e9i q^{80} -7.20044e9 q^{82} -5.42519e9i q^{83} +9.47630e8 q^{85} -2.50856e9i q^{86} -1.35251e9 q^{88} -8.33517e8i q^{89} +8.49415e9 q^{91} +6.77440e9i q^{92} +1.45113e10 q^{94} -6.52722e9i q^{95} -5.68524e9 q^{97} +3.07101e10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 548 q^{4} + 20516 q^{7} - 199800 q^{10} - 262420 q^{13} - 3207800 q^{16} - 8233516 q^{19} - 21085704 q^{22} - 47203580 q^{25} - 67604212 q^{28} - 46994920 q^{31} - 78985368 q^{34} + 108086444 q^{37}+ \cdots + 12969797468 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 42.0446i 1.31389i 0.753937 + 0.656947i \(0.228153\pi\)
−0.753937 + 0.656947i \(0.771847\pi\)
\(3\) 0 0
\(4\) −743.750 −0.726318
\(5\) 4853.52i 1.55313i 0.630039 + 0.776563i \(0.283039\pi\)
−0.630039 + 0.776563i \(0.716961\pi\)
\(6\) 0 0
\(7\) 31826.0 1.89361 0.946807 0.321801i \(-0.104288\pi\)
0.946807 + 0.321801i \(0.104288\pi\)
\(8\) 11783.0i 0.359589i
\(9\) 0 0
\(10\) −204064. −2.04064
\(11\) 114785.i 0.712722i 0.934348 + 0.356361i \(0.115983\pi\)
−0.934348 + 0.356361i \(0.884017\pi\)
\(12\) 0 0
\(13\) 266894. 0.718822 0.359411 0.933179i \(-0.382978\pi\)
0.359411 + 0.933179i \(0.382978\pi\)
\(14\) 1.33811e6i 2.48801i
\(15\) 0 0
\(16\) −1.25701e6 −1.19878
\(17\) − 195246.i − 0.137511i −0.997634 0.0687555i \(-0.978097\pi\)
0.997634 0.0687555i \(-0.0219028\pi\)
\(18\) 0 0
\(19\) −1.34484e6 −0.543129 −0.271565 0.962420i \(-0.587541\pi\)
−0.271565 + 0.962420i \(0.587541\pi\)
\(20\) − 3.60980e6i − 1.12806i
\(21\) 0 0
\(22\) −4.82607e6 −0.936441
\(23\) − 9.10844e6i − 1.41516i −0.706634 0.707579i \(-0.749787\pi\)
0.706634 0.707579i \(-0.250213\pi\)
\(24\) 0 0
\(25\) −1.37910e7 −1.41220
\(26\) 1.12214e7i 0.944457i
\(27\) 0 0
\(28\) −2.36706e7 −1.37537
\(29\) − 9.95954e6i − 0.485567i −0.970081 0.242783i \(-0.921940\pi\)
0.970081 0.242783i \(-0.0780605\pi\)
\(30\) 0 0
\(31\) −5.35116e6 −0.186913 −0.0934565 0.995623i \(-0.529792\pi\)
−0.0934565 + 0.995623i \(0.529792\pi\)
\(32\) − 4.07848e7i − 1.21548i
\(33\) 0 0
\(34\) 8.20904e6 0.180675
\(35\) 1.54468e8i 2.94102i
\(36\) 0 0
\(37\) 4.26102e7 0.614476 0.307238 0.951633i \(-0.400595\pi\)
0.307238 + 0.951633i \(0.400595\pi\)
\(38\) − 5.65433e7i − 0.713614i
\(39\) 0 0
\(40\) −5.71891e7 −0.558488
\(41\) 1.71257e8i 1.47819i 0.673603 + 0.739093i \(0.264746\pi\)
−0.673603 + 0.739093i \(0.735254\pi\)
\(42\) 0 0
\(43\) −5.96642e7 −0.405855 −0.202928 0.979194i \(-0.565046\pi\)
−0.202928 + 0.979194i \(0.565046\pi\)
\(44\) − 8.53710e7i − 0.517663i
\(45\) 0 0
\(46\) 3.82961e8 1.85937
\(47\) − 3.45140e8i − 1.50489i −0.658654 0.752446i \(-0.728874\pi\)
0.658654 0.752446i \(-0.271126\pi\)
\(48\) 0 0
\(49\) 7.30418e8 2.58578
\(50\) − 5.79839e8i − 1.85548i
\(51\) 0 0
\(52\) −1.98502e8 −0.522094
\(53\) 3.02713e8i 0.723856i 0.932206 + 0.361928i \(0.117881\pi\)
−0.932206 + 0.361928i \(0.882119\pi\)
\(54\) 0 0
\(55\) −5.57109e8 −1.10695
\(56\) 3.75006e8i 0.680924i
\(57\) 0 0
\(58\) 4.18745e8 0.637984
\(59\) 4.87658e8i 0.682111i 0.940043 + 0.341055i \(0.110784\pi\)
−0.940043 + 0.341055i \(0.889216\pi\)
\(60\) 0 0
\(61\) −1.61436e8 −0.191139 −0.0955697 0.995423i \(-0.530467\pi\)
−0.0955697 + 0.995423i \(0.530467\pi\)
\(62\) − 2.24988e8i − 0.245584i
\(63\) 0 0
\(64\) 4.27600e8 0.398233
\(65\) 1.29537e9i 1.11642i
\(66\) 0 0
\(67\) −4.59991e8 −0.340703 −0.170351 0.985383i \(-0.554490\pi\)
−0.170351 + 0.985383i \(0.554490\pi\)
\(68\) 1.45214e8i 0.0998766i
\(69\) 0 0
\(70\) −6.49455e9 −3.86419
\(71\) − 2.12634e9i − 1.17853i −0.807940 0.589265i \(-0.799417\pi\)
0.807940 0.589265i \(-0.200583\pi\)
\(72\) 0 0
\(73\) 3.50692e9 1.69166 0.845828 0.533456i \(-0.179107\pi\)
0.845828 + 0.533456i \(0.179107\pi\)
\(74\) 1.79153e9i 0.807357i
\(75\) 0 0
\(76\) 1.00023e9 0.394484
\(77\) 3.65313e9i 1.34962i
\(78\) 0 0
\(79\) −2.47582e8 −0.0804607 −0.0402303 0.999190i \(-0.512809\pi\)
−0.0402303 + 0.999190i \(0.512809\pi\)
\(80\) − 6.10093e9i − 1.86186i
\(81\) 0 0
\(82\) −7.20044e9 −1.94218
\(83\) − 5.42519e9i − 1.37729i −0.725101 0.688643i \(-0.758207\pi\)
0.725101 0.688643i \(-0.241793\pi\)
\(84\) 0 0
\(85\) 9.47630e8 0.213572
\(86\) − 2.50856e9i − 0.533251i
\(87\) 0 0
\(88\) −1.35251e9 −0.256287
\(89\) − 8.33517e8i − 0.149267i −0.997211 0.0746336i \(-0.976221\pi\)
0.997211 0.0746336i \(-0.0237787\pi\)
\(90\) 0 0
\(91\) 8.49415e9 1.36117
\(92\) 6.77440e9i 1.02785i
\(93\) 0 0
\(94\) 1.45113e10 1.97727
\(95\) − 6.52722e9i − 0.843548i
\(96\) 0 0
\(97\) −5.68524e9 −0.662049 −0.331024 0.943622i \(-0.607394\pi\)
−0.331024 + 0.943622i \(0.607394\pi\)
\(98\) 3.07101e10i 3.39744i
\(99\) 0 0
\(100\) 1.02571e10 1.02571
\(101\) 1.53576e8i 0.0146122i 0.999973 + 0.00730612i \(0.00232563\pi\)
−0.999973 + 0.00730612i \(0.997674\pi\)
\(102\) 0 0
\(103\) 1.57719e10 1.36050 0.680248 0.732982i \(-0.261872\pi\)
0.680248 + 0.732982i \(0.261872\pi\)
\(104\) 3.14482e9i 0.258481i
\(105\) 0 0
\(106\) −1.27275e10 −0.951070
\(107\) − 5.53794e9i − 0.394848i −0.980318 0.197424i \(-0.936743\pi\)
0.980318 0.197424i \(-0.0632575\pi\)
\(108\) 0 0
\(109\) 3.62784e9 0.235785 0.117892 0.993026i \(-0.462386\pi\)
0.117892 + 0.993026i \(0.462386\pi\)
\(110\) − 2.34234e10i − 1.45441i
\(111\) 0 0
\(112\) −4.00056e10 −2.27003
\(113\) − 9.07477e9i − 0.492542i −0.969201 0.246271i \(-0.920795\pi\)
0.969201 0.246271i \(-0.0792054\pi\)
\(114\) 0 0
\(115\) 4.42080e10 2.19792
\(116\) 7.40740e9i 0.352676i
\(117\) 0 0
\(118\) −2.05034e10 −0.896221
\(119\) − 6.21389e9i − 0.260393i
\(120\) 0 0
\(121\) 1.27619e10 0.492028
\(122\) − 6.78750e9i − 0.251137i
\(123\) 0 0
\(124\) 3.97992e9 0.135758
\(125\) − 1.95374e10i − 0.640202i
\(126\) 0 0
\(127\) −3.98885e10 −1.20734 −0.603670 0.797235i \(-0.706295\pi\)
−0.603670 + 0.797235i \(0.706295\pi\)
\(128\) − 2.37853e10i − 0.692245i
\(129\) 0 0
\(130\) −5.44635e10 −1.46686
\(131\) 7.31232e10i 1.89539i 0.319177 + 0.947695i \(0.396593\pi\)
−0.319177 + 0.947695i \(0.603407\pi\)
\(132\) 0 0
\(133\) −4.28009e10 −1.02848
\(134\) − 1.93401e10i − 0.447647i
\(135\) 0 0
\(136\) 2.30059e9 0.0494475
\(137\) 5.17212e10i 1.07168i 0.844319 + 0.535841i \(0.180005\pi\)
−0.844319 + 0.535841i \(0.819995\pi\)
\(138\) 0 0
\(139\) −5.04078e10 −0.971458 −0.485729 0.874109i \(-0.661446\pi\)
−0.485729 + 0.874109i \(0.661446\pi\)
\(140\) − 1.14886e11i − 2.13612i
\(141\) 0 0
\(142\) 8.94011e10 1.54846
\(143\) 3.06353e10i 0.512320i
\(144\) 0 0
\(145\) 4.83388e10 0.754147
\(146\) 1.47447e11i 2.22266i
\(147\) 0 0
\(148\) −3.16913e10 −0.446305
\(149\) 9.01167e10i 1.22708i 0.789663 + 0.613541i \(0.210256\pi\)
−0.789663 + 0.613541i \(0.789744\pi\)
\(150\) 0 0
\(151\) 6.67438e10 0.850210 0.425105 0.905144i \(-0.360237\pi\)
0.425105 + 0.905144i \(0.360237\pi\)
\(152\) − 1.58463e10i − 0.195303i
\(153\) 0 0
\(154\) −1.53594e11 −1.77326
\(155\) − 2.59720e10i − 0.290300i
\(156\) 0 0
\(157\) 7.09262e10 0.743547 0.371773 0.928324i \(-0.378750\pi\)
0.371773 + 0.928324i \(0.378750\pi\)
\(158\) − 1.04095e10i − 0.105717i
\(159\) 0 0
\(160\) 1.97950e11 1.88780
\(161\) − 2.89885e11i − 2.67976i
\(162\) 0 0
\(163\) 9.32173e10 0.810137 0.405068 0.914286i \(-0.367248\pi\)
0.405068 + 0.914286i \(0.367248\pi\)
\(164\) − 1.27372e11i − 1.07363i
\(165\) 0 0
\(166\) 2.28100e11 1.80961
\(167\) 9.22546e10i 0.710241i 0.934821 + 0.355120i \(0.115560\pi\)
−0.934821 + 0.355120i \(0.884440\pi\)
\(168\) 0 0
\(169\) −6.66262e10 −0.483294
\(170\) 3.98427e10i 0.280611i
\(171\) 0 0
\(172\) 4.43752e10 0.294780
\(173\) − 1.75298e11i − 1.13122i −0.824673 0.565610i \(-0.808641\pi\)
0.824673 0.565610i \(-0.191359\pi\)
\(174\) 0 0
\(175\) −4.38913e11 −2.67417
\(176\) − 1.44286e11i − 0.854397i
\(177\) 0 0
\(178\) 3.50449e10 0.196121
\(179\) 2.28815e11i 1.24514i 0.782563 + 0.622571i \(0.213912\pi\)
−0.782563 + 0.622571i \(0.786088\pi\)
\(180\) 0 0
\(181\) 2.39660e10 0.123368 0.0616841 0.998096i \(-0.480353\pi\)
0.0616841 + 0.998096i \(0.480353\pi\)
\(182\) 3.57133e11i 1.78844i
\(183\) 0 0
\(184\) 1.07325e11 0.508876
\(185\) 2.06810e11i 0.954359i
\(186\) 0 0
\(187\) 2.24112e10 0.0980070
\(188\) 2.56697e11i 1.09303i
\(189\) 0 0
\(190\) 2.74434e11 1.10833
\(191\) − 2.40981e11i − 0.948016i −0.880521 0.474008i \(-0.842807\pi\)
0.880521 0.474008i \(-0.157193\pi\)
\(192\) 0 0
\(193\) −6.86116e9 −0.0256219 −0.0128109 0.999918i \(-0.504078\pi\)
−0.0128109 + 0.999918i \(0.504078\pi\)
\(194\) − 2.39034e11i − 0.869862i
\(195\) 0 0
\(196\) −5.43248e11 −1.87810
\(197\) 1.87585e11i 0.632218i 0.948723 + 0.316109i \(0.102376\pi\)
−0.948723 + 0.316109i \(0.897624\pi\)
\(198\) 0 0
\(199\) −3.13244e11 −1.00373 −0.501866 0.864945i \(-0.667353\pi\)
−0.501866 + 0.864945i \(0.667353\pi\)
\(200\) − 1.62500e11i − 0.507813i
\(201\) 0 0
\(202\) −6.45704e9 −0.0191989
\(203\) − 3.16972e11i − 0.919477i
\(204\) 0 0
\(205\) −8.31200e11 −2.29581
\(206\) 6.63123e11i 1.78755i
\(207\) 0 0
\(208\) −3.35489e11 −0.861710
\(209\) − 1.54367e11i − 0.387100i
\(210\) 0 0
\(211\) 6.16867e11 1.47496 0.737479 0.675370i \(-0.236016\pi\)
0.737479 + 0.675370i \(0.236016\pi\)
\(212\) − 2.25143e11i − 0.525750i
\(213\) 0 0
\(214\) 2.32841e11 0.518788
\(215\) − 2.89581e11i − 0.630345i
\(216\) 0 0
\(217\) −1.70306e11 −0.353941
\(218\) 1.52531e11i 0.309796i
\(219\) 0 0
\(220\) 4.14350e11 0.803995
\(221\) − 5.21099e10i − 0.0988459i
\(222\) 0 0
\(223\) −6.29102e10 −0.114077 −0.0570383 0.998372i \(-0.518166\pi\)
−0.0570383 + 0.998372i \(0.518166\pi\)
\(224\) − 1.29802e12i − 2.30165i
\(225\) 0 0
\(226\) 3.81545e11 0.647149
\(227\) − 3.11463e11i − 0.516746i −0.966045 0.258373i \(-0.916814\pi\)
0.966045 0.258373i \(-0.0831863\pi\)
\(228\) 0 0
\(229\) 3.75521e10 0.0596289 0.0298145 0.999555i \(-0.490508\pi\)
0.0298145 + 0.999555i \(0.490508\pi\)
\(230\) 1.85871e12i 2.88783i
\(231\) 0 0
\(232\) 1.17353e11 0.174605
\(233\) − 8.71092e11i − 1.26848i −0.773135 0.634241i \(-0.781313\pi\)
0.773135 0.634241i \(-0.218687\pi\)
\(234\) 0 0
\(235\) 1.67514e12 2.33729
\(236\) − 3.62695e11i − 0.495429i
\(237\) 0 0
\(238\) 2.61261e11 0.342128
\(239\) − 6.79757e11i − 0.871694i −0.900021 0.435847i \(-0.856449\pi\)
0.900021 0.435847i \(-0.143551\pi\)
\(240\) 0 0
\(241\) −1.41486e12 −1.74032 −0.870160 0.492769i \(-0.835985\pi\)
−0.870160 + 0.492769i \(0.835985\pi\)
\(242\) 5.36571e11i 0.646472i
\(243\) 0 0
\(244\) 1.20068e11 0.138828
\(245\) 3.54510e12i 4.01604i
\(246\) 0 0
\(247\) −3.58930e11 −0.390413
\(248\) − 6.30529e10i − 0.0672119i
\(249\) 0 0
\(250\) 8.21442e11 0.841157
\(251\) 9.30317e11i 0.933818i 0.884305 + 0.466909i \(0.154633\pi\)
−0.884305 + 0.466909i \(0.845367\pi\)
\(252\) 0 0
\(253\) 1.04551e12 1.00861
\(254\) − 1.67710e12i − 1.58632i
\(255\) 0 0
\(256\) 1.43791e12 1.30777
\(257\) 9.61711e11i 0.857786i 0.903355 + 0.428893i \(0.141096\pi\)
−0.903355 + 0.428893i \(0.858904\pi\)
\(258\) 0 0
\(259\) 1.35611e12 1.16358
\(260\) − 9.63434e11i − 0.810877i
\(261\) 0 0
\(262\) −3.07444e12 −2.49034
\(263\) 3.37370e11i 0.268119i 0.990973 + 0.134059i \(0.0428013\pi\)
−0.990973 + 0.134059i \(0.957199\pi\)
\(264\) 0 0
\(265\) −1.46923e12 −1.12424
\(266\) − 1.79955e12i − 1.35131i
\(267\) 0 0
\(268\) 3.42118e11 0.247458
\(269\) − 5.96796e11i − 0.423706i −0.977302 0.211853i \(-0.932050\pi\)
0.977302 0.211853i \(-0.0679498\pi\)
\(270\) 0 0
\(271\) −2.73730e11 −0.187273 −0.0936367 0.995606i \(-0.529849\pi\)
−0.0936367 + 0.995606i \(0.529849\pi\)
\(272\) 2.45426e11i 0.164845i
\(273\) 0 0
\(274\) −2.17460e12 −1.40808
\(275\) − 1.58300e12i − 1.00651i
\(276\) 0 0
\(277\) 1.51777e12 0.930694 0.465347 0.885128i \(-0.345930\pi\)
0.465347 + 0.885128i \(0.345930\pi\)
\(278\) − 2.11938e12i − 1.27639i
\(279\) 0 0
\(280\) −1.82010e12 −1.05756
\(281\) − 3.31975e12i − 1.89485i −0.319984 0.947423i \(-0.603678\pi\)
0.319984 0.947423i \(-0.396322\pi\)
\(282\) 0 0
\(283\) 1.09147e12 0.601282 0.300641 0.953737i \(-0.402799\pi\)
0.300641 + 0.953737i \(0.402799\pi\)
\(284\) 1.58146e12i 0.855988i
\(285\) 0 0
\(286\) −1.28805e12 −0.673135
\(287\) 5.45042e12i 2.79912i
\(288\) 0 0
\(289\) 1.97787e12 0.981091
\(290\) 2.03239e12i 0.990869i
\(291\) 0 0
\(292\) −2.60827e12 −1.22868
\(293\) − 7.89580e11i − 0.365644i −0.983146 0.182822i \(-0.941477\pi\)
0.983146 0.182822i \(-0.0585232\pi\)
\(294\) 0 0
\(295\) −2.36686e12 −1.05940
\(296\) 5.02077e11i 0.220959i
\(297\) 0 0
\(298\) −3.78892e12 −1.61226
\(299\) − 2.43099e12i − 1.01725i
\(300\) 0 0
\(301\) −1.89887e12 −0.768534
\(302\) 2.80622e12i 1.11709i
\(303\) 0 0
\(304\) 1.69048e12 0.651092
\(305\) − 7.83531e11i − 0.296864i
\(306\) 0 0
\(307\) 3.49663e12 1.28221 0.641103 0.767454i \(-0.278477\pi\)
0.641103 + 0.767454i \(0.278477\pi\)
\(308\) − 2.71701e12i − 0.980253i
\(309\) 0 0
\(310\) 1.09198e12 0.381423
\(311\) 6.51859e11i 0.224053i 0.993705 + 0.112027i \(0.0357342\pi\)
−0.993705 + 0.112027i \(0.964266\pi\)
\(312\) 0 0
\(313\) 4.35319e12 1.44906 0.724529 0.689245i \(-0.242057\pi\)
0.724529 + 0.689245i \(0.242057\pi\)
\(314\) 2.98206e12i 0.976942i
\(315\) 0 0
\(316\) 1.84139e11 0.0584400
\(317\) 2.34536e12i 0.732677i 0.930482 + 0.366338i \(0.119389\pi\)
−0.930482 + 0.366338i \(0.880611\pi\)
\(318\) 0 0
\(319\) 1.14320e12 0.346074
\(320\) 2.07536e12i 0.618507i
\(321\) 0 0
\(322\) 1.21881e13 3.52093
\(323\) 2.62575e11i 0.0746862i
\(324\) 0 0
\(325\) −3.68074e12 −1.01512
\(326\) 3.91928e12i 1.06443i
\(327\) 0 0
\(328\) −2.01793e12 −0.531540
\(329\) − 1.09844e13i − 2.84969i
\(330\) 0 0
\(331\) −3.62122e12 −0.911412 −0.455706 0.890130i \(-0.650613\pi\)
−0.455706 + 0.890130i \(0.650613\pi\)
\(332\) 4.03498e12i 1.00035i
\(333\) 0 0
\(334\) −3.87881e12 −0.933181
\(335\) − 2.23258e12i − 0.529154i
\(336\) 0 0
\(337\) −4.11719e12 −0.947220 −0.473610 0.880735i \(-0.657049\pi\)
−0.473610 + 0.880735i \(0.657049\pi\)
\(338\) − 2.80127e12i − 0.634998i
\(339\) 0 0
\(340\) −7.04799e11 −0.155121
\(341\) − 6.14231e11i − 0.133217i
\(342\) 0 0
\(343\) 1.42562e13 3.00285
\(344\) − 7.03024e11i − 0.145941i
\(345\) 0 0
\(346\) 7.37034e12 1.48630
\(347\) 4.77044e12i 0.948224i 0.880465 + 0.474112i \(0.157231\pi\)
−0.880465 + 0.474112i \(0.842769\pi\)
\(348\) 0 0
\(349\) −7.30065e12 −1.41005 −0.705024 0.709183i \(-0.749064\pi\)
−0.705024 + 0.709183i \(0.749064\pi\)
\(350\) − 1.84539e13i − 3.51357i
\(351\) 0 0
\(352\) 4.68146e12 0.866300
\(353\) 7.81345e11i 0.142551i 0.997457 + 0.0712753i \(0.0227069\pi\)
−0.997457 + 0.0712753i \(0.977293\pi\)
\(354\) 0 0
\(355\) 1.03202e13 1.83041
\(356\) 6.19928e11i 0.108415i
\(357\) 0 0
\(358\) −9.62043e12 −1.63599
\(359\) − 7.60588e12i − 1.27549i −0.770247 0.637746i \(-0.779867\pi\)
0.770247 0.637746i \(-0.220133\pi\)
\(360\) 0 0
\(361\) −4.32247e12 −0.705011
\(362\) 1.00764e12i 0.162093i
\(363\) 0 0
\(364\) −6.31752e12 −0.988644
\(365\) 1.70209e13i 2.62735i
\(366\) 0 0
\(367\) 1.03121e12 0.154887 0.0774437 0.996997i \(-0.475324\pi\)
0.0774437 + 0.996997i \(0.475324\pi\)
\(368\) 1.14494e13i 1.69646i
\(369\) 0 0
\(370\) −8.69523e12 −1.25393
\(371\) 9.63415e12i 1.37070i
\(372\) 0 0
\(373\) −7.79559e12 −1.07970 −0.539852 0.841760i \(-0.681520\pi\)
−0.539852 + 0.841760i \(0.681520\pi\)
\(374\) 9.42270e11i 0.128771i
\(375\) 0 0
\(376\) 4.06679e12 0.541143
\(377\) − 2.65814e12i − 0.349036i
\(378\) 0 0
\(379\) −6.40957e12 −0.819658 −0.409829 0.912162i \(-0.634412\pi\)
−0.409829 + 0.912162i \(0.634412\pi\)
\(380\) 4.85461e12i 0.612684i
\(381\) 0 0
\(382\) 1.01319e13 1.24559
\(383\) − 6.88415e12i − 0.835327i −0.908602 0.417664i \(-0.862849\pi\)
0.908602 0.417664i \(-0.137151\pi\)
\(384\) 0 0
\(385\) −1.77305e13 −2.09613
\(386\) − 2.88475e11i − 0.0336644i
\(387\) 0 0
\(388\) 4.22839e12 0.480858
\(389\) − 3.56571e12i − 0.400312i −0.979764 0.200156i \(-0.935855\pi\)
0.979764 0.200156i \(-0.0641449\pi\)
\(390\) 0 0
\(391\) −1.77839e12 −0.194600
\(392\) 8.60653e12i 0.929817i
\(393\) 0 0
\(394\) −7.88693e12 −0.830667
\(395\) − 1.20164e12i − 0.124966i
\(396\) 0 0
\(397\) −1.15838e13 −1.17462 −0.587312 0.809361i \(-0.699814\pi\)
−0.587312 + 0.809361i \(0.699814\pi\)
\(398\) − 1.31702e13i − 1.31880i
\(399\) 0 0
\(400\) 1.73355e13 1.69292
\(401\) − 3.47890e12i − 0.335521i −0.985828 0.167760i \(-0.946346\pi\)
0.985828 0.167760i \(-0.0536535\pi\)
\(402\) 0 0
\(403\) −1.42819e12 −0.134357
\(404\) − 1.14222e11i − 0.0106131i
\(405\) 0 0
\(406\) 1.33270e13 1.20809
\(407\) 4.89099e12i 0.437951i
\(408\) 0 0
\(409\) −1.20640e13 −1.05408 −0.527041 0.849840i \(-0.676698\pi\)
−0.527041 + 0.849840i \(0.676698\pi\)
\(410\) − 3.49475e13i − 3.01645i
\(411\) 0 0
\(412\) −1.17303e13 −0.988153
\(413\) 1.55202e13i 1.29165i
\(414\) 0 0
\(415\) 2.63312e13 2.13910
\(416\) − 1.08852e13i − 0.873715i
\(417\) 0 0
\(418\) 6.49030e12 0.508608
\(419\) − 4.66903e12i − 0.361540i −0.983525 0.180770i \(-0.942141\pi\)
0.983525 0.180770i \(-0.0578590\pi\)
\(420\) 0 0
\(421\) 7.42819e12 0.561658 0.280829 0.959758i \(-0.409391\pi\)
0.280829 + 0.959758i \(0.409391\pi\)
\(422\) 2.59360e13i 1.93794i
\(423\) 0 0
\(424\) −3.56688e12 −0.260291
\(425\) 2.69264e12i 0.194193i
\(426\) 0 0
\(427\) −5.13785e12 −0.361944
\(428\) 4.11884e12i 0.286785i
\(429\) 0 0
\(430\) 1.21753e13 0.828206
\(431\) − 1.17229e13i − 0.788223i −0.919063 0.394112i \(-0.871052\pi\)
0.919063 0.394112i \(-0.128948\pi\)
\(432\) 0 0
\(433\) 1.35795e13 0.892160 0.446080 0.894993i \(-0.352820\pi\)
0.446080 + 0.894993i \(0.352820\pi\)
\(434\) − 7.16045e12i − 0.465041i
\(435\) 0 0
\(436\) −2.69820e12 −0.171255
\(437\) 1.22494e13i 0.768613i
\(438\) 0 0
\(439\) 1.47686e13 0.905769 0.452884 0.891569i \(-0.350395\pi\)
0.452884 + 0.891569i \(0.350395\pi\)
\(440\) − 6.56443e12i − 0.398046i
\(441\) 0 0
\(442\) 2.19094e12 0.129873
\(443\) − 1.64018e13i − 0.961329i −0.876905 0.480664i \(-0.840396\pi\)
0.876905 0.480664i \(-0.159604\pi\)
\(444\) 0 0
\(445\) 4.04549e12 0.231831
\(446\) − 2.64503e12i − 0.149885i
\(447\) 0 0
\(448\) 1.36088e13 0.754100
\(449\) 2.07647e13i 1.13787i 0.822381 + 0.568937i \(0.192645\pi\)
−0.822381 + 0.568937i \(0.807355\pi\)
\(450\) 0 0
\(451\) −1.96577e13 −1.05354
\(452\) 6.74936e12i 0.357742i
\(453\) 0 0
\(454\) 1.30953e13 0.678949
\(455\) 4.12266e13i 2.11407i
\(456\) 0 0
\(457\) −2.72870e13 −1.36891 −0.684455 0.729055i \(-0.739960\pi\)
−0.684455 + 0.729055i \(0.739960\pi\)
\(458\) 1.57886e12i 0.0783461i
\(459\) 0 0
\(460\) −3.28797e13 −1.59639
\(461\) − 1.88536e13i − 0.905504i −0.891637 0.452752i \(-0.850442\pi\)
0.891637 0.452752i \(-0.149558\pi\)
\(462\) 0 0
\(463\) 1.54771e13 0.727419 0.363710 0.931512i \(-0.381510\pi\)
0.363710 + 0.931512i \(0.381510\pi\)
\(464\) 1.25193e13i 0.582088i
\(465\) 0 0
\(466\) 3.66247e13 1.66665
\(467\) − 2.77647e13i − 1.24999i −0.780627 0.624997i \(-0.785100\pi\)
0.780627 0.624997i \(-0.214900\pi\)
\(468\) 0 0
\(469\) −1.46397e13 −0.645159
\(470\) 7.04307e13i 3.07095i
\(471\) 0 0
\(472\) −5.74608e12 −0.245280
\(473\) − 6.84853e12i − 0.289262i
\(474\) 0 0
\(475\) 1.85468e13 0.767008
\(476\) 4.62158e12i 0.189128i
\(477\) 0 0
\(478\) 2.85801e13 1.14531
\(479\) − 1.24270e12i − 0.0492818i −0.999696 0.0246409i \(-0.992156\pi\)
0.999696 0.0246409i \(-0.00784424\pi\)
\(480\) 0 0
\(481\) 1.13724e13 0.441699
\(482\) − 5.94874e13i − 2.28660i
\(483\) 0 0
\(484\) −9.49168e12 −0.357369
\(485\) − 2.75934e13i − 1.02825i
\(486\) 0 0
\(487\) −2.86678e13 −1.04653 −0.523263 0.852171i \(-0.675286\pi\)
−0.523263 + 0.852171i \(0.675286\pi\)
\(488\) − 1.90220e12i − 0.0687317i
\(489\) 0 0
\(490\) −1.49052e14 −5.27665
\(491\) − 2.17841e12i − 0.0763366i −0.999271 0.0381683i \(-0.987848\pi\)
0.999271 0.0381683i \(-0.0121523\pi\)
\(492\) 0 0
\(493\) −1.94456e12 −0.0667708
\(494\) − 1.50911e13i − 0.512962i
\(495\) 0 0
\(496\) 6.72648e12 0.224068
\(497\) − 6.76729e13i − 2.23168i
\(498\) 0 0
\(499\) −2.38184e13 −0.769858 −0.384929 0.922946i \(-0.625774\pi\)
−0.384929 + 0.922946i \(0.625774\pi\)
\(500\) 1.45309e13i 0.464990i
\(501\) 0 0
\(502\) −3.91148e13 −1.22694
\(503\) − 5.97407e13i − 1.85537i −0.373365 0.927685i \(-0.621796\pi\)
0.373365 0.927685i \(-0.378204\pi\)
\(504\) 0 0
\(505\) −7.45384e11 −0.0226946
\(506\) 4.39580e13i 1.32521i
\(507\) 0 0
\(508\) 2.96671e13 0.876912
\(509\) − 2.12758e13i − 0.622727i −0.950291 0.311363i \(-0.899214\pi\)
0.950291 0.311363i \(-0.100786\pi\)
\(510\) 0 0
\(511\) 1.11611e14 3.20334
\(512\) 3.61001e13i 1.02603i
\(513\) 0 0
\(514\) −4.04347e13 −1.12704
\(515\) 7.65492e13i 2.11302i
\(516\) 0 0
\(517\) 3.96167e13 1.07257
\(518\) 5.70172e13i 1.52882i
\(519\) 0 0
\(520\) −1.52634e13 −0.401453
\(521\) 4.71658e13i 1.22868i 0.789041 + 0.614340i \(0.210578\pi\)
−0.789041 + 0.614340i \(0.789422\pi\)
\(522\) 0 0
\(523\) 4.74916e13 1.21369 0.606846 0.794819i \(-0.292434\pi\)
0.606846 + 0.794819i \(0.292434\pi\)
\(524\) − 5.43853e13i − 1.37666i
\(525\) 0 0
\(526\) −1.41846e13 −0.352280
\(527\) 1.04479e12i 0.0257026i
\(528\) 0 0
\(529\) −4.15372e13 −1.00267
\(530\) − 6.17730e13i − 1.47713i
\(531\) 0 0
\(532\) 3.18331e13 0.747001
\(533\) 4.57074e13i 1.06255i
\(534\) 0 0
\(535\) 2.68785e13 0.613248
\(536\) − 5.42009e12i − 0.122513i
\(537\) 0 0
\(538\) 2.50920e13 0.556705
\(539\) 8.38407e13i 1.84294i
\(540\) 0 0
\(541\) −9.22407e13 −1.99038 −0.995191 0.0979580i \(-0.968769\pi\)
−0.995191 + 0.0979580i \(0.968769\pi\)
\(542\) − 1.15089e13i − 0.246058i
\(543\) 0 0
\(544\) −7.96306e12 −0.167142
\(545\) 1.76078e13i 0.366203i
\(546\) 0 0
\(547\) 4.00684e13 0.818211 0.409105 0.912487i \(-0.365841\pi\)
0.409105 + 0.912487i \(0.365841\pi\)
\(548\) − 3.84676e13i − 0.778381i
\(549\) 0 0
\(550\) 6.65565e13 1.32244
\(551\) 1.33940e13i 0.263726i
\(552\) 0 0
\(553\) −7.87954e12 −0.152361
\(554\) 6.38140e13i 1.22283i
\(555\) 0 0
\(556\) 3.74908e13 0.705587
\(557\) − 4.39550e13i − 0.819847i −0.912120 0.409923i \(-0.865555\pi\)
0.912120 0.409923i \(-0.134445\pi\)
\(558\) 0 0
\(559\) −1.59240e13 −0.291738
\(560\) − 1.94168e14i − 3.52564i
\(561\) 0 0
\(562\) 1.39578e14 2.48963
\(563\) − 1.67138e13i − 0.295484i −0.989026 0.147742i \(-0.952799\pi\)
0.989026 0.147742i \(-0.0472005\pi\)
\(564\) 0 0
\(565\) 4.40446e13 0.764981
\(566\) 4.58903e13i 0.790021i
\(567\) 0 0
\(568\) 2.50547e13 0.423787
\(569\) 3.30742e13i 0.554534i 0.960793 + 0.277267i \(0.0894286\pi\)
−0.960793 + 0.277267i \(0.910571\pi\)
\(570\) 0 0
\(571\) 1.28829e13 0.212243 0.106122 0.994353i \(-0.466157\pi\)
0.106122 + 0.994353i \(0.466157\pi\)
\(572\) − 2.27850e13i − 0.372107i
\(573\) 0 0
\(574\) −2.29161e14 −3.67774
\(575\) 1.25615e14i 1.99849i
\(576\) 0 0
\(577\) 8.06724e13 1.26138 0.630690 0.776035i \(-0.282772\pi\)
0.630690 + 0.776035i \(0.282772\pi\)
\(578\) 8.31589e13i 1.28905i
\(579\) 0 0
\(580\) −3.59520e13 −0.547750
\(581\) − 1.72662e14i − 2.60805i
\(582\) 0 0
\(583\) −3.47468e13 −0.515908
\(584\) 4.13221e13i 0.608301i
\(585\) 0 0
\(586\) 3.31976e13 0.480417
\(587\) − 1.00326e14i − 1.43954i −0.694212 0.719770i \(-0.744247\pi\)
0.694212 0.719770i \(-0.255753\pi\)
\(588\) 0 0
\(589\) 7.19647e12 0.101518
\(590\) − 9.95135e13i − 1.39195i
\(591\) 0 0
\(592\) −5.35616e13 −0.736622
\(593\) 7.03769e13i 0.959747i 0.877338 + 0.479873i \(0.159317\pi\)
−0.877338 + 0.479873i \(0.840683\pi\)
\(594\) 0 0
\(595\) 3.01592e13 0.404423
\(596\) − 6.70242e13i − 0.891252i
\(597\) 0 0
\(598\) 1.02210e14 1.33656
\(599\) 4.06523e12i 0.0527171i 0.999653 + 0.0263585i \(0.00839115\pi\)
−0.999653 + 0.0263585i \(0.991609\pi\)
\(600\) 0 0
\(601\) −7.67643e13 −0.979010 −0.489505 0.872001i \(-0.662822\pi\)
−0.489505 + 0.872001i \(0.662822\pi\)
\(602\) − 7.98373e13i − 1.00977i
\(603\) 0 0
\(604\) −4.96407e13 −0.617523
\(605\) 6.19403e13i 0.764181i
\(606\) 0 0
\(607\) −4.92577e13 −0.597765 −0.298883 0.954290i \(-0.596614\pi\)
−0.298883 + 0.954290i \(0.596614\pi\)
\(608\) 5.48491e13i 0.660163i
\(609\) 0 0
\(610\) 3.29433e13 0.390048
\(611\) − 9.21156e13i − 1.08175i
\(612\) 0 0
\(613\) −1.15889e14 −1.33887 −0.669437 0.742869i \(-0.733465\pi\)
−0.669437 + 0.742869i \(0.733465\pi\)
\(614\) 1.47015e14i 1.68468i
\(615\) 0 0
\(616\) −4.30449e13 −0.485309
\(617\) 1.43634e14i 1.60632i 0.595763 + 0.803160i \(0.296850\pi\)
−0.595763 + 0.803160i \(0.703150\pi\)
\(618\) 0 0
\(619\) −6.91730e13 −0.761173 −0.380586 0.924745i \(-0.624278\pi\)
−0.380586 + 0.924745i \(0.624278\pi\)
\(620\) 1.93166e13i 0.210850i
\(621\) 0 0
\(622\) −2.74072e13 −0.294383
\(623\) − 2.65275e13i − 0.282654i
\(624\) 0 0
\(625\) −3.98529e13 −0.417888
\(626\) 1.83028e14i 1.90391i
\(627\) 0 0
\(628\) −5.27513e13 −0.540051
\(629\) − 8.31947e12i − 0.0844972i
\(630\) 0 0
\(631\) −1.13985e14 −1.13946 −0.569731 0.821831i \(-0.692953\pi\)
−0.569731 + 0.821831i \(0.692953\pi\)
\(632\) − 2.91726e12i − 0.0289328i
\(633\) 0 0
\(634\) −9.86096e13 −0.962660
\(635\) − 1.93600e14i − 1.87515i
\(636\) 0 0
\(637\) 1.94944e14 1.85871
\(638\) 4.80654e13i 0.454705i
\(639\) 0 0
\(640\) 1.15443e14 1.07514
\(641\) 1.97683e14i 1.82675i 0.407117 + 0.913376i \(0.366534\pi\)
−0.407117 + 0.913376i \(0.633466\pi\)
\(642\) 0 0
\(643\) 9.23072e13 0.839809 0.419905 0.907568i \(-0.362064\pi\)
0.419905 + 0.907568i \(0.362064\pi\)
\(644\) 2.15602e14i 1.94636i
\(645\) 0 0
\(646\) −1.10399e13 −0.0981298
\(647\) − 8.66533e13i − 0.764300i −0.924100 0.382150i \(-0.875184\pi\)
0.924100 0.382150i \(-0.124816\pi\)
\(648\) 0 0
\(649\) −5.59756e13 −0.486155
\(650\) − 1.54755e14i − 1.33376i
\(651\) 0 0
\(652\) −6.93303e13 −0.588417
\(653\) 3.15545e13i 0.265763i 0.991132 + 0.132882i \(0.0424230\pi\)
−0.991132 + 0.132882i \(0.957577\pi\)
\(654\) 0 0
\(655\) −3.54905e14 −2.94378
\(656\) − 2.15272e14i − 1.77202i
\(657\) 0 0
\(658\) 4.61835e14 3.74419
\(659\) 5.34433e13i 0.429998i 0.976614 + 0.214999i \(0.0689748\pi\)
−0.976614 + 0.214999i \(0.931025\pi\)
\(660\) 0 0
\(661\) 2.21568e14 1.75590 0.877948 0.478755i \(-0.158912\pi\)
0.877948 + 0.478755i \(0.158912\pi\)
\(662\) − 1.52253e14i − 1.19750i
\(663\) 0 0
\(664\) 6.39251e13 0.495257
\(665\) − 2.07735e14i − 1.59736i
\(666\) 0 0
\(667\) −9.07158e13 −0.687154
\(668\) − 6.86143e13i − 0.515861i
\(669\) 0 0
\(670\) 9.38678e13 0.695253
\(671\) − 1.85303e13i − 0.136229i
\(672\) 0 0
\(673\) 2.23899e14 1.62172 0.810862 0.585237i \(-0.198999\pi\)
0.810862 + 0.585237i \(0.198999\pi\)
\(674\) − 1.73106e14i − 1.24455i
\(675\) 0 0
\(676\) 4.95532e13 0.351025
\(677\) − 2.70697e14i − 1.90344i −0.306963 0.951721i \(-0.599313\pi\)
0.306963 0.951721i \(-0.400687\pi\)
\(678\) 0 0
\(679\) −1.80938e14 −1.25367
\(680\) 1.11659e13i 0.0767982i
\(681\) 0 0
\(682\) 2.58251e13 0.175033
\(683\) 2.28990e14i 1.54068i 0.637632 + 0.770341i \(0.279914\pi\)
−0.637632 + 0.770341i \(0.720086\pi\)
\(684\) 0 0
\(685\) −2.51030e14 −1.66446
\(686\) 5.99397e14i 3.94543i
\(687\) 0 0
\(688\) 7.49986e13 0.486531
\(689\) 8.07923e13i 0.520324i
\(690\) 0 0
\(691\) 1.15663e14 0.734184 0.367092 0.930185i \(-0.380353\pi\)
0.367092 + 0.930185i \(0.380353\pi\)
\(692\) 1.30378e14i 0.821625i
\(693\) 0 0
\(694\) −2.00571e14 −1.24587
\(695\) − 2.44655e14i − 1.50880i
\(696\) 0 0
\(697\) 3.34372e13 0.203267
\(698\) − 3.06953e14i − 1.85265i
\(699\) 0 0
\(700\) 3.26441e14 1.94229
\(701\) 5.38211e13i 0.317952i 0.987282 + 0.158976i \(0.0508193\pi\)
−0.987282 + 0.158976i \(0.949181\pi\)
\(702\) 0 0
\(703\) −5.73040e13 −0.333740
\(704\) 4.90818e13i 0.283829i
\(705\) 0 0
\(706\) −3.28513e13 −0.187296
\(707\) 4.88771e12i 0.0276699i
\(708\) 0 0
\(709\) 1.71797e14 0.958925 0.479462 0.877562i \(-0.340832\pi\)
0.479462 + 0.877562i \(0.340832\pi\)
\(710\) 4.33910e14i 2.40496i
\(711\) 0 0
\(712\) 9.82135e12 0.0536749
\(713\) 4.87408e13i 0.264512i
\(714\) 0 0
\(715\) −1.48689e14 −0.795698
\(716\) − 1.70181e14i − 0.904369i
\(717\) 0 0
\(718\) 3.19786e14 1.67586
\(719\) 1.80527e13i 0.0939504i 0.998896 + 0.0469752i \(0.0149582\pi\)
−0.998896 + 0.0469752i \(0.985042\pi\)
\(720\) 0 0
\(721\) 5.01956e14 2.57626
\(722\) − 1.81736e14i − 0.926309i
\(723\) 0 0
\(724\) −1.78247e13 −0.0896045
\(725\) 1.37352e14i 0.685719i
\(726\) 0 0
\(727\) 5.34262e13 0.263077 0.131538 0.991311i \(-0.458008\pi\)
0.131538 + 0.991311i \(0.458008\pi\)
\(728\) 1.00087e14i 0.489463i
\(729\) 0 0
\(730\) −7.15638e14 −3.45207
\(731\) 1.16492e13i 0.0558096i
\(732\) 0 0
\(733\) −2.40751e14 −1.13775 −0.568877 0.822423i \(-0.692622\pi\)
−0.568877 + 0.822423i \(0.692622\pi\)
\(734\) 4.33568e13i 0.203506i
\(735\) 0 0
\(736\) −3.71486e14 −1.72010
\(737\) − 5.27999e13i − 0.242826i
\(738\) 0 0
\(739\) 2.51761e14 1.14226 0.571132 0.820858i \(-0.306504\pi\)
0.571132 + 0.820858i \(0.306504\pi\)
\(740\) − 1.53815e14i − 0.693168i
\(741\) 0 0
\(742\) −4.05064e14 −1.80096
\(743\) 3.95902e14i 1.74841i 0.485555 + 0.874206i \(0.338618\pi\)
−0.485555 + 0.874206i \(0.661382\pi\)
\(744\) 0 0
\(745\) −4.37383e14 −1.90581
\(746\) − 3.27762e14i − 1.41862i
\(747\) 0 0
\(748\) −1.66683e13 −0.0711843
\(749\) − 1.76250e14i − 0.747689i
\(750\) 0 0
\(751\) −3.84509e13 −0.160956 −0.0804779 0.996756i \(-0.525645\pi\)
−0.0804779 + 0.996756i \(0.525645\pi\)
\(752\) 4.33845e14i 1.80404i
\(753\) 0 0
\(754\) 1.11760e14 0.458597
\(755\) 3.23942e14i 1.32048i
\(756\) 0 0
\(757\) −1.90529e13 −0.0766445 −0.0383223 0.999265i \(-0.512201\pi\)
−0.0383223 + 0.999265i \(0.512201\pi\)
\(758\) − 2.69488e14i − 1.07694i
\(759\) 0 0
\(760\) 7.69103e13 0.303331
\(761\) − 2.52372e14i − 0.988821i −0.869229 0.494410i \(-0.835384\pi\)
0.869229 0.494410i \(-0.164616\pi\)
\(762\) 0 0
\(763\) 1.15459e14 0.446485
\(764\) 1.79229e14i 0.688561i
\(765\) 0 0
\(766\) 2.89442e14 1.09753
\(767\) 1.30153e14i 0.490317i
\(768\) 0 0
\(769\) −1.86775e14 −0.694522 −0.347261 0.937768i \(-0.612888\pi\)
−0.347261 + 0.937768i \(0.612888\pi\)
\(770\) − 7.45474e14i − 2.75409i
\(771\) 0 0
\(772\) 5.10298e12 0.0186096
\(773\) − 2.85152e14i − 1.03319i −0.856231 0.516593i \(-0.827200\pi\)
0.856231 0.516593i \(-0.172800\pi\)
\(774\) 0 0
\(775\) 7.37981e13 0.263959
\(776\) − 6.69893e13i − 0.238066i
\(777\) 0 0
\(778\) 1.49919e14 0.525967
\(779\) − 2.30314e14i − 0.802846i
\(780\) 0 0
\(781\) 2.44071e14 0.839965
\(782\) − 7.47715e13i − 0.255683i
\(783\) 0 0
\(784\) −9.18144e14 −3.09978
\(785\) 3.44242e14i 1.15482i
\(786\) 0 0
\(787\) −4.25310e14 −1.40874 −0.704371 0.709832i \(-0.748771\pi\)
−0.704371 + 0.709832i \(0.748771\pi\)
\(788\) − 1.39516e14i − 0.459191i
\(789\) 0 0
\(790\) 5.05227e13 0.164192
\(791\) − 2.88814e14i − 0.932685i
\(792\) 0 0
\(793\) −4.30862e13 −0.137395
\(794\) − 4.87037e14i − 1.54333i
\(795\) 0 0
\(796\) 2.32975e14 0.729029
\(797\) 4.06659e14i 1.26456i 0.774741 + 0.632279i \(0.217880\pi\)
−0.774741 + 0.632279i \(0.782120\pi\)
\(798\) 0 0
\(799\) −6.73871e13 −0.206939
\(800\) 5.62464e14i 1.71650i
\(801\) 0 0
\(802\) 1.46269e14 0.440839
\(803\) 4.02540e14i 1.20568i
\(804\) 0 0
\(805\) 1.40696e15 4.16201
\(806\) − 6.00478e13i − 0.176531i
\(807\) 0 0
\(808\) −1.80959e12 −0.00525440
\(809\) − 1.85066e14i − 0.534053i −0.963689 0.267026i \(-0.913959\pi\)
0.963689 0.267026i \(-0.0860411\pi\)
\(810\) 0 0
\(811\) 2.37324e13 0.0676454 0.0338227 0.999428i \(-0.489232\pi\)
0.0338227 + 0.999428i \(0.489232\pi\)
\(812\) 2.35748e14i 0.667832i
\(813\) 0 0
\(814\) −2.05640e14 −0.575421
\(815\) 4.52432e14i 1.25825i
\(816\) 0 0
\(817\) 8.02389e13 0.220432
\(818\) − 5.07226e14i − 1.38495i
\(819\) 0 0
\(820\) 6.18204e14 1.66749
\(821\) 3.93488e14i 1.05491i 0.849582 + 0.527456i \(0.176854\pi\)
−0.849582 + 0.527456i \(0.823146\pi\)
\(822\) 0 0
\(823\) 2.43584e14 0.645135 0.322567 0.946547i \(-0.395454\pi\)
0.322567 + 0.946547i \(0.395454\pi\)
\(824\) 1.85841e14i 0.489220i
\(825\) 0 0
\(826\) −6.52540e14 −1.69710
\(827\) 1.86431e14i 0.481937i 0.970533 + 0.240968i \(0.0774650\pi\)
−0.970533 + 0.240968i \(0.922535\pi\)
\(828\) 0 0
\(829\) 1.90172e14 0.485706 0.242853 0.970063i \(-0.421917\pi\)
0.242853 + 0.970063i \(0.421917\pi\)
\(830\) 1.10709e15i 2.81055i
\(831\) 0 0
\(832\) 1.14124e14 0.286259
\(833\) − 1.42611e14i − 0.355572i
\(834\) 0 0
\(835\) −4.47760e14 −1.10309
\(836\) 1.14810e14i 0.281158i
\(837\) 0 0
\(838\) 1.96308e14 0.475026
\(839\) − 3.99766e14i − 0.961603i −0.876830 0.480801i \(-0.840346\pi\)
0.876830 0.480801i \(-0.159654\pi\)
\(840\) 0 0
\(841\) 3.21515e14 0.764225
\(842\) 3.12315e14i 0.737960i
\(843\) 0 0
\(844\) −4.58795e14 −1.07129
\(845\) − 3.23372e14i − 0.750617i
\(846\) 0 0
\(847\) 4.06161e14 0.931711
\(848\) − 3.80514e14i − 0.867744i
\(849\) 0 0
\(850\) −1.13211e14 −0.255149
\(851\) − 3.88113e14i − 0.869581i
\(852\) 0 0
\(853\) 1.21542e14 0.269141 0.134571 0.990904i \(-0.457034\pi\)
0.134571 + 0.990904i \(0.457034\pi\)
\(854\) − 2.16019e14i − 0.475557i
\(855\) 0 0
\(856\) 6.52537e13 0.141983
\(857\) − 8.75936e14i − 1.89482i −0.320022 0.947410i \(-0.603690\pi\)
0.320022 0.947410i \(-0.396310\pi\)
\(858\) 0 0
\(859\) −6.41455e14 −1.37151 −0.685757 0.727831i \(-0.740529\pi\)
−0.685757 + 0.727831i \(0.740529\pi\)
\(860\) 2.15376e14i 0.457831i
\(861\) 0 0
\(862\) 4.92885e14 1.03564
\(863\) − 8.91689e14i − 1.86277i −0.364034 0.931386i \(-0.618601\pi\)
0.364034 0.931386i \(-0.381399\pi\)
\(864\) 0 0
\(865\) 8.50813e14 1.75693
\(866\) 5.70943e14i 1.17220i
\(867\) 0 0
\(868\) 1.26665e14 0.257074
\(869\) − 2.84186e13i − 0.0573461i
\(870\) 0 0
\(871\) −1.22769e14 −0.244905
\(872\) 4.27469e13i 0.0847856i
\(873\) 0 0
\(874\) −5.15022e14 −1.00988
\(875\) − 6.21797e14i − 1.21230i
\(876\) 0 0
\(877\) 4.93168e13 0.0950597 0.0475299 0.998870i \(-0.484865\pi\)
0.0475299 + 0.998870i \(0.484865\pi\)
\(878\) 6.20941e14i 1.19008i
\(879\) 0 0
\(880\) 7.00293e14 1.32699
\(881\) 6.24033e13i 0.117578i 0.998270 + 0.0587892i \(0.0187240\pi\)
−0.998270 + 0.0587892i \(0.981276\pi\)
\(882\) 0 0
\(883\) −7.70465e14 −1.43532 −0.717661 0.696393i \(-0.754787\pi\)
−0.717661 + 0.696393i \(0.754787\pi\)
\(884\) 3.87567e13i 0.0717936i
\(885\) 0 0
\(886\) 6.89606e14 1.26308
\(887\) 7.96141e13i 0.145001i 0.997368 + 0.0725007i \(0.0230980\pi\)
−0.997368 + 0.0725007i \(0.976902\pi\)
\(888\) 0 0
\(889\) −1.26949e15 −2.28624
\(890\) 1.70091e14i 0.304601i
\(891\) 0 0
\(892\) 4.67894e13 0.0828559
\(893\) 4.64158e14i 0.817351i
\(894\) 0 0
\(895\) −1.11056e15 −1.93386
\(896\) − 7.56992e14i − 1.31084i
\(897\) 0 0
\(898\) −8.73045e14 −1.49505
\(899\) 5.32951e13i 0.0907588i
\(900\) 0 0
\(901\) 5.91035e13 0.0995381
\(902\) − 8.26499e14i − 1.38423i
\(903\) 0 0
\(904\) 1.06928e14 0.177113
\(905\) 1.16320e14i 0.191606i
\(906\) 0 0
\(907\) −2.38098e14 −0.387900 −0.193950 0.981011i \(-0.562130\pi\)
−0.193950 + 0.981011i \(0.562130\pi\)
\(908\) 2.31650e14i 0.375322i
\(909\) 0 0
\(910\) −1.73335e15 −2.77767
\(911\) 3.20993e14i 0.511569i 0.966734 + 0.255784i \(0.0823337\pi\)
−0.966734 + 0.255784i \(0.917666\pi\)
\(912\) 0 0
\(913\) 6.22727e14 0.981622
\(914\) − 1.14727e15i − 1.79860i
\(915\) 0 0
\(916\) −2.79294e13 −0.0433095
\(917\) 2.32722e15i 3.58914i
\(918\) 0 0
\(919\) 8.57341e14 1.30790 0.653952 0.756536i \(-0.273110\pi\)
0.653952 + 0.756536i \(0.273110\pi\)
\(920\) 5.20904e14i 0.790348i
\(921\) 0 0
\(922\) 7.92694e14 1.18974
\(923\) − 5.67507e14i − 0.847154i
\(924\) 0 0
\(925\) −5.87639e14 −0.867765
\(926\) 6.50729e14i 0.955752i
\(927\) 0 0
\(928\) −4.06197e14 −0.590197
\(929\) − 9.03445e14i − 1.30564i −0.757513 0.652820i \(-0.773586\pi\)
0.757513 0.652820i \(-0.226414\pi\)
\(930\) 0 0
\(931\) −9.82296e14 −1.40441
\(932\) 6.47874e14i 0.921322i
\(933\) 0 0
\(934\) 1.16735e15 1.64236
\(935\) 1.08773e14i 0.152217i
\(936\) 0 0
\(937\) −2.17810e14 −0.301564 −0.150782 0.988567i \(-0.548179\pi\)
−0.150782 + 0.988567i \(0.548179\pi\)
\(938\) − 6.15519e14i − 0.847671i
\(939\) 0 0
\(940\) −1.24589e15 −1.69761
\(941\) − 9.82201e14i − 1.33123i −0.746296 0.665614i \(-0.768170\pi\)
0.746296 0.665614i \(-0.231830\pi\)
\(942\) 0 0
\(943\) 1.55988e15 2.09187
\(944\) − 6.12992e14i − 0.817701i
\(945\) 0 0
\(946\) 2.87944e14 0.380060
\(947\) 8.85699e14i 1.16288i 0.813588 + 0.581442i \(0.197511\pi\)
−0.813588 + 0.581442i \(0.802489\pi\)
\(948\) 0 0
\(949\) 9.35976e14 1.21600
\(950\) 7.79791e14i 1.00777i
\(951\) 0 0
\(952\) 7.32184e13 0.0936344
\(953\) 9.78487e14i 1.24477i 0.782710 + 0.622387i \(0.213837\pi\)
−0.782710 + 0.622387i \(0.786163\pi\)
\(954\) 0 0
\(955\) 1.16961e15 1.47239
\(956\) 5.05569e14i 0.633127i
\(957\) 0 0
\(958\) 5.22486e13 0.0647511
\(959\) 1.64608e15i 2.02935i
\(960\) 0 0
\(961\) −7.90993e14 −0.965063
\(962\) 4.78148e14i 0.580346i
\(963\) 0 0
\(964\) 1.05230e15 1.26403
\(965\) − 3.33008e13i − 0.0397940i
\(966\) 0 0
\(967\) −1.25055e15 −1.47900 −0.739502 0.673154i \(-0.764939\pi\)
−0.739502 + 0.673154i \(0.764939\pi\)
\(968\) 1.50374e14i 0.176928i
\(969\) 0 0
\(970\) 1.16015e15 1.35101
\(971\) − 1.04451e15i − 1.21009i −0.796193 0.605043i \(-0.793156\pi\)
0.796193 0.605043i \(-0.206844\pi\)
\(972\) 0 0
\(973\) −1.60428e15 −1.83957
\(974\) − 1.20533e15i − 1.37502i
\(975\) 0 0
\(976\) 2.02927e14 0.229134
\(977\) − 6.75052e14i − 0.758341i −0.925327 0.379170i \(-0.876209\pi\)
0.925327 0.379170i \(-0.123791\pi\)
\(978\) 0 0
\(979\) 9.56748e13 0.106386
\(980\) − 2.63666e15i − 2.91692i
\(981\) 0 0
\(982\) 9.15905e13 0.100298
\(983\) − 5.60523e14i − 0.610697i −0.952241 0.305348i \(-0.901227\pi\)
0.952241 0.305348i \(-0.0987729\pi\)
\(984\) 0 0
\(985\) −9.10447e14 −0.981914
\(986\) − 8.17582e13i − 0.0877297i
\(987\) 0 0
\(988\) 2.66954e14 0.283564
\(989\) 5.43448e14i 0.574349i
\(990\) 0 0
\(991\) −6.89169e13 −0.0721037 −0.0360518 0.999350i \(-0.511478\pi\)
−0.0360518 + 0.999350i \(0.511478\pi\)
\(992\) 2.18246e14i 0.227189i
\(993\) 0 0
\(994\) 2.84528e15 2.93220
\(995\) − 1.52034e15i − 1.55892i
\(996\) 0 0
\(997\) 6.28444e14 0.637956 0.318978 0.947762i \(-0.396660\pi\)
0.318978 + 0.947762i \(0.396660\pi\)
\(998\) − 1.00144e15i − 1.01151i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.11.b.c.26.4 yes 4
3.2 odd 2 inner 27.11.b.c.26.1 4
9.2 odd 6 81.11.d.e.53.1 8
9.4 even 3 81.11.d.e.26.1 8
9.5 odd 6 81.11.d.e.26.4 8
9.7 even 3 81.11.d.e.53.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.11.b.c.26.1 4 3.2 odd 2 inner
27.11.b.c.26.4 yes 4 1.1 even 1 trivial
81.11.d.e.26.1 8 9.4 even 3
81.11.d.e.26.4 8 9.5 odd 6
81.11.d.e.53.1 8 9.2 odd 6
81.11.d.e.53.4 8 9.7 even 3