Properties

Label 27.11.b.c
Level $27$
Weight $11$
Character orbit 27.b
Analytic conductor $17.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,11,Mod(26,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.26");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1546458222\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 188x^{2} + 756 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + ( - \beta_{3} - 137) q^{4} + ( - \beta_{2} - 43 \beta_1) q^{5} + (44 \beta_{3} + 5129) q^{7} + (4 \beta_{2} - 570 \beta_1) q^{8} + ( - 254 \beta_{3} - 49950) q^{10} + (25 \beta_{2} - 4541 \beta_1) q^{11}+ \cdots + ( - 1805408 \beta_{2} - 599638696 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 548 q^{4} + 20516 q^{7} - 199800 q^{10} - 262420 q^{13} - 3207800 q^{16} - 8233516 q^{19} - 21085704 q^{22} - 47203580 q^{25} - 67604212 q^{28} - 46994920 q^{31} - 78985368 q^{34} + 108086444 q^{37}+ \cdots + 12969797468 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 188x^{2} + 756 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 170\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 49\nu^{3} + 12218\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 27\nu^{2} + 2538 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 49\beta_1 ) / 486 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{3} - 2538 ) / 27 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -85\beta_{2} + 6109\beta_1 ) / 243 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
2.02760i
13.5606i
13.5606i
2.02760i
42.0446i 0 −743.750 4853.52i 0 31826.0 11783.0i 0 −204064.
26.2 23.5425i 0 469.750 4424.52i 0 −21568.0 35166.6i 0 104164.
26.3 23.5425i 0 469.750 4424.52i 0 −21568.0 35166.6i 0 104164.
26.4 42.0446i 0 −743.750 4853.52i 0 31826.0 11783.0i 0 −204064.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.11.b.c 4
3.b odd 2 1 inner 27.11.b.c 4
9.c even 3 2 81.11.d.e 8
9.d odd 6 2 81.11.d.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.11.b.c 4 1.a even 1 1 trivial
27.11.b.c 4 3.b odd 2 1 inner
81.11.d.e 8 9.c even 3 2
81.11.d.e 8 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 2322T_{2}^{2} + 979776 \) acting on \(S_{11}^{\mathrm{new}}(27, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2322 T^{2} + 979776 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 461154133742400 \) Copy content Toggle raw display
$7$ \( (T^{2} - 10258 T - 686422079)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 77\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( (T^{2} + 131210 T - 106251400055)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots + 3727788408121)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 50\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 82\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots + 97103791654180)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots + 487162727648041)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 55\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots - 58\!\cdots\!20)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 17\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 23\!\cdots\!61)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots - 66\!\cdots\!39)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 80\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 51\!\cdots\!55)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 12\!\cdots\!89)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 92\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 15\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 69\!\cdots\!11)^{2} \) Copy content Toggle raw display
show more
show less