Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [27,10,Mod(4,27)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("27.4");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.e (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(13.9059675764\) |
Analytic rank: | \(0\) |
Dimension: | \(156\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −40.0613 | − | 14.5811i | −125.031 | + | 63.6419i | 1000.08 | + | 839.170i | −306.059 | + | 1735.74i | 5936.87 | − | 726.489i | 764.835 | − | 641.773i | −16914.7 | − | 29297.2i | 11582.4 | − | 15914.4i | 37570.2 | − | 65073.5i |
4.2 | −39.3878 | − | 14.3360i | 29.9043 | − | 137.072i | 953.662 | + | 800.217i | 27.4469 | − | 155.659i | −3142.92 | + | 4970.25i | 1724.19 | − | 1446.77i | −15360.3 | − | 26604.9i | −17894.5 | − | 8198.08i | −3312.60 | + | 5737.59i |
4.3 | −34.7751 | − | 12.6571i | 37.7394 | + | 135.125i | 656.889 | + | 551.196i | 233.333 | − | 1323.30i | 397.899 | − | 5176.65i | −1098.75 | + | 921.961i | −6393.09 | − | 11073.2i | −16834.5 | + | 10199.1i | −24863.3 | + | 43064.5i |
4.4 | −31.5968 | − | 11.5003i | 132.307 | + | 46.6679i | 473.884 | + | 397.636i | −451.726 | + | 2561.87i | −3643.77 | − | 2996.12i | −2730.60 | + | 2291.24i | −1792.39 | − | 3104.51i | 15327.2 | + | 12349.0i | 43735.3 | − | 75751.7i |
4.5 | −29.1224 | − | 10.5997i | −114.519 | − | 81.0463i | 343.545 | + | 288.269i | 182.505 | − | 1035.04i | 2475.99 | + | 3574.12i | −6317.76 | + | 5301.23i | 984.496 | + | 1705.20i | 6546.00 | + | 18562.6i | −16286.1 | + | 28208.3i |
4.6 | −28.3865 | − | 10.3319i | 136.675 | − | 31.6686i | 306.833 | + | 257.464i | 180.775 | − | 1025.22i | −4206.93 | − | 513.146i | 4261.26 | − | 3575.62i | 1683.47 | + | 2915.86i | 17677.2 | − | 8656.62i | −15724.0 | + | 27234.8i |
4.7 | −22.2970 | − | 8.11544i | −117.506 | + | 76.6512i | 39.0810 | + | 32.7929i | 151.895 | − | 861.438i | 3242.08 | − | 755.482i | 4408.97 | − | 3699.56i | 5469.10 | + | 9472.76i | 7932.18 | − | 18013.9i | −10377.8 | + | 17974.8i |
4.8 | −20.2233 | − | 7.36069i | −95.1961 | − | 103.057i | −37.4118 | − | 31.3922i | −358.438 | + | 2032.80i | 1166.61 | + | 2784.86i | 8116.71 | − | 6810.73i | 6034.95 | + | 10452.8i | −1558.40 | + | 19621.2i | 22211.6 | − | 38471.7i |
4.9 | −15.0855 | − | 5.49066i | 69.4935 | − | 121.876i | −194.791 | − | 163.449i | −120.371 | + | 682.656i | −1717.52 | + | 1456.99i | −4765.46 | + | 3998.70i | 6150.79 | + | 10653.5i | −10024.3 | − | 16939.1i | 5564.08 | − | 9637.27i |
4.10 | −12.9570 | − | 4.71595i | −37.0275 | + | 135.322i | −246.572 | − | 206.898i | −222.415 | + | 1261.38i | 1117.94 | − | 1578.74i | −4998.24 | + | 4194.02i | 5748.96 | + | 9957.50i | −16940.9 | − | 10021.3i | 8830.42 | − | 15294.7i |
4.11 | −6.47952 | − | 2.35835i | 83.5586 | + | 112.699i | −355.792 | − | 298.545i | −63.8763 | + | 362.261i | −275.637 | − | 927.294i | 6593.75 | − | 5532.82i | 3366.50 | + | 5830.96i | −5718.93 | + | 18833.9i | 1268.23 | − | 2196.63i |
4.12 | −4.86289 | − | 1.76995i | 133.111 | + | 44.3232i | −371.700 | − | 311.893i | 375.168 | − | 2127.68i | −568.853 | − | 451.138i | −8670.18 | + | 7275.14i | 2580.30 | + | 4469.20i | 15753.9 | + | 11799.8i | −5590.29 | + | 9682.67i |
4.13 | −4.57613 | − | 1.66557i | −24.3571 | − | 138.166i | −374.048 | − | 313.863i | 461.629 | − | 2618.03i | −118.664 | + | 672.832i | 5320.32 | − | 4464.28i | 2435.60 | + | 4218.58i | −18496.5 | + | 6730.62i | −6472.99 | + | 11211.5i |
4.14 | 3.93000 | + | 1.43040i | −134.904 | − | 38.5223i | −378.816 | − | 317.864i | −245.629 | + | 1393.03i | −475.070 | − | 344.359i | −4348.21 | + | 3648.58i | −2104.72 | − | 3645.48i | 16715.1 | + | 10393.6i | −2957.92 | + | 5123.27i |
4.15 | 4.82322 | + | 1.75551i | −137.543 | + | 27.6597i | −372.033 | − | 312.173i | 203.603 | − | 1154.69i | −711.954 | − | 108.048i | −440.948 | + | 369.999i | −2560.36 | − | 4434.68i | 18152.9 | − | 7608.76i | 3009.09 | − | 5211.90i |
4.16 | 8.90982 | + | 3.24291i | 132.389 | − | 46.4332i | −323.346 | − | 271.320i | −128.517 | + | 728.857i | 1330.14 | + | 15.6152i | 4124.79 | − | 3461.11i | −4428.39 | − | 7670.20i | 15370.9 | − | 12294.5i | −3508.68 | + | 6077.21i |
4.17 | 13.5174 | + | 4.91993i | −10.0180 | − | 139.938i | −233.700 | − | 196.098i | −142.171 | + | 806.289i | 553.068 | − | 1940.89i | −461.968 | + | 387.637i | −5876.77 | − | 10178.9i | −19482.3 | + | 2803.80i | −5888.66 | + | 10199.5i |
4.18 | 17.4636 | + | 6.35623i | −17.1474 | + | 139.244i | −127.639 | − | 107.102i | 280.318 | − | 1589.76i | −1184.52 | + | 2322.71i | 610.601 | − | 512.355i | −6305.87 | − | 10922.1i | −19094.9 | − | 4775.35i | 15000.2 | − | 25981.2i |
4.19 | 23.5230 | + | 8.56168i | −83.7573 | + | 112.551i | 87.8153 | + | 73.6858i | −425.267 | + | 2411.81i | −2933.85 | + | 1930.43i | 3548.49 | − | 2977.54i | −4973.56 | − | 8614.45i | −5652.42 | − | 18853.9i | −30652.7 | + | 53092.0i |
4.20 | 23.7357 | + | 8.63908i | 115.700 | + | 79.3502i | 96.5341 | + | 81.0017i | −237.448 | + | 1346.63i | 2060.71 | + | 2882.98i | −5786.38 | + | 4855.35i | −4874.78 | − | 8443.36i | 7090.08 | + | 18361.7i | −17269.7 | + | 29911.9i |
See next 80 embeddings (of 156 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 27.10.e.a | ✓ | 156 |
3.b | odd | 2 | 1 | 81.10.e.a | 156 | ||
27.e | even | 9 | 1 | inner | 27.10.e.a | ✓ | 156 |
27.f | odd | 18 | 1 | 81.10.e.a | 156 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.10.e.a | ✓ | 156 | 1.a | even | 1 | 1 | trivial |
27.10.e.a | ✓ | 156 | 27.e | even | 9 | 1 | inner |
81.10.e.a | 156 | 3.b | odd | 2 | 1 | ||
81.10.e.a | 156 | 27.f | odd | 18 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(27, [\chi])\).