Properties

Label 27.10.e
Level $27$
Weight $10$
Character orbit 27.e
Rep. character $\chi_{27}(4,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $156$
Newform subspaces $1$
Sturm bound $30$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 27.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(27, [\chi])\).

Total New Old
Modular forms 168 168 0
Cusp forms 156 156 0
Eisenstein series 12 12 0

Trace form

\( 156 q - 6 q^{2} - 6 q^{3} - 6 q^{4} + 2382 q^{5} - 6822 q^{6} - 6 q^{7} + 36861 q^{8} + 2538 q^{9} - 3 q^{10} - 121767 q^{11} + 319935 q^{12} - 6 q^{13} - 720417 q^{14} - 706356 q^{15} + 1530 q^{16} + 1002249 q^{17}+ \cdots + 5248107342 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.10.e.a 27.e 27.e $156$ $13.906$ None 27.10.e.a \(-6\) \(-6\) \(2382\) \(-6\) $\mathrm{SU}(2)[C_{9}]$