Properties

Label 27.10.c.a.19.3
Level $27$
Weight $10$
Character 27.19
Analytic conductor $13.906$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,10,Mod(10,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 27.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.9059675764\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 1984 x^{14} - 13748 x^{13} + 1552498 x^{12} - 9136628 x^{11} + 609566956 x^{10} + \cdots + 13\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{40}\cdot 17^{2} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 19.3
Root \(0.500000 + 9.36376i\) of defining polynomial
Character \(\chi\) \(=\) 27.19
Dual form 27.10.c.a.10.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.85925 + 15.3447i) q^{2} +(99.0272 + 171.520i) q^{4} +(-369.939 - 640.753i) q^{5} +(3013.67 - 5219.83i) q^{7} -12581.1 q^{8} +13109.5 q^{10} +(9215.52 - 15961.8i) q^{11} +(-58793.0 - 101832. i) q^{13} +(53397.7 + 92487.6i) q^{14} +(60757.3 - 105235. i) q^{16} +468308. q^{17} +834842. q^{19} +(73268.0 - 126904. i) q^{20} +(163285. + 282819. i) q^{22} +(660262. + 1.14361e6i) q^{23} +(702853. - 1.21738e6i) q^{25} +2.08345e6 q^{26} +1.19374e6 q^{28} +(32123.4 - 55639.3i) q^{29} +(-3.70875e6 - 6.42375e6i) q^{31} +(-2.14423e6 - 3.71392e6i) q^{32} +(-4.14886e6 + 7.18604e6i) q^{34} -4.45949e6 q^{35} +3.68044e6 q^{37} +(-7.39608e6 + 1.28104e7i) q^{38} +(4.65424e6 + 8.06138e6i) q^{40} +(-1.26806e7 - 2.19634e7i) q^{41} +(-1.21419e7 + 2.10304e7i) q^{43} +3.65035e6 q^{44} -2.33977e7 q^{46} +(3.51686e6 - 6.09137e6i) q^{47} +(2.01239e6 + 3.48557e6i) q^{49} +(1.24535e7 + 2.15701e7i) q^{50} +(1.16442e7 - 2.01684e7i) q^{52} +3.10597e7 q^{53} -1.36367e7 q^{55} +(-3.79153e7 + 6.56712e7i) q^{56} +(569179. + 985846. i) q^{58} +(-7.68270e7 - 1.33068e8i) q^{59} +(7.75804e7 - 1.34373e8i) q^{61} +1.31427e8 q^{62} +1.38201e8 q^{64} +(-4.34996e7 + 7.53435e7i) q^{65} +(6.98640e6 + 1.21008e7i) q^{67} +(4.63753e7 + 8.03244e7i) q^{68} +(3.95078e7 - 6.84295e7i) q^{70} +3.45182e8 q^{71} -3.01511e8 q^{73} +(-3.26059e7 + 5.64751e7i) q^{74} +(8.26721e7 + 1.43192e8i) q^{76} +(-5.55451e7 - 9.62069e7i) q^{77} +(-1.79834e8 + 3.11482e8i) q^{79} -8.99059e7 q^{80} +4.49361e8 q^{82} +(-5.25069e7 + 9.09446e7i) q^{83} +(-1.73245e8 - 3.00070e8i) q^{85} +(-2.15137e8 - 3.72628e8i) q^{86} +(-1.15941e8 + 2.00817e8i) q^{88} -8.60555e8 q^{89} -7.08730e8 q^{91} +(-1.30768e8 + 2.26497e8i) q^{92} +(6.23135e7 + 1.07930e8i) q^{94} +(-3.08840e8 - 5.34927e8i) q^{95} +(-4.74261e7 + 8.21444e7i) q^{97} -7.13133e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 15 q^{2} - 1793 q^{4} - 453 q^{5} - 343 q^{7} + 14478 q^{8} + 1020 q^{10} - 99150 q^{11} + 32435 q^{13} - 394824 q^{14} - 328193 q^{16} + 831078 q^{17} - 170554 q^{19} - 1855164 q^{20} + 529359 q^{22}+ \cdots - 4827300318 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.85925 + 15.3447i −0.391527 + 0.678145i −0.992651 0.121011i \(-0.961387\pi\)
0.601124 + 0.799156i \(0.294720\pi\)
\(3\) 0 0
\(4\) 99.0272 + 171.520i 0.193413 + 0.335000i
\(5\) −369.939 640.753i −0.264707 0.458485i 0.702780 0.711407i \(-0.251942\pi\)
−0.967487 + 0.252922i \(0.918608\pi\)
\(6\) 0 0
\(7\) 3013.67 5219.83i 0.474411 0.821703i −0.525160 0.851004i \(-0.675995\pi\)
0.999571 + 0.0293001i \(0.00932785\pi\)
\(8\) −12581.1 −1.08596
\(9\) 0 0
\(10\) 13109.5 0.414560
\(11\) 9215.52 15961.8i 0.189781 0.328711i −0.755396 0.655268i \(-0.772555\pi\)
0.945177 + 0.326558i \(0.105889\pi\)
\(12\) 0 0
\(13\) −58793.0 101832.i −0.570927 0.988874i −0.996471 0.0839366i \(-0.973251\pi\)
0.425544 0.904938i \(-0.360083\pi\)
\(14\) 53397.7 + 92487.6i 0.371490 + 0.643439i
\(15\) 0 0
\(16\) 60757.3 105235.i 0.231771 0.401438i
\(17\) 468308. 1.35992 0.679958 0.733251i \(-0.261998\pi\)
0.679958 + 0.733251i \(0.261998\pi\)
\(18\) 0 0
\(19\) 834842. 1.46965 0.734824 0.678258i \(-0.237265\pi\)
0.734824 + 0.678258i \(0.237265\pi\)
\(20\) 73268.0 126904.i 0.102395 0.177354i
\(21\) 0 0
\(22\) 163285. + 282819.i 0.148609 + 0.257398i
\(23\) 660262. + 1.14361e6i 0.491973 + 0.852122i 0.999957 0.00924405i \(-0.00294251\pi\)
−0.507984 + 0.861366i \(0.669609\pi\)
\(24\) 0 0
\(25\) 702853. 1.21738e6i 0.359861 0.623297i
\(26\) 2.08345e6 0.894134
\(27\) 0 0
\(28\) 1.19374e6 0.367028
\(29\) 32123.4 55639.3i 0.00843394 0.0146080i −0.861778 0.507286i \(-0.830649\pi\)
0.870212 + 0.492678i \(0.163982\pi\)
\(30\) 0 0
\(31\) −3.70875e6 6.42375e6i −0.721274 1.24928i −0.960489 0.278317i \(-0.910224\pi\)
0.239215 0.970967i \(-0.423110\pi\)
\(32\) −2.14423e6 3.71392e6i −0.361491 0.626121i
\(33\) 0 0
\(34\) −4.14886e6 + 7.18604e6i −0.532444 + 0.922220i
\(35\) −4.45949e6 −0.502318
\(36\) 0 0
\(37\) 3.68044e6 0.322843 0.161422 0.986886i \(-0.448392\pi\)
0.161422 + 0.986886i \(0.448392\pi\)
\(38\) −7.39608e6 + 1.28104e7i −0.575407 + 0.996635i
\(39\) 0 0
\(40\) 4.65424e6 + 8.06138e6i 0.287461 + 0.497897i
\(41\) −1.26806e7 2.19634e7i −0.700827 1.21387i −0.968176 0.250269i \(-0.919481\pi\)
0.267349 0.963600i \(-0.413852\pi\)
\(42\) 0 0
\(43\) −1.21419e7 + 2.10304e7i −0.541601 + 0.938081i 0.457211 + 0.889358i \(0.348848\pi\)
−0.998812 + 0.0487226i \(0.984485\pi\)
\(44\) 3.65035e6 0.146824
\(45\) 0 0
\(46\) −2.33977e7 −0.770484
\(47\) 3.51686e6 6.09137e6i 0.105127 0.182085i −0.808663 0.588272i \(-0.799808\pi\)
0.913790 + 0.406187i \(0.133142\pi\)
\(48\) 0 0
\(49\) 2.01239e6 + 3.48557e6i 0.0498690 + 0.0863757i
\(50\) 1.24535e7 + 2.15701e7i 0.281791 + 0.488076i
\(51\) 0 0
\(52\) 1.16442e7 2.01684e7i 0.220849 0.382521i
\(53\) 3.10597e7 0.540700 0.270350 0.962762i \(-0.412861\pi\)
0.270350 + 0.962762i \(0.412861\pi\)
\(54\) 0 0
\(55\) −1.36367e7 −0.200945
\(56\) −3.79153e7 + 6.56712e7i −0.515191 + 0.892337i
\(57\) 0 0
\(58\) 569179. + 985846.i 0.00660424 + 0.0114389i
\(59\) −7.68270e7 1.33068e8i −0.825429 1.42969i −0.901591 0.432590i \(-0.857600\pi\)
0.0761619 0.997095i \(-0.475733\pi\)
\(60\) 0 0
\(61\) 7.75804e7 1.34373e8i 0.717410 1.24259i −0.244612 0.969621i \(-0.578661\pi\)
0.962023 0.272970i \(-0.0880060\pi\)
\(62\) 1.31427e8 1.12959
\(63\) 0 0
\(64\) 1.38201e8 1.02968
\(65\) −4.34996e7 + 7.53435e7i −0.302256 + 0.523523i
\(66\) 0 0
\(67\) 6.98640e6 + 1.21008e7i 0.0423562 + 0.0733631i 0.886426 0.462870i \(-0.153180\pi\)
−0.844070 + 0.536233i \(0.819847\pi\)
\(68\) 4.63753e7 + 8.03244e7i 0.263025 + 0.455572i
\(69\) 0 0
\(70\) 3.95078e7 6.84295e7i 0.196671 0.340645i
\(71\) 3.45182e8 1.61207 0.806037 0.591865i \(-0.201608\pi\)
0.806037 + 0.591865i \(0.201608\pi\)
\(72\) 0 0
\(73\) −3.01511e8 −1.24265 −0.621327 0.783551i \(-0.713406\pi\)
−0.621327 + 0.783551i \(0.713406\pi\)
\(74\) −3.26059e7 + 5.64751e7i −0.126402 + 0.218935i
\(75\) 0 0
\(76\) 8.26721e7 + 1.43192e8i 0.284248 + 0.492333i
\(77\) −5.55451e7 9.62069e7i −0.180068 0.311888i
\(78\) 0 0
\(79\) −1.79834e8 + 3.11482e8i −0.519458 + 0.899728i 0.480286 + 0.877112i \(0.340533\pi\)
−0.999744 + 0.0226159i \(0.992801\pi\)
\(80\) −8.99059e7 −0.245405
\(81\) 0 0
\(82\) 4.49361e8 1.09757
\(83\) −5.25069e7 + 9.09446e7i −0.121441 + 0.210342i −0.920336 0.391128i \(-0.872085\pi\)
0.798895 + 0.601470i \(0.205418\pi\)
\(84\) 0 0
\(85\) −1.73245e8 3.00070e8i −0.359978 0.623501i
\(86\) −2.15137e8 3.72628e8i −0.424103 0.734569i
\(87\) 0 0
\(88\) −1.15941e8 + 2.00817e8i −0.206095 + 0.356967i
\(89\) −8.60555e8 −1.45386 −0.726932 0.686710i \(-0.759054\pi\)
−0.726932 + 0.686710i \(0.759054\pi\)
\(90\) 0 0
\(91\) −7.08730e8 −1.08342
\(92\) −1.30768e8 + 2.26497e8i −0.190308 + 0.329622i
\(93\) 0 0
\(94\) 6.23135e7 + 1.07930e8i 0.0823202 + 0.142583i
\(95\) −3.08840e8 5.34927e8i −0.389025 0.673812i
\(96\) 0 0
\(97\) −4.74261e7 + 8.21444e7i −0.0543932 + 0.0942118i −0.891940 0.452154i \(-0.850656\pi\)
0.837547 + 0.546366i \(0.183989\pi\)
\(98\) −7.13133e7 −0.0781004
\(99\) 0 0
\(100\) 2.78406e8 0.278406
\(101\) 2.38579e8 4.13231e8i 0.228132 0.395137i −0.729122 0.684383i \(-0.760071\pi\)
0.957255 + 0.289247i \(0.0934048\pi\)
\(102\) 0 0
\(103\) −1.68556e8 2.91947e8i −0.147563 0.255586i 0.782763 0.622319i \(-0.213809\pi\)
−0.930326 + 0.366733i \(0.880476\pi\)
\(104\) 7.39681e8 + 1.28116e9i 0.620004 + 1.07388i
\(105\) 0 0
\(106\) −2.75166e8 + 4.76602e8i −0.211699 + 0.366673i
\(107\) 1.05652e9 0.779203 0.389602 0.920983i \(-0.372613\pi\)
0.389602 + 0.920983i \(0.372613\pi\)
\(108\) 0 0
\(109\) 5.44814e8 0.369683 0.184841 0.982768i \(-0.440823\pi\)
0.184841 + 0.982768i \(0.440823\pi\)
\(110\) 1.20811e8 2.09251e8i 0.0786756 0.136270i
\(111\) 0 0
\(112\) −3.66205e8 6.34285e8i −0.219909 0.380893i
\(113\) 5.45264e8 + 9.44426e8i 0.314597 + 0.544897i 0.979352 0.202164i \(-0.0647974\pi\)
−0.664755 + 0.747061i \(0.731464\pi\)
\(114\) 0 0
\(115\) 4.88513e8 8.46130e8i 0.260457 0.451125i
\(116\) 1.27244e7 0.00652492
\(117\) 0 0
\(118\) 2.72252e9 1.29271
\(119\) 1.41133e9 2.44449e9i 0.645158 1.11745i
\(120\) 0 0
\(121\) 1.00912e9 + 1.74785e9i 0.427966 + 0.741259i
\(122\) 1.37461e9 + 2.38089e9i 0.561772 + 0.973017i
\(123\) 0 0
\(124\) 7.34535e8 1.27225e9i 0.279007 0.483254i
\(125\) −2.48512e9 −0.910443
\(126\) 0 0
\(127\) −1.90290e9 −0.649082 −0.324541 0.945872i \(-0.605210\pi\)
−0.324541 + 0.945872i \(0.605210\pi\)
\(128\) −1.26507e8 + 2.19117e8i −0.0416553 + 0.0721491i
\(129\) 0 0
\(130\) −7.70748e8 1.33497e9i −0.236683 0.409947i
\(131\) −3.85457e8 6.67631e8i −0.114355 0.198069i 0.803167 0.595754i \(-0.203147\pi\)
−0.917522 + 0.397686i \(0.869813\pi\)
\(132\) 0 0
\(133\) 2.51594e9 4.35773e9i 0.697217 1.20761i
\(134\) −2.47577e8 −0.0663345
\(135\) 0 0
\(136\) −5.89184e9 −1.47681
\(137\) −2.11984e8 + 3.67166e8i −0.0514114 + 0.0890472i −0.890586 0.454815i \(-0.849705\pi\)
0.839174 + 0.543862i \(0.183039\pi\)
\(138\) 0 0
\(139\) 1.24855e9 + 2.16255e9i 0.283687 + 0.491359i 0.972290 0.233779i \(-0.0751092\pi\)
−0.688603 + 0.725138i \(0.741776\pi\)
\(140\) −4.41611e8 7.64893e8i −0.0971547 0.168277i
\(141\) 0 0
\(142\) −3.05805e9 + 5.29670e9i −0.631171 + 1.09322i
\(143\) −2.16723e9 −0.433404
\(144\) 0 0
\(145\) −4.75347e7 −0.00893007
\(146\) 2.67116e9 4.62659e9i 0.486533 0.842700i
\(147\) 0 0
\(148\) 3.64463e8 + 6.31269e8i 0.0624419 + 0.108153i
\(149\) 1.77396e9 + 3.07258e9i 0.294853 + 0.510700i 0.974951 0.222422i \(-0.0713961\pi\)
−0.680098 + 0.733121i \(0.738063\pi\)
\(150\) 0 0
\(151\) −2.12395e9 + 3.67879e9i −0.332466 + 0.575849i −0.982995 0.183633i \(-0.941214\pi\)
0.650529 + 0.759482i \(0.274547\pi\)
\(152\) −1.05032e10 −1.59598
\(153\) 0 0
\(154\) 1.96835e9 0.282007
\(155\) −2.74402e9 + 4.75279e9i −0.381852 + 0.661387i
\(156\) 0 0
\(157\) 9.15878e8 + 1.58635e9i 0.120307 + 0.208377i 0.919889 0.392180i \(-0.128279\pi\)
−0.799582 + 0.600557i \(0.794946\pi\)
\(158\) −3.18639e9 5.51900e9i −0.406764 0.704536i
\(159\) 0 0
\(160\) −1.58647e9 + 2.74785e9i −0.191378 + 0.331477i
\(161\) 7.95925e9 0.933589
\(162\) 0 0
\(163\) 4.81775e9 0.534564 0.267282 0.963618i \(-0.413874\pi\)
0.267282 + 0.963618i \(0.413874\pi\)
\(164\) 2.51144e9 4.34994e9i 0.271098 0.469555i
\(165\) 0 0
\(166\) −9.30344e8 1.61140e9i −0.0950949 0.164709i
\(167\) −7.53553e8 1.30519e9i −0.0749704 0.129853i 0.826103 0.563519i \(-0.190553\pi\)
−0.901073 + 0.433667i \(0.857220\pi\)
\(168\) 0 0
\(169\) −1.61098e9 + 2.79030e9i −0.151915 + 0.263124i
\(170\) 6.13930e9 0.563766
\(171\) 0 0
\(172\) −4.80953e9 −0.419010
\(173\) −1.08021e10 + 1.87099e10i −0.916859 + 1.58805i −0.112703 + 0.993629i \(0.535951\pi\)
−0.804156 + 0.594418i \(0.797382\pi\)
\(174\) 0 0
\(175\) −4.23634e9 7.33755e9i −0.341444 0.591398i
\(176\) −1.11982e9 1.93959e9i −0.0879714 0.152371i
\(177\) 0 0
\(178\) 7.62388e9 1.32049e10i 0.569227 0.985931i
\(179\) 1.94882e10 1.41884 0.709418 0.704788i \(-0.248958\pi\)
0.709418 + 0.704788i \(0.248958\pi\)
\(180\) 0 0
\(181\) 7.45903e9 0.516569 0.258285 0.966069i \(-0.416843\pi\)
0.258285 + 0.966069i \(0.416843\pi\)
\(182\) 6.27882e9 1.08752e10i 0.424187 0.734713i
\(183\) 0 0
\(184\) −8.30683e9 1.43879e10i −0.534263 0.925371i
\(185\) −1.36154e9 2.35825e9i −0.0854587 0.148019i
\(186\) 0 0
\(187\) 4.31571e9 7.47503e9i 0.258086 0.447018i
\(188\) 1.39306e9 0.0813315
\(189\) 0 0
\(190\) 1.09444e10 0.609256
\(191\) −3.28300e9 + 5.68633e9i −0.178493 + 0.309159i −0.941365 0.337391i \(-0.890456\pi\)
0.762872 + 0.646550i \(0.223789\pi\)
\(192\) 0 0
\(193\) 9.40057e9 + 1.62823e10i 0.487693 + 0.844709i 0.999900 0.0141532i \(-0.00450525\pi\)
−0.512207 + 0.858862i \(0.671172\pi\)
\(194\) −8.40320e8 1.45548e9i −0.0425929 0.0737730i
\(195\) 0 0
\(196\) −3.98564e8 + 6.90333e8i −0.0192906 + 0.0334123i
\(197\) 1.66201e9 0.0786206 0.0393103 0.999227i \(-0.487484\pi\)
0.0393103 + 0.999227i \(0.487484\pi\)
\(198\) 0 0
\(199\) 1.45345e10 0.656996 0.328498 0.944505i \(-0.393458\pi\)
0.328498 + 0.944505i \(0.393458\pi\)
\(200\) −8.84267e9 + 1.53160e10i −0.390795 + 0.676876i
\(201\) 0 0
\(202\) 4.22727e9 + 7.32185e9i 0.178640 + 0.309414i
\(203\) −1.93619e8 3.35357e8i −0.00800230 0.0138604i
\(204\) 0 0
\(205\) −9.38206e9 + 1.62502e10i −0.371027 + 0.642638i
\(206\) 5.97312e9 0.231099
\(207\) 0 0
\(208\) −1.42884e10 −0.529296
\(209\) 7.69351e9 1.33255e10i 0.278911 0.483089i
\(210\) 0 0
\(211\) −6.96607e8 1.20656e9i −0.0241945 0.0419061i 0.853675 0.520807i \(-0.174369\pi\)
−0.877869 + 0.478901i \(0.841035\pi\)
\(212\) 3.07576e9 + 5.32737e9i 0.104578 + 0.181135i
\(213\) 0 0
\(214\) −9.35998e9 + 1.62120e10i −0.305079 + 0.528413i
\(215\) 1.79671e10 0.573462
\(216\) 0 0
\(217\) −4.47078e10 −1.36872
\(218\) −4.82665e9 + 8.36000e9i −0.144741 + 0.250699i
\(219\) 0 0
\(220\) −1.35041e9 2.33897e9i −0.0388653 0.0673167i
\(221\) −2.75333e10 4.76890e10i −0.776412 1.34479i
\(222\) 0 0
\(223\) 1.43684e10 2.48867e10i 0.389077 0.673900i −0.603249 0.797553i \(-0.706127\pi\)
0.992326 + 0.123653i \(0.0394608\pi\)
\(224\) −2.58481e10 −0.685981
\(225\) 0 0
\(226\) −1.93225e10 −0.492693
\(227\) −1.92088e10 + 3.32705e10i −0.480157 + 0.831656i −0.999741 0.0227637i \(-0.992753\pi\)
0.519584 + 0.854419i \(0.326087\pi\)
\(228\) 0 0
\(229\) 6.69528e9 + 1.15966e10i 0.160883 + 0.278657i 0.935185 0.354158i \(-0.115233\pi\)
−0.774303 + 0.632815i \(0.781899\pi\)
\(230\) 8.65573e9 + 1.49922e10i 0.203952 + 0.353255i
\(231\) 0 0
\(232\) −4.04148e8 + 7.00004e8i −0.00915892 + 0.0158637i
\(233\) −4.50134e10 −1.00055 −0.500276 0.865866i \(-0.666768\pi\)
−0.500276 + 0.865866i \(0.666768\pi\)
\(234\) 0 0
\(235\) −5.20409e9 −0.111311
\(236\) 1.52159e10 2.63548e10i 0.319297 0.553038i
\(237\) 0 0
\(238\) 2.50066e10 + 4.33127e10i 0.505194 + 0.875022i
\(239\) −3.27972e10 5.68064e10i −0.650199 1.12618i −0.983074 0.183207i \(-0.941352\pi\)
0.332876 0.942971i \(-0.391981\pi\)
\(240\) 0 0
\(241\) −1.34067e10 + 2.32210e10i −0.256002 + 0.443409i −0.965167 0.261634i \(-0.915739\pi\)
0.709165 + 0.705043i \(0.249072\pi\)
\(242\) −3.57603e10 −0.670242
\(243\) 0 0
\(244\) 3.07303e10 0.555025
\(245\) 1.48893e9 2.57889e9i 0.0264013 0.0457284i
\(246\) 0 0
\(247\) −4.90829e10 8.50140e10i −0.839061 1.45330i
\(248\) 4.66602e10 + 8.08179e10i 0.783275 + 1.35667i
\(249\) 0 0
\(250\) 2.20163e10 3.81334e10i 0.356464 0.617413i
\(251\) 4.29625e10 0.683216 0.341608 0.939842i \(-0.389028\pi\)
0.341608 + 0.939842i \(0.389028\pi\)
\(252\) 0 0
\(253\) 2.43387e10 0.373469
\(254\) 1.68583e10 2.91994e10i 0.254133 0.440172i
\(255\) 0 0
\(256\) 3.31379e10 + 5.73965e10i 0.482219 + 0.835229i
\(257\) 4.72752e10 + 8.18831e10i 0.675981 + 1.17083i 0.976181 + 0.216958i \(0.0696134\pi\)
−0.300200 + 0.953876i \(0.597053\pi\)
\(258\) 0 0
\(259\) 1.10916e10 1.92113e10i 0.153160 0.265281i
\(260\) −1.72306e10 −0.233841
\(261\) 0 0
\(262\) 1.36594e10 0.179092
\(263\) 5.62344e10 9.74008e10i 0.724771 1.25534i −0.234297 0.972165i \(-0.575279\pi\)
0.959068 0.283176i \(-0.0913879\pi\)
\(264\) 0 0
\(265\) −1.14902e10 1.99016e10i −0.143127 0.247903i
\(266\) 4.45787e10 + 7.72125e10i 0.545959 + 0.945628i
\(267\) 0 0
\(268\) −1.38369e9 + 2.39662e9i −0.0163844 + 0.0283787i
\(269\) 1.11208e11 1.29494 0.647472 0.762089i \(-0.275826\pi\)
0.647472 + 0.762089i \(0.275826\pi\)
\(270\) 0 0
\(271\) 1.30075e10 0.146498 0.0732491 0.997314i \(-0.476663\pi\)
0.0732491 + 0.997314i \(0.476663\pi\)
\(272\) 2.84531e10 4.92823e10i 0.315188 0.545922i
\(273\) 0 0
\(274\) −3.75603e9 6.50564e9i −0.0402580 0.0697288i
\(275\) −1.29543e10 2.24375e10i −0.136590 0.236580i
\(276\) 0 0
\(277\) −2.12715e10 + 3.68434e10i −0.217090 + 0.376011i −0.953917 0.300070i \(-0.902990\pi\)
0.736827 + 0.676081i \(0.236323\pi\)
\(278\) −4.42448e10 −0.444284
\(279\) 0 0
\(280\) 5.61053e10 0.545498
\(281\) −6.91828e10 + 1.19828e11i −0.661941 + 1.14652i 0.318164 + 0.948036i \(0.396934\pi\)
−0.980105 + 0.198480i \(0.936400\pi\)
\(282\) 0 0
\(283\) −4.40394e10 7.62785e10i −0.408134 0.706909i 0.586547 0.809915i \(-0.300487\pi\)
−0.994681 + 0.103007i \(0.967154\pi\)
\(284\) 3.41824e10 + 5.92056e10i 0.311795 + 0.540046i
\(285\) 0 0
\(286\) 1.92001e10 3.32555e10i 0.169690 0.293911i
\(287\) −1.52860e11 −1.32992
\(288\) 0 0
\(289\) 1.00725e11 0.849370
\(290\) 4.21122e8 7.29405e8i 0.00349637 0.00605589i
\(291\) 0 0
\(292\) −2.98578e10 5.17152e10i −0.240345 0.416289i
\(293\) −7.58720e10 1.31414e11i −0.601419 1.04169i −0.992606 0.121377i \(-0.961269\pi\)
0.391188 0.920311i \(-0.372064\pi\)
\(294\) 0 0
\(295\) −5.68425e10 + 9.84542e10i −0.436993 + 0.756894i
\(296\) −4.63040e10 −0.350595
\(297\) 0 0
\(298\) −6.28638e10 −0.461772
\(299\) 7.76376e10 1.34472e11i 0.561761 0.972999i
\(300\) 0 0
\(301\) 7.31835e10 + 1.26758e11i 0.513883 + 0.890071i
\(302\) −3.76332e10 6.51826e10i −0.260339 0.450921i
\(303\) 0 0
\(304\) 5.07227e10 8.78544e10i 0.340621 0.589973i
\(305\) −1.14800e11 −0.759613
\(306\) 0 0
\(307\) −1.76213e11 −1.13218 −0.566089 0.824344i \(-0.691544\pi\)
−0.566089 + 0.824344i \(0.691544\pi\)
\(308\) 1.10010e10 1.90542e10i 0.0696550 0.120646i
\(309\) 0 0
\(310\) −4.86200e10 8.42123e10i −0.299011 0.517902i
\(311\) 4.99482e10 + 8.65128e10i 0.302760 + 0.524395i 0.976760 0.214336i \(-0.0687587\pi\)
−0.674000 + 0.738731i \(0.735425\pi\)
\(312\) 0 0
\(313\) −9.17125e10 + 1.58851e11i −0.540106 + 0.935491i 0.458791 + 0.888544i \(0.348283\pi\)
−0.998897 + 0.0469470i \(0.985051\pi\)
\(314\) −3.24560e10 −0.188413
\(315\) 0 0
\(316\) −7.12340e10 −0.401879
\(317\) −1.29176e11 + 2.23739e11i −0.718479 + 1.24444i 0.243123 + 0.969995i \(0.421828\pi\)
−0.961602 + 0.274447i \(0.911505\pi\)
\(318\) 0 0
\(319\) −5.92068e8 1.02549e9i −0.00320120 0.00554465i
\(320\) −5.11258e10 8.85525e10i −0.272562 0.472091i
\(321\) 0 0
\(322\) −7.05130e10 + 1.22132e11i −0.365526 + 0.633109i
\(323\) 3.90964e11 1.99860
\(324\) 0 0
\(325\) −1.65291e11 −0.821817
\(326\) −4.26816e10 + 7.39268e10i −0.209296 + 0.362512i
\(327\) 0 0
\(328\) 1.59535e11 + 2.76324e11i 0.761071 + 1.31821i
\(329\) −2.11973e10 3.67148e10i −0.0997468 0.172766i
\(330\) 0 0
\(331\) 1.41624e11 2.45301e11i 0.648503 1.12324i −0.334978 0.942226i \(-0.608729\pi\)
0.983481 0.181014i \(-0.0579379\pi\)
\(332\) −2.07984e10 −0.0939528
\(333\) 0 0
\(334\) 2.67037e10 0.117412
\(335\) 5.16908e9 8.95311e9i 0.0224239 0.0388394i
\(336\) 0 0
\(337\) 1.49793e11 + 2.59450e11i 0.632642 + 1.09577i 0.987010 + 0.160662i \(0.0513628\pi\)
−0.354368 + 0.935106i \(0.615304\pi\)
\(338\) −2.85442e10 4.94399e10i −0.118958 0.206041i
\(339\) 0 0
\(340\) 3.43120e10 5.94302e10i 0.139249 0.241186i
\(341\) −1.36712e11 −0.547537
\(342\) 0 0
\(343\) 2.67484e11 1.04345
\(344\) 1.52759e11 2.64586e11i 0.588157 1.01872i
\(345\) 0 0
\(346\) −1.91398e11 3.31511e11i −0.717951 1.24353i
\(347\) −2.73670e10 4.74010e10i −0.101332 0.175511i 0.810902 0.585182i \(-0.198977\pi\)
−0.912233 + 0.409671i \(0.865644\pi\)
\(348\) 0 0
\(349\) 1.52107e11 2.63458e11i 0.548828 0.950598i −0.449527 0.893267i \(-0.648408\pi\)
0.998355 0.0573311i \(-0.0182591\pi\)
\(350\) 1.50123e11 0.534738
\(351\) 0 0
\(352\) −7.90410e10 −0.274417
\(353\) −2.65017e11 + 4.59022e11i −0.908421 + 1.57343i −0.0921629 + 0.995744i \(0.529378\pi\)
−0.816258 + 0.577687i \(0.803955\pi\)
\(354\) 0 0
\(355\) −1.27696e11 2.21176e11i −0.426727 0.739112i
\(356\) −8.52184e10 1.47603e11i −0.281195 0.487045i
\(357\) 0 0
\(358\) −1.72651e11 + 2.99039e11i −0.555513 + 0.962177i
\(359\) 4.60506e11 1.46322 0.731611 0.681722i \(-0.238769\pi\)
0.731611 + 0.681722i \(0.238769\pi\)
\(360\) 0 0
\(361\) 3.74274e11 1.15986
\(362\) −6.60814e10 + 1.14456e11i −0.202251 + 0.350309i
\(363\) 0 0
\(364\) −7.01836e10 1.21562e11i −0.209546 0.362944i
\(365\) 1.11541e11 + 1.93194e11i 0.328939 + 0.569738i
\(366\) 0 0
\(367\) 2.26386e11 3.92112e11i 0.651407 1.12827i −0.331374 0.943499i \(-0.607512\pi\)
0.982782 0.184771i \(-0.0591544\pi\)
\(368\) 1.60463e11 0.456100
\(369\) 0 0
\(370\) 4.82488e10 0.133838
\(371\) 9.36038e10 1.62127e11i 0.256514 0.444295i
\(372\) 0 0
\(373\) 5.05651e10 + 8.75814e10i 0.135257 + 0.234273i 0.925696 0.378269i \(-0.123481\pi\)
−0.790438 + 0.612542i \(0.790147\pi\)
\(374\) 7.64679e10 + 1.32446e11i 0.202096 + 0.350040i
\(375\) 0 0
\(376\) −4.42459e10 + 7.66362e10i −0.114164 + 0.197737i
\(377\) −7.55452e9 −0.0192606
\(378\) 0 0
\(379\) −5.06871e11 −1.26189 −0.630944 0.775829i \(-0.717332\pi\)
−0.630944 + 0.775829i \(0.717332\pi\)
\(380\) 6.11672e10 1.05945e11i 0.150485 0.260647i
\(381\) 0 0
\(382\) −5.81699e10 1.00753e11i −0.139770 0.242088i
\(383\) −1.48470e11 2.57157e11i −0.352569 0.610667i 0.634130 0.773226i \(-0.281358\pi\)
−0.986699 + 0.162560i \(0.948025\pi\)
\(384\) 0 0
\(385\) −4.10966e10 + 7.11813e10i −0.0953306 + 0.165117i
\(386\) −3.33128e11 −0.763781
\(387\) 0 0
\(388\) −1.87859e10 −0.0420813
\(389\) −2.64170e10 + 4.57556e10i −0.0584939 + 0.101314i −0.893790 0.448487i \(-0.851963\pi\)
0.835296 + 0.549801i \(0.185296\pi\)
\(390\) 0 0
\(391\) 3.09206e11 + 5.35561e11i 0.669042 + 1.15881i
\(392\) −2.53182e10 4.38523e10i −0.0541558 0.0938005i
\(393\) 0 0
\(394\) −1.47242e10 + 2.55030e10i −0.0307821 + 0.0533162i
\(395\) 2.66111e11 0.550016
\(396\) 0 0
\(397\) 4.35046e11 0.878978 0.439489 0.898248i \(-0.355160\pi\)
0.439489 + 0.898248i \(0.355160\pi\)
\(398\) −1.28765e11 + 2.23028e11i −0.257232 + 0.445539i
\(399\) 0 0
\(400\) −8.54069e10 1.47929e11i −0.166810 0.288924i
\(401\) 2.02055e10 + 3.49970e10i 0.0390230 + 0.0675897i 0.884877 0.465824i \(-0.154242\pi\)
−0.845854 + 0.533414i \(0.820909\pi\)
\(402\) 0 0
\(403\) −4.36097e11 + 7.55343e11i −0.823589 + 1.42650i
\(404\) 9.45034e10 0.176495
\(405\) 0 0
\(406\) 6.86126e9 0.0125325
\(407\) 3.39172e10 5.87462e10i 0.0612695 0.106122i
\(408\) 0 0
\(409\) −1.20679e11 2.09022e11i −0.213244 0.369349i 0.739484 0.673174i \(-0.235069\pi\)
−0.952728 + 0.303825i \(0.901736\pi\)
\(410\) −1.66236e11 2.87929e11i −0.290535 0.503221i
\(411\) 0 0
\(412\) 3.33833e10 5.78215e10i 0.0570809 0.0988671i
\(413\) −9.26125e11 −1.56637
\(414\) 0 0
\(415\) 7.76973e10 0.128585
\(416\) −2.52132e11 + 4.36705e11i −0.412770 + 0.714938i
\(417\) 0 0
\(418\) 1.36318e11 + 2.36109e11i 0.218403 + 0.378285i
\(419\) −1.87685e11 3.25080e11i −0.297486 0.515262i 0.678074 0.734994i \(-0.262815\pi\)
−0.975560 + 0.219732i \(0.929482\pi\)
\(420\) 0 0
\(421\) −3.63197e11 + 6.29075e11i −0.563472 + 0.975962i 0.433718 + 0.901049i \(0.357201\pi\)
−0.997190 + 0.0749136i \(0.976132\pi\)
\(422\) 2.46857e10 0.0378912
\(423\) 0 0
\(424\) −3.90766e11 −0.587179
\(425\) 3.29152e11 5.70108e11i 0.489380 0.847632i
\(426\) 0 0
\(427\) −4.67603e11 8.09913e11i −0.680694 1.17900i
\(428\) 1.04624e11 + 1.81215e11i 0.150708 + 0.261033i
\(429\) 0 0
\(430\) −1.59175e11 + 2.75699e11i −0.224526 + 0.388890i
\(431\) −8.99614e11 −1.25576 −0.627882 0.778308i \(-0.716078\pi\)
−0.627882 + 0.778308i \(0.716078\pi\)
\(432\) 0 0
\(433\) −7.77024e11 −1.06228 −0.531140 0.847284i \(-0.678236\pi\)
−0.531140 + 0.847284i \(0.678236\pi\)
\(434\) 3.96078e11 6.86027e11i 0.535892 0.928191i
\(435\) 0 0
\(436\) 5.39515e10 + 9.34467e10i 0.0715013 + 0.123844i
\(437\) 5.51215e11 + 9.54732e11i 0.723027 + 1.25232i
\(438\) 0 0
\(439\) 7.63494e11 1.32241e12i 0.981104 1.69932i 0.322994 0.946401i \(-0.395311\pi\)
0.658110 0.752921i \(-0.271356\pi\)
\(440\) 1.71565e11 0.218218
\(441\) 0 0
\(442\) 9.75696e11 1.21595
\(443\) 1.39049e11 2.40841e11i 0.171535 0.297107i −0.767422 0.641143i \(-0.778461\pi\)
0.938957 + 0.344036i \(0.111794\pi\)
\(444\) 0 0
\(445\) 3.18353e11 + 5.51403e11i 0.384847 + 0.666575i
\(446\) 2.54586e11 + 4.40956e11i 0.304668 + 0.527701i
\(447\) 0 0
\(448\) 4.16491e11 7.21384e11i 0.488489 0.846088i
\(449\) −3.39438e11 −0.394141 −0.197071 0.980389i \(-0.563143\pi\)
−0.197071 + 0.980389i \(0.563143\pi\)
\(450\) 0 0
\(451\) −4.67432e11 −0.532015
\(452\) −1.07992e11 + 1.87048e11i −0.121694 + 0.210780i
\(453\) 0 0
\(454\) −3.40350e11 5.89504e11i −0.375989 0.651232i
\(455\) 2.62187e11 + 4.54121e11i 0.286787 + 0.496730i
\(456\) 0 0
\(457\) −4.10189e11 + 7.10468e11i −0.439907 + 0.761942i −0.997682 0.0680509i \(-0.978322\pi\)
0.557775 + 0.829992i \(0.311655\pi\)
\(458\) −2.37261e11 −0.251960
\(459\) 0 0
\(460\) 1.93504e11 0.201503
\(461\) 4.95721e11 8.58613e11i 0.511190 0.885408i −0.488725 0.872438i \(-0.662538\pi\)
0.999916 0.0129702i \(-0.00412867\pi\)
\(462\) 0 0
\(463\) 2.46462e11 + 4.26884e11i 0.249250 + 0.431713i 0.963318 0.268363i \(-0.0864827\pi\)
−0.714068 + 0.700076i \(0.753149\pi\)
\(464\) −3.90346e9 6.76099e9i −0.00390948 0.00677141i
\(465\) 0 0
\(466\) 3.98785e11 6.90716e11i 0.391744 0.678520i
\(467\) 9.59285e11 0.933301 0.466650 0.884442i \(-0.345461\pi\)
0.466650 + 0.884442i \(0.345461\pi\)
\(468\) 0 0
\(469\) 8.42188e10 0.0803769
\(470\) 4.61043e10 7.98550e10i 0.0435814 0.0754852i
\(471\) 0 0
\(472\) 9.66568e11 + 1.67415e12i 0.896383 + 1.55258i
\(473\) 2.23788e11 + 3.87613e11i 0.205571 + 0.356060i
\(474\) 0 0
\(475\) 5.86772e11 1.01632e12i 0.528869 0.916027i
\(476\) 5.59039e11 0.499127
\(477\) 0 0
\(478\) 1.16223e12 1.01828
\(479\) −5.29978e10 + 9.17948e10i −0.0459989 + 0.0796725i −0.888108 0.459634i \(-0.847980\pi\)
0.842109 + 0.539307i \(0.181314\pi\)
\(480\) 0 0
\(481\) −2.16384e11 3.74788e11i −0.184320 0.319251i
\(482\) −2.37546e11 4.11442e11i −0.200464 0.347214i
\(483\) 0 0
\(484\) −1.99861e11 + 3.46170e11i −0.165548 + 0.286738i
\(485\) 7.01790e10 0.0575929
\(486\) 0 0
\(487\) −4.79462e11 −0.386255 −0.193127 0.981174i \(-0.561863\pi\)
−0.193127 + 0.981174i \(0.561863\pi\)
\(488\) −9.76047e11 + 1.69056e12i −0.779079 + 1.34940i
\(489\) 0 0
\(490\) 2.63815e10 + 4.56942e10i 0.0206737 + 0.0358079i
\(491\) 6.09225e11 + 1.05521e12i 0.473054 + 0.819354i 0.999524 0.0308399i \(-0.00981819\pi\)
−0.526470 + 0.850194i \(0.676485\pi\)
\(492\) 0 0
\(493\) 1.50437e10 2.60564e10i 0.0114694 0.0198657i
\(494\) 1.73935e12 1.31406
\(495\) 0 0
\(496\) −9.01335e11 −0.668680
\(497\) 1.04026e12 1.80179e12i 0.764785 1.32465i
\(498\) 0 0
\(499\) −9.38654e11 1.62580e12i −0.677724 1.17385i −0.975665 0.219269i \(-0.929633\pi\)
0.297940 0.954585i \(-0.403700\pi\)
\(500\) −2.46095e11 4.26249e11i −0.176091 0.304999i
\(501\) 0 0
\(502\) −3.80616e11 + 6.59246e11i −0.267498 + 0.463320i
\(503\) −1.91484e12 −1.33375 −0.666877 0.745168i \(-0.732370\pi\)
−0.666877 + 0.745168i \(0.732370\pi\)
\(504\) 0 0
\(505\) −3.53039e11 −0.241552
\(506\) −2.15622e11 + 3.73469e11i −0.146223 + 0.253266i
\(507\) 0 0
\(508\) −1.88439e11 3.26386e11i −0.125541 0.217443i
\(509\) −6.73207e11 1.16603e12i −0.444548 0.769979i 0.553473 0.832867i \(-0.313302\pi\)
−0.998021 + 0.0628880i \(0.979969\pi\)
\(510\) 0 0
\(511\) −9.08654e11 + 1.57384e12i −0.589528 + 1.02109i
\(512\) −1.30385e12 −0.838519
\(513\) 0 0
\(514\) −1.67529e12 −1.05866
\(515\) −1.24711e11 + 2.16005e11i −0.0781216 + 0.135311i
\(516\) 0 0
\(517\) −6.48194e10 1.12270e11i −0.0399022 0.0691127i
\(518\) 1.96527e11 + 3.40395e11i 0.119933 + 0.207730i
\(519\) 0 0
\(520\) 5.47273e11 9.47905e11i 0.328238 0.568525i
\(521\) −1.22696e12 −0.729557 −0.364778 0.931094i \(-0.618855\pi\)
−0.364778 + 0.931094i \(0.618855\pi\)
\(522\) 0 0
\(523\) 2.16646e12 1.26617 0.633087 0.774080i \(-0.281787\pi\)
0.633087 + 0.774080i \(0.281787\pi\)
\(524\) 7.63414e10 1.32227e11i 0.0442354 0.0766179i
\(525\) 0 0
\(526\) 9.96389e11 + 1.72580e12i 0.567536 + 0.983001i
\(527\) −1.73684e12 3.00830e12i −0.980872 1.69892i
\(528\) 0 0
\(529\) 2.86834e10 4.96811e10i 0.0159250 0.0275829i
\(530\) 4.07178e11 0.224152
\(531\) 0 0
\(532\) 9.96586e11 0.539402
\(533\) −1.49106e12 + 2.58258e12i −0.800242 + 1.38606i
\(534\) 0 0
\(535\) −3.90848e11 6.76968e11i −0.206260 0.357253i
\(536\) −8.78967e10 1.52242e11i −0.0459971 0.0796694i
\(537\) 0 0
\(538\) −9.85221e11 + 1.70645e12i −0.507006 + 0.878161i
\(539\) 7.41811e10 0.0378568
\(540\) 0 0
\(541\) −1.66976e12 −0.838041 −0.419021 0.907977i \(-0.637626\pi\)
−0.419021 + 0.907977i \(0.637626\pi\)
\(542\) −1.15237e11 + 1.99596e11i −0.0573580 + 0.0993470i
\(543\) 0 0
\(544\) −1.00416e12 1.73926e12i −0.491597 0.851471i
\(545\) −2.01548e11 3.49091e11i −0.0978575 0.169494i
\(546\) 0 0
\(547\) −8.71587e11 + 1.50963e12i −0.416263 + 0.720988i −0.995560 0.0941279i \(-0.969994\pi\)
0.579297 + 0.815116i \(0.303327\pi\)
\(548\) −8.39686e10 −0.0397745
\(549\) 0 0
\(550\) 4.59063e11 0.213914
\(551\) 2.68180e10 4.64501e10i 0.0123949 0.0214686i
\(552\) 0 0
\(553\) 1.08392e12 + 1.87741e12i 0.492873 + 0.853681i
\(554\) −3.76900e11 6.52809e11i −0.169993 0.294437i
\(555\) 0 0
\(556\) −2.47281e11 + 4.28302e11i −0.109737 + 0.190070i
\(557\) 3.88681e12 1.71098 0.855490 0.517820i \(-0.173256\pi\)
0.855490 + 0.517820i \(0.173256\pi\)
\(558\) 0 0
\(559\) 2.85544e12 1.23686
\(560\) −2.70947e11 + 4.69293e11i −0.116423 + 0.201650i
\(561\) 0 0
\(562\) −1.22582e12 2.12317e12i −0.518336 0.897785i
\(563\) 1.40604e12 + 2.43533e12i 0.589806 + 1.02157i 0.994257 + 0.107015i \(0.0341292\pi\)
−0.404451 + 0.914560i \(0.632537\pi\)
\(564\) 0 0
\(565\) 4.03429e11 6.98759e11i 0.166552 0.288476i
\(566\) 1.56063e12 0.639183
\(567\) 0 0
\(568\) −4.34277e12 −1.75065
\(569\) 9.10981e11 1.57787e12i 0.364338 0.631051i −0.624332 0.781159i \(-0.714629\pi\)
0.988670 + 0.150108i \(0.0479621\pi\)
\(570\) 0 0
\(571\) 1.68248e12 + 2.91413e12i 0.662348 + 1.14722i 0.979997 + 0.199012i \(0.0637733\pi\)
−0.317649 + 0.948208i \(0.602893\pi\)
\(572\) −2.14615e11 3.71724e11i −0.0838259 0.145191i
\(573\) 0 0
\(574\) 1.35423e12 2.34559e12i 0.520700 0.901879i
\(575\) 1.85627e12 0.708167
\(576\) 0 0
\(577\) 2.47809e12 0.930737 0.465368 0.885117i \(-0.345922\pi\)
0.465368 + 0.885117i \(0.345922\pi\)
\(578\) −8.92348e11 + 1.54559e12i −0.332551 + 0.575996i
\(579\) 0 0
\(580\) −4.70723e9 8.15317e9i −0.00172719 0.00299158i
\(581\) 3.16477e11 + 5.48154e11i 0.115226 + 0.199577i
\(582\) 0 0
\(583\) 2.86232e11 4.95768e11i 0.102615 0.177734i
\(584\) 3.79334e12 1.34947
\(585\) 0 0
\(586\) 2.68868e12 0.941888
\(587\) −5.73505e11 + 9.93340e11i −0.199373 + 0.345324i −0.948325 0.317300i \(-0.897224\pi\)
0.748952 + 0.662624i \(0.230557\pi\)
\(588\) 0 0
\(589\) −3.09622e12 5.36282e12i −1.06002 1.83601i
\(590\) −1.00717e12 1.74446e12i −0.342189 0.592690i
\(591\) 0 0
\(592\) 2.23613e11 3.87310e11i 0.0748256 0.129602i
\(593\) −3.07354e12 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(594\) 0 0
\(595\) −2.08842e12 −0.683111
\(596\) −3.51340e11 + 6.08539e11i −0.114056 + 0.197551i
\(597\) 0 0
\(598\) 1.37562e12 + 2.38265e12i 0.439890 + 0.761912i
\(599\) 6.51632e11 + 1.12866e12i 0.206815 + 0.358214i 0.950709 0.310083i \(-0.100357\pi\)
−0.743895 + 0.668297i \(0.767024\pi\)
\(600\) 0 0
\(601\) 3.02726e12 5.24336e12i 0.946486 1.63936i 0.193737 0.981053i \(-0.437939\pi\)
0.752749 0.658308i \(-0.228728\pi\)
\(602\) −2.59341e12 −0.804797
\(603\) 0 0
\(604\) −8.41315e11 −0.257213
\(605\) 7.46627e11 1.29320e12i 0.226571 0.392432i
\(606\) 0 0
\(607\) 2.03918e12 + 3.53196e12i 0.609685 + 1.05601i 0.991292 + 0.131681i \(0.0420376\pi\)
−0.381607 + 0.924325i \(0.624629\pi\)
\(608\) −1.79010e12 3.10054e12i −0.531264 0.920177i
\(609\) 0 0
\(610\) 1.01704e12 1.76157e12i 0.297409 0.515128i
\(611\) −8.27066e11 −0.240079
\(612\) 0 0
\(613\) 2.84192e12 0.812904 0.406452 0.913672i \(-0.366766\pi\)
0.406452 + 0.913672i \(0.366766\pi\)
\(614\) 1.56111e12 2.70393e12i 0.443279 0.767781i
\(615\) 0 0
\(616\) 6.98819e11 + 1.21039e12i 0.195547 + 0.338697i
\(617\) 2.91123e12 + 5.04240e12i 0.808711 + 1.40073i 0.913757 + 0.406262i \(0.133168\pi\)
−0.105045 + 0.994467i \(0.533499\pi\)
\(618\) 0 0
\(619\) −2.75415e12 + 4.77032e12i −0.754014 + 1.30599i 0.191849 + 0.981424i \(0.438551\pi\)
−0.945863 + 0.324566i \(0.894782\pi\)
\(620\) −1.08693e12 −0.295420
\(621\) 0 0
\(622\) −1.77001e12 −0.474155
\(623\) −2.59343e12 + 4.49195e12i −0.689728 + 1.19464i
\(624\) 0 0
\(625\) −4.53417e11 7.85341e11i −0.118861 0.205873i
\(626\) −1.62501e12 2.81460e12i −0.422933 0.732541i
\(627\) 0 0
\(628\) −1.81394e11 + 3.14183e11i −0.0465376 + 0.0806055i
\(629\) 1.72358e12 0.439039
\(630\) 0 0
\(631\) −3.74010e12 −0.939184 −0.469592 0.882884i \(-0.655599\pi\)
−0.469592 + 0.882884i \(0.655599\pi\)
\(632\) 2.26251e12 3.91879e12i 0.564111 0.977069i
\(633\) 0 0
\(634\) −2.28880e12 3.96432e12i −0.562609 0.974467i
\(635\) 7.03957e11 + 1.21929e12i 0.171816 + 0.297595i
\(636\) 0 0
\(637\) 2.36629e11 4.09854e11i 0.0569431 0.0986284i
\(638\) 2.09811e10 0.00501344
\(639\) 0 0
\(640\) 1.87200e11 0.0441058
\(641\) −7.09241e11 + 1.22844e12i −0.165933 + 0.287405i −0.936986 0.349366i \(-0.886397\pi\)
0.771053 + 0.636771i \(0.219730\pi\)
\(642\) 0 0
\(643\) 3.55066e11 + 6.14992e11i 0.0819142 + 0.141880i 0.904072 0.427380i \(-0.140563\pi\)
−0.822158 + 0.569259i \(0.807230\pi\)
\(644\) 7.88183e11 + 1.36517e12i 0.180568 + 0.312753i
\(645\) 0 0
\(646\) −3.46365e12 + 5.99921e12i −0.782505 + 1.35534i
\(647\) −1.71001e12 −0.383645 −0.191823 0.981430i \(-0.561440\pi\)
−0.191823 + 0.981430i \(0.561440\pi\)
\(648\) 0 0
\(649\) −2.83200e12 −0.626603
\(650\) 1.46436e12 2.53634e12i 0.321764 0.557311i
\(651\) 0 0
\(652\) 4.77088e11 + 8.26341e11i 0.103391 + 0.179079i
\(653\) −9.38362e11 1.62529e12i −0.201958 0.349801i 0.747201 0.664598i \(-0.231397\pi\)
−0.949159 + 0.314796i \(0.898064\pi\)
\(654\) 0 0
\(655\) −2.85191e11 + 4.93965e11i −0.0605410 + 0.104860i
\(656\) −3.08175e12 −0.649725
\(657\) 0 0
\(658\) 7.51169e11 0.156214
\(659\) 1.05120e12 1.82073e12i 0.217121 0.376064i −0.736806 0.676105i \(-0.763667\pi\)
0.953927 + 0.300040i \(0.0970001\pi\)
\(660\) 0 0
\(661\) 3.07493e12 + 5.32593e12i 0.626511 + 1.08515i 0.988247 + 0.152868i \(0.0488509\pi\)
−0.361736 + 0.932281i \(0.617816\pi\)
\(662\) 2.50937e12 + 4.34636e12i 0.507813 + 0.879558i
\(663\) 0 0
\(664\) 6.60595e11 1.14418e12i 0.131880 0.228423i
\(665\) −3.72297e12 −0.738231
\(666\) 0 0
\(667\) 8.48395e10 0.0165971
\(668\) 1.49245e11 2.58499e11i 0.0290004 0.0502302i
\(669\) 0 0
\(670\) 9.15884e10 + 1.58636e11i 0.0175592 + 0.0304134i
\(671\) −1.42989e12 2.47664e12i −0.272302 0.471641i
\(672\) 0 0
\(673\) −1.87092e12 + 3.24053e12i −0.351551 + 0.608904i −0.986521 0.163632i \(-0.947679\pi\)
0.634971 + 0.772536i \(0.281012\pi\)
\(674\) −5.30823e12 −0.990787
\(675\) 0 0
\(676\) −6.38124e11 −0.117529
\(677\) 1.97991e12 3.42930e12i 0.362240 0.627418i −0.626089 0.779751i \(-0.715345\pi\)
0.988329 + 0.152333i \(0.0486788\pi\)
\(678\) 0 0
\(679\) 2.85853e11 + 4.95112e11i 0.0516094 + 0.0893902i
\(680\) 2.17962e12 + 3.77521e12i 0.390922 + 0.677097i
\(681\) 0 0
\(682\) 1.21117e12 2.09781e12i 0.214376 0.371309i
\(683\) −3.62977e12 −0.638243 −0.319121 0.947714i \(-0.603388\pi\)
−0.319121 + 0.947714i \(0.603388\pi\)
\(684\) 0 0
\(685\) 3.13684e11 0.0544358
\(686\) −2.36971e12 + 4.10445e12i −0.408541 + 0.707614i
\(687\) 0 0
\(688\) 1.47542e12 + 2.55550e12i 0.251054 + 0.434839i
\(689\) −1.82609e12 3.16289e12i −0.308700 0.534684i
\(690\) 0 0
\(691\) 1.63408e12 2.83030e12i 0.272660 0.472260i −0.696882 0.717185i \(-0.745430\pi\)
0.969542 + 0.244925i \(0.0787634\pi\)
\(692\) −4.27883e12 −0.709328
\(693\) 0 0
\(694\) 9.69805e11 0.158696
\(695\) 9.23773e11 1.60002e12i 0.150187 0.260132i
\(696\) 0 0
\(697\) −5.93841e12 1.02856e13i −0.953066 1.65076i
\(698\) 2.69512e12 + 4.66808e12i 0.429762 + 0.744370i
\(699\) 0 0
\(700\) 8.39025e11 1.45323e12i 0.132079 0.228768i
\(701\) 5.82077e12 0.910435 0.455218 0.890380i \(-0.349561\pi\)
0.455218 + 0.890380i \(0.349561\pi\)
\(702\) 0 0
\(703\) 3.07258e12 0.474466
\(704\) 1.27359e12 2.20593e12i 0.195413 0.338465i
\(705\) 0 0
\(706\) −4.69570e12 8.13319e12i −0.711343 1.23208i
\(707\) −1.43800e12 2.49069e12i −0.216457 0.374914i
\(708\) 0 0
\(709\) 3.41640e12 5.91738e12i 0.507763 0.879471i −0.492197 0.870484i \(-0.663806\pi\)
0.999960 0.00898692i \(-0.00286067\pi\)
\(710\) 4.52517e12 0.668301
\(711\) 0 0
\(712\) 1.08267e13 1.57884
\(713\) 4.89750e12 8.48272e12i 0.709695 1.22923i
\(714\) 0 0
\(715\) 8.01743e11 + 1.38866e12i 0.114725 + 0.198710i
\(716\) 1.92986e12 + 3.34261e12i 0.274421 + 0.475310i
\(717\) 0 0
\(718\) −4.07974e12 + 7.06632e12i −0.572892 + 0.992277i
\(719\) 5.93643e12 0.828411 0.414205 0.910183i \(-0.364060\pi\)
0.414205 + 0.910183i \(0.364060\pi\)
\(720\) 0 0
\(721\) −2.03189e12 −0.280021
\(722\) −3.31579e12 + 5.74311e12i −0.454119 + 0.786557i
\(723\) 0 0
\(724\) 7.38647e11 + 1.27937e12i 0.0999110 + 0.173051i
\(725\) −4.51561e10 7.82126e10i −0.00607009 0.0105137i
\(726\) 0 0
\(727\) −2.98924e12 + 5.17751e12i −0.396877 + 0.687411i −0.993339 0.115231i \(-0.963239\pi\)
0.596462 + 0.802641i \(0.296573\pi\)
\(728\) 8.91661e12 1.17655
\(729\) 0 0
\(730\) −3.95266e12 −0.515154
\(731\) −5.68617e12 + 9.84873e12i −0.736532 + 1.27571i
\(732\) 0 0
\(733\) −4.73505e11 8.20135e11i −0.0605838 0.104934i 0.834143 0.551549i \(-0.185963\pi\)
−0.894727 + 0.446614i \(0.852630\pi\)
\(734\) 4.01123e12 + 6.94765e12i 0.510088 + 0.883498i
\(735\) 0 0
\(736\) 2.83152e12 4.90433e12i 0.355688 0.616069i
\(737\) 2.57533e11 0.0321536
\(738\) 0 0
\(739\) 8.03141e12 0.990585 0.495293 0.868726i \(-0.335061\pi\)
0.495293 + 0.868726i \(0.335061\pi\)
\(740\) 2.69658e11 4.67062e11i 0.0330576 0.0572574i
\(741\) 0 0
\(742\) 1.65852e12 + 2.87264e12i 0.200864 + 0.347907i
\(743\) −2.22290e12 3.85017e12i −0.267590 0.463479i 0.700649 0.713506i \(-0.252894\pi\)
−0.968239 + 0.250027i \(0.919560\pi\)
\(744\) 0 0
\(745\) 1.31251e12 2.27334e12i 0.156099 0.270371i
\(746\) −1.79188e12 −0.211828
\(747\) 0 0
\(748\) 1.70949e12 0.199668
\(749\) 3.18400e12 5.51485e12i 0.369662 0.640274i
\(750\) 0 0
\(751\) 1.10885e12 + 1.92058e12i 0.127202 + 0.220320i 0.922591 0.385779i \(-0.126067\pi\)
−0.795390 + 0.606098i \(0.792734\pi\)
\(752\) −4.27349e11 7.40191e11i −0.0487307 0.0844041i
\(753\) 0 0
\(754\) 6.69274e10 1.15922e11i 0.00754107 0.0130615i
\(755\) 3.14292e12 0.352024
\(756\) 0 0
\(757\) −9.93039e12 −1.09909 −0.549547 0.835463i \(-0.685200\pi\)
−0.549547 + 0.835463i \(0.685200\pi\)
\(758\) 4.49050e12 7.77777e12i 0.494064 0.855743i
\(759\) 0 0
\(760\) 3.88555e12 + 6.72998e12i 0.422466 + 0.731733i
\(761\) −4.26425e11 7.38590e11i −0.0460906 0.0798312i 0.842060 0.539384i \(-0.181343\pi\)
−0.888150 + 0.459553i \(0.848010\pi\)
\(762\) 0 0
\(763\) 1.64189e12 2.84384e12i 0.175381 0.303770i
\(764\) −1.30043e12 −0.138091
\(765\) 0 0
\(766\) 5.26133e12 0.552161
\(767\) −9.03378e12 + 1.56470e13i −0.942519 + 1.63249i
\(768\) 0 0
\(769\) 3.38623e12 + 5.86513e12i 0.349179 + 0.604796i 0.986104 0.166130i \(-0.0531271\pi\)
−0.636925 + 0.770926i \(0.719794\pi\)
\(770\) −7.28170e11 1.26123e12i −0.0746491 0.129296i
\(771\) 0 0
\(772\) −1.86183e12 + 3.22478e12i −0.188652 + 0.326755i
\(773\) −3.60630e12 −0.363291 −0.181645 0.983364i \(-0.558142\pi\)
−0.181645 + 0.983364i \(0.558142\pi\)
\(774\) 0 0
\(775\) −1.04268e13 −1.03823
\(776\) 5.96673e11 1.03347e12i 0.0590688 0.102310i
\(777\) 0 0
\(778\) −4.68070e11 8.10721e11i −0.0458039 0.0793348i
\(779\) −1.05863e13 1.83360e13i −1.02997 1.78396i
\(780\) 0 0
\(781\) 3.18103e12 5.50970e12i 0.305941 0.529906i
\(782\) −1.09574e13 −1.04779
\(783\) 0 0
\(784\) 4.89071e11 0.0462327
\(785\) 6.77638e11 1.17370e12i 0.0636919 0.110318i
\(786\) 0 0
\(787\) −1.79432e12 3.10785e12i −0.166730 0.288785i 0.770538 0.637394i \(-0.219987\pi\)
−0.937268 + 0.348609i \(0.886654\pi\)
\(788\) 1.64584e11 + 2.85069e11i 0.0152062 + 0.0263379i
\(789\) 0 0
\(790\) −2.35754e12 + 4.08338e12i −0.215346 + 0.372991i
\(791\) 6.57299e12 0.596992
\(792\) 0 0
\(793\) −1.82447e13 −1.63835
\(794\) −3.85418e12 + 6.67564e12i −0.344144 + 0.596075i
\(795\) 0 0
\(796\) 1.43932e12 + 2.49297e12i 0.127071 + 0.220094i
\(797\) 2.62673e12 + 4.54963e12i 0.230597 + 0.399405i 0.957984 0.286822i \(-0.0925988\pi\)
−0.727387 + 0.686227i \(0.759266\pi\)
\(798\) 0 0
\(799\) 1.64697e12 2.85264e12i 0.142964 0.247621i
\(800\) −6.02833e12 −0.520346
\(801\) 0 0
\(802\) −7.16023e11 −0.0611142
\(803\) −2.77858e12 + 4.81264e12i −0.235832 + 0.408473i
\(804\) 0 0
\(805\) −2.94443e12 5.09991e12i −0.247127 0.428037i
\(806\) −7.72699e12 1.33835e13i −0.644916 1.11703i
\(807\) 0 0
\(808\) −3.00159e12 + 5.19891e12i −0.247742 + 0.429103i
\(809\) 7.22017e12 0.592623 0.296312 0.955091i \(-0.404243\pi\)
0.296312 + 0.955091i \(0.404243\pi\)
\(810\) 0 0
\(811\) −8.41322e12 −0.682918 −0.341459 0.939897i \(-0.610921\pi\)
−0.341459 + 0.939897i \(0.610921\pi\)
\(812\) 3.83470e10 6.64190e10i 0.00309549 0.00536155i
\(813\) 0 0
\(814\) 6.00961e11 + 1.04090e12i 0.0479774 + 0.0830993i
\(815\) −1.78227e12 3.08698e12i −0.141503 0.245090i
\(816\) 0 0
\(817\) −1.01366e13 + 1.75571e13i −0.795963 + 1.37865i
\(818\) 4.27650e12 0.333963
\(819\) 0 0
\(820\) −3.71632e12 −0.287045
\(821\) −1.73801e12 + 3.01032e12i −0.133508 + 0.231243i −0.925027 0.379902i \(-0.875958\pi\)
0.791518 + 0.611145i \(0.209291\pi\)
\(822\) 0 0
\(823\) −6.61717e11 1.14613e12i −0.0502774 0.0870831i 0.839791 0.542909i \(-0.182677\pi\)
−0.890069 + 0.455826i \(0.849344\pi\)
\(824\) 2.12062e12 + 3.67302e12i 0.160247 + 0.277556i
\(825\) 0 0
\(826\) 8.20477e12 1.42111e13i 0.613277 1.06223i
\(827\) −3.65944e11 −0.0272044 −0.0136022 0.999907i \(-0.504330\pi\)
−0.0136022 + 0.999907i \(0.504330\pi\)
\(828\) 0 0
\(829\) 2.59469e13 1.90805 0.954025 0.299728i \(-0.0968960\pi\)
0.954025 + 0.299728i \(0.0968960\pi\)
\(830\) −6.88340e11 + 1.19224e12i −0.0503445 + 0.0871992i
\(831\) 0 0
\(832\) −8.12523e12 1.40733e13i −0.587869 1.01822i
\(833\) 9.42421e11 + 1.63232e12i 0.0678176 + 0.117464i
\(834\) 0 0
\(835\) −5.57537e11 + 9.65682e11i −0.0396903 + 0.0687456i
\(836\) 3.04747e12 0.215780
\(837\) 0 0
\(838\) 6.65101e12 0.465896
\(839\) −7.12846e12 + 1.23469e13i −0.496669 + 0.860255i −0.999993 0.00384244i \(-0.998777\pi\)
0.503324 + 0.864098i \(0.332110\pi\)
\(840\) 0 0
\(841\) 7.25151e12 + 1.25600e13i 0.499858 + 0.865779i
\(842\) −6.43530e12 1.11463e13i −0.441230 0.764232i
\(843\) 0 0
\(844\) 1.37966e11 2.38964e11i 0.00935904 0.0162103i
\(845\) 2.38386e12 0.160851
\(846\) 0 0
\(847\) 1.21646e13 0.812127
\(848\) 1.88710e12 3.26856e12i 0.125318 0.217058i
\(849\) 0 0
\(850\) 5.83208e12 + 1.01015e13i 0.383212 + 0.663742i
\(851\) 2.43005e12 + 4.20898e12i 0.158830 + 0.275102i
\(852\) 0 0
\(853\) 1.79052e10 3.10127e10i 0.00115800 0.00200571i −0.865446 0.501003i \(-0.832965\pi\)
0.866604 + 0.498997i \(0.166298\pi\)
\(854\) 1.65705e13 1.06604
\(855\) 0 0
\(856\) −1.32922e13 −0.846184
\(857\) 6.97342e12 1.20783e13i 0.441603 0.764880i −0.556205 0.831045i \(-0.687743\pi\)
0.997809 + 0.0661654i \(0.0210765\pi\)
\(858\) 0 0
\(859\) 7.06018e12 + 1.22286e13i 0.442432 + 0.766314i 0.997869 0.0652438i \(-0.0207825\pi\)
−0.555437 + 0.831558i \(0.687449\pi\)
\(860\) 1.77923e12 + 3.08172e12i 0.110915 + 0.192110i
\(861\) 0 0
\(862\) 7.96991e12 1.38043e13i 0.491666 0.851591i
\(863\) 2.25669e13 1.38492 0.692458 0.721458i \(-0.256528\pi\)
0.692458 + 0.721458i \(0.256528\pi\)
\(864\) 0 0
\(865\) 1.59845e13 0.970795
\(866\) 6.88385e12 1.19232e13i 0.415911 0.720380i
\(867\) 0 0
\(868\) −4.42729e12 7.66829e12i −0.264728 0.458522i
\(869\) 3.31453e12 + 5.74094e12i 0.197167 + 0.341503i
\(870\) 0 0
\(871\) 8.21503e11 1.42288e12i 0.0483646 0.0837699i
\(872\) −6.85437e12 −0.401461
\(873\) 0 0
\(874\) −1.95334e13 −1.13234
\(875\) −7.48934e12 + 1.29719e13i −0.431924 + 0.748114i
\(876\) 0 0
\(877\) −1.52634e13 2.64371e13i −0.871273 1.50909i −0.860681 0.509145i \(-0.829962\pi\)
−0.0105925 0.999944i \(-0.503372\pi\)
\(878\) 1.35280e13 + 2.34311e13i 0.768258 + 1.33066i
\(879\) 0 0
\(880\) −8.28530e11 + 1.43506e12i −0.0465732 + 0.0806671i
\(881\) −2.00261e13 −1.11997 −0.559983 0.828504i \(-0.689192\pi\)
−0.559983 + 0.828504i \(0.689192\pi\)
\(882\) 0 0
\(883\) 1.87899e13 1.04016 0.520080 0.854117i \(-0.325902\pi\)
0.520080 + 0.854117i \(0.325902\pi\)
\(884\) 5.45308e12 9.44502e12i 0.300336 0.520197i
\(885\) 0 0
\(886\) 2.46375e12 + 4.26734e12i 0.134321 + 0.232651i
\(887\) 1.44494e13 + 2.50272e13i 0.783781 + 1.35755i 0.929724 + 0.368256i \(0.120045\pi\)
−0.145943 + 0.989293i \(0.546622\pi\)
\(888\) 0 0
\(889\) −5.73472e12 + 9.93282e12i −0.307931 + 0.533353i
\(890\) −1.12815e13 −0.602713
\(891\) 0 0
\(892\) 5.69143e12 0.301009
\(893\) 2.93602e12 5.08534e12i 0.154500 0.267601i
\(894\) 0 0
\(895\) −7.20942e12 1.24871e13i −0.375575 0.650515i
\(896\) 7.62502e11 + 1.32069e12i 0.0395235 + 0.0684567i
\(897\) 0 0
\(898\) 3.00717e12 5.20856e12i 0.154317 0.267285i
\(899\) −4.76551e11 −0.0243327
\(900\) 0 0
\(901\) 1.45455e13 0.735306
\(902\) 4.14110e12 7.17259e12i 0.208299 0.360784i
\(903\) 0 0
\(904\) −6.86003e12 1.18819e13i −0.341639 0.591737i
\(905\) −2.75938e12 4.77939e12i −0.136739 0.236839i
\(906\) 0 0
\(907\) −1.38734e12 + 2.40294e12i −0.0680691 + 0.117899i −0.898051 0.439891i \(-0.855017\pi\)
0.829982 + 0.557790i \(0.188351\pi\)
\(908\) −7.60876e12 −0.371473
\(909\) 0 0
\(910\) −9.29112e12 −0.449140
\(911\) 1.79009e13 3.10053e13i 0.861079 1.49143i −0.00980917 0.999952i \(-0.503122\pi\)
0.870888 0.491481i \(-0.163544\pi\)
\(912\) 0 0
\(913\) 9.67757e11 + 1.67620e12i 0.0460944 + 0.0798378i
\(914\) −7.26794e12 1.25884e13i −0.344471 0.596642i
\(915\) 0 0
\(916\) −1.32603e12 + 2.29675e12i −0.0622334 + 0.107791i
\(917\) −4.64656e12 −0.217005
\(918\) 0 0
\(919\) −1.46068e13 −0.675516 −0.337758 0.941233i \(-0.609669\pi\)
−0.337758 + 0.941233i \(0.609669\pi\)
\(920\) −6.14604e12 + 1.06452e13i −0.282846 + 0.489903i
\(921\) 0 0
\(922\) 8.78343e12 + 1.52133e13i 0.400290 + 0.693323i
\(923\) −2.02943e13 3.51507e13i −0.920376 1.59414i
\(924\) 0 0
\(925\) 2.58681e12 4.48048e12i 0.116179 0.201227i
\(926\) −8.73386e12 −0.390352
\(927\) 0 0
\(928\) −2.75520e11 −0.0121952
\(929\) −1.98224e13 + 3.43333e13i −0.873142 + 1.51233i −0.0144124 + 0.999896i \(0.504588\pi\)
−0.858729 + 0.512430i \(0.828746\pi\)
\(930\) 0 0
\(931\) 1.68003e12 + 2.90990e12i 0.0732899 + 0.126942i
\(932\) −4.45755e12 7.72070e12i −0.193519 0.335185i
\(933\) 0 0
\(934\) −8.49855e12 + 1.47199e13i −0.365413 + 0.632914i
\(935\) −6.38619e12 −0.273268
\(936\) 0 0
\(937\) −1.72240e13 −0.729973 −0.364987 0.931013i \(-0.618926\pi\)
−0.364987 + 0.931013i \(0.618926\pi\)
\(938\) −7.46116e11 + 1.29231e12i −0.0314698 + 0.0545073i
\(939\) 0 0
\(940\) −5.15346e11 8.92606e11i −0.0215290 0.0372893i
\(941\) 2.06449e13 + 3.57581e13i 0.858341 + 1.48669i 0.873510 + 0.486806i \(0.161838\pi\)
−0.0151687 + 0.999885i \(0.504829\pi\)
\(942\) 0 0
\(943\) 1.67450e13 2.90032e13i 0.689576 1.19438i
\(944\) −1.86712e13 −0.765241
\(945\) 0 0
\(946\) −7.93040e12 −0.321947
\(947\) 8.80925e12 1.52581e13i 0.355929 0.616488i −0.631347 0.775500i \(-0.717498\pi\)
0.987277 + 0.159013i \(0.0508310\pi\)
\(948\) 0 0
\(949\) 1.77267e13 + 3.07036e13i 0.709464 + 1.22883i
\(950\) 1.03967e13 + 1.80076e13i 0.414133 + 0.717300i
\(951\) 0 0
\(952\) −1.77561e13 + 3.07544e13i −0.700616 + 1.21350i
\(953\) −4.44553e13 −1.74584 −0.872922 0.487859i \(-0.837778\pi\)
−0.872922 + 0.487859i \(0.837778\pi\)
\(954\) 0 0
\(955\) 4.85804e12 0.188993
\(956\) 6.49563e12 1.12508e13i 0.251513 0.435634i
\(957\) 0 0
\(958\) −9.39042e11 1.62647e12i −0.0360197 0.0623879i
\(959\) 1.27770e12 + 2.21304e12i 0.0487803 + 0.0844899i
\(960\) 0 0
\(961\) −1.42899e13 + 2.47508e13i −0.540472 + 0.936126i
\(962\) 7.66800e12 0.288665
\(963\) 0 0
\(964\) −5.31050e12 −0.198056
\(965\) 6.95527e12 1.20469e13i 0.258191 0.447200i
\(966\) 0 0
\(967\) 7.41879e12 + 1.28497e13i 0.272844 + 0.472579i 0.969589 0.244739i \(-0.0787024\pi\)
−0.696745 + 0.717319i \(0.745369\pi\)
\(968\) −1.26959e13 2.19899e13i −0.464754 0.804978i
\(969\) 0 0
\(970\) −6.21734e11 + 1.07687e12i −0.0225492 + 0.0390564i
\(971\) 3.34482e13 1.20750 0.603749 0.797174i \(-0.293673\pi\)
0.603749 + 0.797174i \(0.293673\pi\)
\(972\) 0 0
\(973\) 1.50508e13 0.538336
\(974\) 4.24768e12 7.35719e12i 0.151229 0.261937i
\(975\) 0 0
\(976\) −9.42714e12 1.63283e13i −0.332549 0.575992i
\(977\) 1.02021e13 + 1.76705e13i 0.358231 + 0.620475i 0.987665 0.156579i \(-0.0500465\pi\)
−0.629434 + 0.777054i \(0.716713\pi\)
\(978\) 0 0
\(979\) −7.93047e12 + 1.37360e13i −0.275916 + 0.477900i
\(980\) 5.89777e11 0.0204254
\(981\) 0 0
\(982\) −2.15891e13 −0.740855
\(983\) 1.15500e13 2.00051e13i 0.394539 0.683361i −0.598504 0.801120i \(-0.704238\pi\)
0.993042 + 0.117759i \(0.0375711\pi\)
\(984\) 0 0
\(985\) −6.14842e11 1.06494e12i −0.0208114 0.0360464i
\(986\) 2.66551e11 + 4.61680e11i 0.00898120 + 0.0155559i
\(987\) 0 0
\(988\) 9.72108e12 1.68374e13i 0.324570 0.562172i
\(989\) −3.20674e13 −1.06581
\(990\) 0 0
\(991\) −4.59514e13 −1.51345 −0.756724 0.653734i \(-0.773201\pi\)
−0.756724 + 0.653734i \(0.773201\pi\)
\(992\) −1.59049e13 + 2.75480e13i −0.521468 + 0.903209i
\(993\) 0 0
\(994\) 1.84319e13 + 3.19250e13i 0.598869 + 1.03727i
\(995\) −5.37689e12 9.31305e12i −0.173911 0.301223i
\(996\) 0 0
\(997\) 2.19764e13 3.80642e13i 0.704414 1.22008i −0.262489 0.964935i \(-0.584543\pi\)
0.966903 0.255146i \(-0.0821234\pi\)
\(998\) 3.32631e13 1.06139
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.10.c.a.19.3 16
3.2 odd 2 9.10.c.a.7.6 yes 16
9.2 odd 6 81.10.a.c.1.3 8
9.4 even 3 inner 27.10.c.a.10.3 16
9.5 odd 6 9.10.c.a.4.6 16
9.7 even 3 81.10.a.d.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.10.c.a.4.6 16 9.5 odd 6
9.10.c.a.7.6 yes 16 3.2 odd 2
27.10.c.a.10.3 16 9.4 even 3 inner
27.10.c.a.19.3 16 1.1 even 1 trivial
81.10.a.c.1.3 8 9.2 odd 6
81.10.a.d.1.6 8 9.7 even 3