Properties

Label 27.10.a.d
Level $27$
Weight $10$
Character orbit 27.a
Self dual yes
Analytic conductor $13.906$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,10,Mod(1,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.9059675764\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.203942560.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 83x^{2} + 1440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + 559) q^{4} + ( - \beta_{2} - 10 \beta_1) q^{5} + (4 \beta_{3} + 2963) q^{7} + (10 \beta_{2} + 818 \beta_1) q^{8} + ( - 40 \beta_{3} - 10440) q^{10} + ( - 35 \beta_{2} + 802 \beta_1) q^{11}+ \cdots + (237040 \beta_{2} - 129798 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2236 q^{4} + 11852 q^{7} - 41760 q^{10} + 179684 q^{13} + 2348680 q^{16} + 1011428 q^{19} + 3473568 q^{22} + 2554060 q^{25} + 19793924 q^{28} + 889136 q^{31} - 43111008 q^{34} - 3805156 q^{37} - 133649280 q^{40}+ \cdots + 1935734516 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 83x^{2} + 1440 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 35\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -21\nu^{3} + 1383\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 54\nu^{2} - 2241 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 42\beta_1 ) / 324 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 2241 ) / 54 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 35\beta_{2} + 2766\beta_1 ) / 324 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.63546
4.96988
−4.96988
7.63546
−44.4771 0 1466.22 1050.62 0 6591.86 −42440.8 0 −46728.6
1.2 −12.7978 0 −348.216 −2019.77 0 −665.864 11008.9 0 25848.6
1.3 12.7978 0 −348.216 2019.77 0 −665.864 −11008.9 0 25848.6
1.4 44.4771 0 1466.22 −1050.62 0 6591.86 42440.8 0 −46728.6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.10.a.d 4
3.b odd 2 1 inner 27.10.a.d 4
9.c even 3 2 81.10.c.j 8
9.d odd 6 2 81.10.c.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.10.a.d 4 1.a even 1 1 trivial
27.10.a.d 4 3.b odd 2 1 inner
81.10.c.j 8 9.c even 3 2
81.10.c.j 8 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 2142T_{2}^{2} + 324000 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(27))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2142 T^{2} + 324000 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 4502946816000 \) Copy content Toggle raw display
$7$ \( (T^{2} - 5926 T - 4389287)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{2} - 89842 T + 424488865)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{2} - 505714 T - 484090125647)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots - 10428415330928)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots - 8057965728479)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots - 899237665076288)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 64\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 24\!\cdots\!87)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots - 42\!\cdots\!15)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 50\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 69\!\cdots\!53)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 392927220347495)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 788793992975497)^{2} \) Copy content Toggle raw display
show more
show less