Properties

Label 27.10.a.c.1.1
Level $27$
Weight $10$
Character 27.1
Self dual yes
Analytic conductor $13.906$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,10,Mod(1,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.9059675764\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.177113.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 118x + 136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-10.9320\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.7960 q^{2} +563.577 q^{4} -1315.38 q^{5} +5158.54 q^{7} -1691.52 q^{8} +43139.3 q^{10} +15135.0 q^{11} +180503. q^{13} -169179. q^{14} -233076. q^{16} -595825. q^{17} -785830. q^{19} -741319. q^{20} -496368. q^{22} +1.17544e6 q^{23} -222893. q^{25} -5.91979e6 q^{26} +2.90723e6 q^{28} -1.54282e6 q^{29} -2.27049e6 q^{31} +8.51003e6 q^{32} +1.95407e7 q^{34} -6.78546e6 q^{35} -1.12928e7 q^{37} +2.57721e7 q^{38} +2.22499e6 q^{40} +1.67274e7 q^{41} -3.11877e7 q^{43} +8.52976e6 q^{44} -3.85498e7 q^{46} -1.93554e7 q^{47} -1.37431e7 q^{49} +7.30999e6 q^{50} +1.01728e8 q^{52} +3.77611e7 q^{53} -1.99084e7 q^{55} -8.72576e6 q^{56} +5.05984e7 q^{58} -1.37708e8 q^{59} +1.84447e8 q^{61} +7.44629e7 q^{62} -1.59760e8 q^{64} -2.37431e8 q^{65} -1.43814e8 q^{67} -3.35793e8 q^{68} +2.22536e8 q^{70} +2.34392e7 q^{71} -1.57666e8 q^{73} +3.70357e8 q^{74} -4.42875e8 q^{76} +7.80747e7 q^{77} +4.69594e7 q^{79} +3.06585e8 q^{80} -5.48593e8 q^{82} -2.45495e8 q^{83} +7.83738e8 q^{85} +1.02283e9 q^{86} -2.56012e7 q^{88} -1.10618e9 q^{89} +9.31134e8 q^{91} +6.62452e8 q^{92} +6.34778e8 q^{94} +1.03367e9 q^{95} +2.96985e8 q^{97} +4.50717e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 597 q^{4} - 1983 q^{5} - 3693 q^{7} - 4503 q^{8} - 18981 q^{10} - 16863 q^{11} + 116916 q^{13} - 503463 q^{14} - 239919 q^{16} - 1014048 q^{17} - 15222 q^{19} - 2548407 q^{20} + 305721 q^{22}+ \cdots + 2592182286 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.7960 −1.44939 −0.724696 0.689069i \(-0.758020\pi\)
−0.724696 + 0.689069i \(0.758020\pi\)
\(3\) 0 0
\(4\) 563.577 1.10074
\(5\) −1315.38 −0.941211 −0.470606 0.882344i \(-0.655965\pi\)
−0.470606 + 0.882344i \(0.655965\pi\)
\(6\) 0 0
\(7\) 5158.54 0.812055 0.406028 0.913861i \(-0.366914\pi\)
0.406028 + 0.913861i \(0.366914\pi\)
\(8\) −1691.52 −0.146006
\(9\) 0 0
\(10\) 43139.3 1.36418
\(11\) 15135.0 0.311685 0.155843 0.987782i \(-0.450191\pi\)
0.155843 + 0.987782i \(0.450191\pi\)
\(12\) 0 0
\(13\) 180503. 1.75283 0.876416 0.481555i \(-0.159928\pi\)
0.876416 + 0.481555i \(0.159928\pi\)
\(14\) −169179. −1.17699
\(15\) 0 0
\(16\) −233076. −0.889116
\(17\) −595825. −1.73021 −0.865105 0.501591i \(-0.832748\pi\)
−0.865105 + 0.501591i \(0.832748\pi\)
\(18\) 0 0
\(19\) −785830. −1.38337 −0.691683 0.722201i \(-0.743131\pi\)
−0.691683 + 0.722201i \(0.743131\pi\)
\(20\) −741319. −1.03603
\(21\) 0 0
\(22\) −496368. −0.451754
\(23\) 1.17544e6 0.875842 0.437921 0.899013i \(-0.355715\pi\)
0.437921 + 0.899013i \(0.355715\pi\)
\(24\) 0 0
\(25\) −222893. −0.114121
\(26\) −5.91979e6 −2.54054
\(27\) 0 0
\(28\) 2.90723e6 0.893859
\(29\) −1.54282e6 −0.405065 −0.202533 0.979276i \(-0.564917\pi\)
−0.202533 + 0.979276i \(0.564917\pi\)
\(30\) 0 0
\(31\) −2.27049e6 −0.441562 −0.220781 0.975323i \(-0.570861\pi\)
−0.220781 + 0.975323i \(0.570861\pi\)
\(32\) 8.51003e6 1.43468
\(33\) 0 0
\(34\) 1.95407e7 2.50775
\(35\) −6.78546e6 −0.764316
\(36\) 0 0
\(37\) −1.12928e7 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(38\) 2.57721e7 2.00504
\(39\) 0 0
\(40\) 2.22499e6 0.137423
\(41\) 1.67274e7 0.924489 0.462245 0.886752i \(-0.347044\pi\)
0.462245 + 0.886752i \(0.347044\pi\)
\(42\) 0 0
\(43\) −3.11877e7 −1.39115 −0.695576 0.718452i \(-0.744851\pi\)
−0.695576 + 0.718452i \(0.744851\pi\)
\(44\) 8.52976e6 0.343083
\(45\) 0 0
\(46\) −3.85498e7 −1.26944
\(47\) −1.93554e7 −0.578577 −0.289288 0.957242i \(-0.593419\pi\)
−0.289288 + 0.957242i \(0.593419\pi\)
\(48\) 0 0
\(49\) −1.37431e7 −0.340566
\(50\) 7.30999e6 0.165406
\(51\) 0 0
\(52\) 1.01728e8 1.92941
\(53\) 3.77611e7 0.657360 0.328680 0.944441i \(-0.393396\pi\)
0.328680 + 0.944441i \(0.393396\pi\)
\(54\) 0 0
\(55\) −1.99084e7 −0.293362
\(56\) −8.72576e6 −0.118565
\(57\) 0 0
\(58\) 5.05984e7 0.587098
\(59\) −1.37708e8 −1.47954 −0.739770 0.672860i \(-0.765066\pi\)
−0.739770 + 0.672860i \(0.765066\pi\)
\(60\) 0 0
\(61\) 1.84447e8 1.70564 0.852818 0.522209i \(-0.174892\pi\)
0.852818 + 0.522209i \(0.174892\pi\)
\(62\) 7.44629e7 0.639996
\(63\) 0 0
\(64\) −1.59760e8 −1.19030
\(65\) −2.37431e8 −1.64979
\(66\) 0 0
\(67\) −1.43814e8 −0.871898 −0.435949 0.899971i \(-0.643587\pi\)
−0.435949 + 0.899971i \(0.643587\pi\)
\(68\) −3.35793e8 −1.90450
\(69\) 0 0
\(70\) 2.22536e8 1.10779
\(71\) 2.34392e7 0.109466 0.0547332 0.998501i \(-0.482569\pi\)
0.0547332 + 0.998501i \(0.482569\pi\)
\(72\) 0 0
\(73\) −1.57666e8 −0.649808 −0.324904 0.945747i \(-0.605332\pi\)
−0.324904 + 0.945747i \(0.605332\pi\)
\(74\) 3.70357e8 1.43575
\(75\) 0 0
\(76\) −4.42875e8 −1.52272
\(77\) 7.80747e7 0.253106
\(78\) 0 0
\(79\) 4.69594e7 0.135644 0.0678220 0.997697i \(-0.478395\pi\)
0.0678220 + 0.997697i \(0.478395\pi\)
\(80\) 3.06585e8 0.836846
\(81\) 0 0
\(82\) −5.48593e8 −1.33995
\(83\) −2.45495e8 −0.567795 −0.283898 0.958855i \(-0.591628\pi\)
−0.283898 + 0.958855i \(0.591628\pi\)
\(84\) 0 0
\(85\) 7.83738e8 1.62849
\(86\) 1.02283e9 2.01632
\(87\) 0 0
\(88\) −2.56012e7 −0.0455080
\(89\) −1.10618e9 −1.86883 −0.934415 0.356185i \(-0.884077\pi\)
−0.934415 + 0.356185i \(0.884077\pi\)
\(90\) 0 0
\(91\) 9.31134e8 1.42340
\(92\) 6.62452e8 0.964071
\(93\) 0 0
\(94\) 6.34778e8 0.838584
\(95\) 1.03367e9 1.30204
\(96\) 0 0
\(97\) 2.96985e8 0.340614 0.170307 0.985391i \(-0.445524\pi\)
0.170307 + 0.985391i \(0.445524\pi\)
\(98\) 4.50717e8 0.493613
\(99\) 0 0
\(100\) −1.25617e8 −0.125617
\(101\) −1.00457e8 −0.0960579 −0.0480289 0.998846i \(-0.515294\pi\)
−0.0480289 + 0.998846i \(0.515294\pi\)
\(102\) 0 0
\(103\) −8.94524e8 −0.783113 −0.391557 0.920154i \(-0.628063\pi\)
−0.391557 + 0.920154i \(0.628063\pi\)
\(104\) −3.05325e8 −0.255924
\(105\) 0 0
\(106\) −1.23841e9 −0.952773
\(107\) −1.67004e9 −1.23168 −0.615841 0.787870i \(-0.711184\pi\)
−0.615841 + 0.787870i \(0.711184\pi\)
\(108\) 0 0
\(109\) −7.93643e8 −0.538525 −0.269263 0.963067i \(-0.586780\pi\)
−0.269263 + 0.963067i \(0.586780\pi\)
\(110\) 6.52915e8 0.425196
\(111\) 0 0
\(112\) −1.20233e9 −0.722012
\(113\) −5.83682e8 −0.336762 −0.168381 0.985722i \(-0.553854\pi\)
−0.168381 + 0.985722i \(0.553854\pi\)
\(114\) 0 0
\(115\) −1.54616e9 −0.824353
\(116\) −8.69499e8 −0.445870
\(117\) 0 0
\(118\) 4.51629e9 2.14443
\(119\) −3.07359e9 −1.40503
\(120\) 0 0
\(121\) −2.12888e9 −0.902852
\(122\) −6.04911e9 −2.47213
\(123\) 0 0
\(124\) −1.27959e9 −0.486043
\(125\) 2.86230e9 1.04862
\(126\) 0 0
\(127\) 1.00303e9 0.342133 0.171067 0.985259i \(-0.445279\pi\)
0.171067 + 0.985259i \(0.445279\pi\)
\(128\) 8.82342e8 0.290531
\(129\) 0 0
\(130\) 7.78679e9 2.39119
\(131\) 4.66779e9 1.38481 0.692406 0.721508i \(-0.256551\pi\)
0.692406 + 0.721508i \(0.256551\pi\)
\(132\) 0 0
\(133\) −4.05373e9 −1.12337
\(134\) 4.71654e9 1.26372
\(135\) 0 0
\(136\) 1.00785e9 0.252621
\(137\) −3.40122e9 −0.824884 −0.412442 0.910984i \(-0.635324\pi\)
−0.412442 + 0.910984i \(0.635324\pi\)
\(138\) 0 0
\(139\) 4.61428e9 1.04843 0.524213 0.851587i \(-0.324360\pi\)
0.524213 + 0.851587i \(0.324360\pi\)
\(140\) −3.82413e9 −0.841310
\(141\) 0 0
\(142\) −7.68713e8 −0.158660
\(143\) 2.73193e9 0.546332
\(144\) 0 0
\(145\) 2.02940e9 0.381252
\(146\) 5.17081e9 0.941826
\(147\) 0 0
\(148\) −6.36434e9 −1.09037
\(149\) 2.27168e9 0.377580 0.188790 0.982017i \(-0.439543\pi\)
0.188790 + 0.982017i \(0.439543\pi\)
\(150\) 0 0
\(151\) −9.94969e8 −0.155745 −0.0778723 0.996963i \(-0.524813\pi\)
−0.0778723 + 0.996963i \(0.524813\pi\)
\(152\) 1.32924e9 0.201980
\(153\) 0 0
\(154\) −2.56054e9 −0.366849
\(155\) 2.98656e9 0.415603
\(156\) 0 0
\(157\) −1.19315e10 −1.56728 −0.783640 0.621216i \(-0.786639\pi\)
−0.783640 + 0.621216i \(0.786639\pi\)
\(158\) −1.54008e9 −0.196601
\(159\) 0 0
\(160\) −1.11939e10 −1.35034
\(161\) 6.06356e9 0.711232
\(162\) 0 0
\(163\) 2.02118e9 0.224264 0.112132 0.993693i \(-0.464232\pi\)
0.112132 + 0.993693i \(0.464232\pi\)
\(164\) 9.42719e9 1.01762
\(165\) 0 0
\(166\) 8.05126e9 0.822958
\(167\) 1.26942e10 1.26294 0.631468 0.775402i \(-0.282453\pi\)
0.631468 + 0.775402i \(0.282453\pi\)
\(168\) 0 0
\(169\) 2.19770e10 2.07242
\(170\) −2.57035e10 −2.36032
\(171\) 0 0
\(172\) −1.75766e10 −1.53129
\(173\) −5.72278e9 −0.485736 −0.242868 0.970059i \(-0.578088\pi\)
−0.242868 + 0.970059i \(0.578088\pi\)
\(174\) 0 0
\(175\) −1.14980e9 −0.0926726
\(176\) −3.52762e9 −0.277124
\(177\) 0 0
\(178\) 3.62782e10 2.70867
\(179\) −1.53037e10 −1.11419 −0.557093 0.830450i \(-0.688083\pi\)
−0.557093 + 0.830450i \(0.688083\pi\)
\(180\) 0 0
\(181\) 1.52538e10 1.05639 0.528197 0.849122i \(-0.322868\pi\)
0.528197 + 0.849122i \(0.322868\pi\)
\(182\) −3.05375e10 −2.06306
\(183\) 0 0
\(184\) −1.98828e9 −0.127878
\(185\) 1.48543e10 0.932351
\(186\) 0 0
\(187\) −9.01783e9 −0.539281
\(188\) −1.09082e10 −0.636860
\(189\) 0 0
\(190\) −3.39001e10 −1.88717
\(191\) 1.92923e10 1.04890 0.524448 0.851442i \(-0.324272\pi\)
0.524448 + 0.851442i \(0.324272\pi\)
\(192\) 0 0
\(193\) 8.81933e9 0.457539 0.228769 0.973481i \(-0.426530\pi\)
0.228769 + 0.973481i \(0.426530\pi\)
\(194\) −9.73993e9 −0.493683
\(195\) 0 0
\(196\) −7.74527e9 −0.374873
\(197\) −6.14540e9 −0.290705 −0.145352 0.989380i \(-0.546432\pi\)
−0.145352 + 0.989380i \(0.546432\pi\)
\(198\) 0 0
\(199\) 1.32275e10 0.597916 0.298958 0.954266i \(-0.403361\pi\)
0.298958 + 0.954266i \(0.403361\pi\)
\(200\) 3.77027e8 0.0166624
\(201\) 0 0
\(202\) 3.29458e9 0.139225
\(203\) −7.95871e9 −0.328935
\(204\) 0 0
\(205\) −2.20030e10 −0.870140
\(206\) 2.93368e10 1.13504
\(207\) 0 0
\(208\) −4.20711e10 −1.55847
\(209\) −1.18936e10 −0.431175
\(210\) 0 0
\(211\) −2.47717e10 −0.860367 −0.430184 0.902741i \(-0.641551\pi\)
−0.430184 + 0.902741i \(0.641551\pi\)
\(212\) 2.12813e10 0.723580
\(213\) 0 0
\(214\) 5.47705e10 1.78519
\(215\) 4.10237e10 1.30937
\(216\) 0 0
\(217\) −1.17124e10 −0.358573
\(218\) 2.60283e10 0.780534
\(219\) 0 0
\(220\) −1.12199e10 −0.322914
\(221\) −1.07548e11 −3.03277
\(222\) 0 0
\(223\) 1.38481e10 0.374990 0.187495 0.982266i \(-0.439963\pi\)
0.187495 + 0.982266i \(0.439963\pi\)
\(224\) 4.38993e10 1.16504
\(225\) 0 0
\(226\) 1.91424e10 0.488100
\(227\) 5.54912e10 1.38710 0.693550 0.720409i \(-0.256046\pi\)
0.693550 + 0.720409i \(0.256046\pi\)
\(228\) 0 0
\(229\) 3.20006e9 0.0768950 0.0384475 0.999261i \(-0.487759\pi\)
0.0384475 + 0.999261i \(0.487759\pi\)
\(230\) 5.07077e10 1.19481
\(231\) 0 0
\(232\) 2.60971e9 0.0591420
\(233\) 1.45987e10 0.324498 0.162249 0.986750i \(-0.448125\pi\)
0.162249 + 0.986750i \(0.448125\pi\)
\(234\) 0 0
\(235\) 2.54597e10 0.544563
\(236\) −7.76093e10 −1.62858
\(237\) 0 0
\(238\) 1.00801e11 2.03643
\(239\) 4.57249e10 0.906488 0.453244 0.891386i \(-0.350267\pi\)
0.453244 + 0.891386i \(0.350267\pi\)
\(240\) 0 0
\(241\) 1.86250e9 0.0355647 0.0177824 0.999842i \(-0.494339\pi\)
0.0177824 + 0.999842i \(0.494339\pi\)
\(242\) 6.98187e10 1.30859
\(243\) 0 0
\(244\) 1.03950e11 1.87745
\(245\) 1.80774e10 0.320545
\(246\) 0 0
\(247\) −1.41845e11 −2.42481
\(248\) 3.84057e9 0.0644708
\(249\) 0 0
\(250\) −9.38718e10 −1.51987
\(251\) −1.02269e11 −1.62634 −0.813171 0.582025i \(-0.802261\pi\)
−0.813171 + 0.582025i \(0.802261\pi\)
\(252\) 0 0
\(253\) 1.77904e10 0.272987
\(254\) −3.28952e10 −0.495885
\(255\) 0 0
\(256\) 5.28597e10 0.769209
\(257\) −1.26388e11 −1.80721 −0.903603 0.428370i \(-0.859088\pi\)
−0.903603 + 0.428370i \(0.859088\pi\)
\(258\) 0 0
\(259\) −5.82541e10 −0.804411
\(260\) −1.33811e11 −1.81598
\(261\) 0 0
\(262\) −1.53085e11 −2.00713
\(263\) −9.15762e10 −1.18027 −0.590135 0.807304i \(-0.700926\pi\)
−0.590135 + 0.807304i \(0.700926\pi\)
\(264\) 0 0
\(265\) −4.96703e10 −0.618715
\(266\) 1.32946e11 1.62820
\(267\) 0 0
\(268\) −8.10505e10 −0.959730
\(269\) −3.86326e9 −0.0449851 −0.0224925 0.999747i \(-0.507160\pi\)
−0.0224925 + 0.999747i \(0.507160\pi\)
\(270\) 0 0
\(271\) 1.26432e11 1.42395 0.711976 0.702203i \(-0.247800\pi\)
0.711976 + 0.702203i \(0.247800\pi\)
\(272\) 1.38873e11 1.53836
\(273\) 0 0
\(274\) 1.11547e11 1.19558
\(275\) −3.37349e9 −0.0355699
\(276\) 0 0
\(277\) −1.22275e11 −1.24790 −0.623949 0.781465i \(-0.714473\pi\)
−0.623949 + 0.781465i \(0.714473\pi\)
\(278\) −1.51330e11 −1.51958
\(279\) 0 0
\(280\) 1.14777e10 0.111595
\(281\) −1.78993e10 −0.171261 −0.0856305 0.996327i \(-0.527290\pi\)
−0.0856305 + 0.996327i \(0.527290\pi\)
\(282\) 0 0
\(283\) 1.99650e11 1.85025 0.925123 0.379667i \(-0.123961\pi\)
0.925123 + 0.379667i \(0.123961\pi\)
\(284\) 1.32098e10 0.120494
\(285\) 0 0
\(286\) −8.95962e10 −0.791849
\(287\) 8.62891e10 0.750737
\(288\) 0 0
\(289\) 2.36420e11 1.99362
\(290\) −6.65563e10 −0.552583
\(291\) 0 0
\(292\) −8.88569e10 −0.715267
\(293\) 5.29403e10 0.419645 0.209822 0.977740i \(-0.432711\pi\)
0.209822 + 0.977740i \(0.432711\pi\)
\(294\) 0 0
\(295\) 1.81139e11 1.39256
\(296\) 1.91019e10 0.144632
\(297\) 0 0
\(298\) −7.45020e10 −0.547261
\(299\) 2.12171e11 1.53520
\(300\) 0 0
\(301\) −1.60883e11 −1.12969
\(302\) 3.26310e10 0.225735
\(303\) 0 0
\(304\) 1.83158e11 1.22997
\(305\) −2.42618e11 −1.60536
\(306\) 0 0
\(307\) −6.10366e10 −0.392164 −0.196082 0.980587i \(-0.562822\pi\)
−0.196082 + 0.980587i \(0.562822\pi\)
\(308\) 4.40011e10 0.278603
\(309\) 0 0
\(310\) −9.79472e10 −0.602371
\(311\) 3.75525e10 0.227623 0.113812 0.993502i \(-0.463694\pi\)
0.113812 + 0.993502i \(0.463694\pi\)
\(312\) 0 0
\(313\) 8.95477e10 0.527357 0.263679 0.964611i \(-0.415064\pi\)
0.263679 + 0.964611i \(0.415064\pi\)
\(314\) 3.91305e11 2.27160
\(315\) 0 0
\(316\) 2.64652e10 0.149308
\(317\) −2.19863e11 −1.22288 −0.611442 0.791289i \(-0.709410\pi\)
−0.611442 + 0.791289i \(0.709410\pi\)
\(318\) 0 0
\(319\) −2.33507e10 −0.126253
\(320\) 2.10145e11 1.12033
\(321\) 0 0
\(322\) −1.98861e11 −1.03085
\(323\) 4.68217e11 2.39351
\(324\) 0 0
\(325\) −4.02329e10 −0.200035
\(326\) −6.62865e10 −0.325047
\(327\) 0 0
\(328\) −2.82947e10 −0.134981
\(329\) −9.98454e10 −0.469836
\(330\) 0 0
\(331\) −1.66891e11 −0.764201 −0.382101 0.924121i \(-0.624799\pi\)
−0.382101 + 0.924121i \(0.624799\pi\)
\(332\) −1.38356e11 −0.624993
\(333\) 0 0
\(334\) −4.16319e11 −1.83049
\(335\) 1.89171e11 0.820641
\(336\) 0 0
\(337\) −2.86023e9 −0.0120800 −0.00604000 0.999982i \(-0.501923\pi\)
−0.00604000 + 0.999982i \(0.501923\pi\)
\(338\) −7.20757e11 −3.00375
\(339\) 0 0
\(340\) 4.41697e11 1.79254
\(341\) −3.43639e10 −0.137628
\(342\) 0 0
\(343\) −2.79060e11 −1.08861
\(344\) 5.27544e10 0.203117
\(345\) 0 0
\(346\) 1.87684e11 0.704021
\(347\) 1.56638e11 0.579983 0.289992 0.957029i \(-0.406347\pi\)
0.289992 + 0.957029i \(0.406347\pi\)
\(348\) 0 0
\(349\) −3.18752e10 −0.115011 −0.0575054 0.998345i \(-0.518315\pi\)
−0.0575054 + 0.998345i \(0.518315\pi\)
\(350\) 3.77089e10 0.134319
\(351\) 0 0
\(352\) 1.28800e11 0.447170
\(353\) −1.99632e11 −0.684296 −0.342148 0.939646i \(-0.611154\pi\)
−0.342148 + 0.939646i \(0.611154\pi\)
\(354\) 0 0
\(355\) −3.08316e10 −0.103031
\(356\) −6.23416e11 −2.05709
\(357\) 0 0
\(358\) 5.01900e11 1.61489
\(359\) 4.79288e10 0.152290 0.0761451 0.997097i \(-0.475739\pi\)
0.0761451 + 0.997097i \(0.475739\pi\)
\(360\) 0 0
\(361\) 2.94840e11 0.913702
\(362\) −5.00265e11 −1.53113
\(363\) 0 0
\(364\) 5.24766e11 1.56678
\(365\) 2.07391e11 0.611607
\(366\) 0 0
\(367\) 1.89262e11 0.544587 0.272293 0.962214i \(-0.412218\pi\)
0.272293 + 0.962214i \(0.412218\pi\)
\(368\) −2.73968e11 −0.778725
\(369\) 0 0
\(370\) −4.87161e11 −1.35134
\(371\) 1.94792e11 0.533813
\(372\) 0 0
\(373\) −9.98250e10 −0.267023 −0.133512 0.991047i \(-0.542625\pi\)
−0.133512 + 0.991047i \(0.542625\pi\)
\(374\) 2.95749e11 0.781629
\(375\) 0 0
\(376\) 3.27399e10 0.0844758
\(377\) −2.78485e11 −0.710011
\(378\) 0 0
\(379\) 6.79275e10 0.169110 0.0845550 0.996419i \(-0.473053\pi\)
0.0845550 + 0.996419i \(0.473053\pi\)
\(380\) 5.82551e11 1.43320
\(381\) 0 0
\(382\) −6.32709e11 −1.52026
\(383\) 5.15514e11 1.22418 0.612091 0.790787i \(-0.290329\pi\)
0.612091 + 0.790787i \(0.290329\pi\)
\(384\) 0 0
\(385\) −1.02698e11 −0.238226
\(386\) −2.89239e11 −0.663153
\(387\) 0 0
\(388\) 1.67374e11 0.374926
\(389\) −1.97005e11 −0.436219 −0.218110 0.975924i \(-0.569989\pi\)
−0.218110 + 0.975924i \(0.569989\pi\)
\(390\) 0 0
\(391\) −7.00358e11 −1.51539
\(392\) 2.32466e10 0.0497247
\(393\) 0 0
\(394\) 2.01544e11 0.421345
\(395\) −6.17696e10 −0.127670
\(396\) 0 0
\(397\) −5.86747e11 −1.18548 −0.592739 0.805395i \(-0.701953\pi\)
−0.592739 + 0.805395i \(0.701953\pi\)
\(398\) −4.33810e11 −0.866615
\(399\) 0 0
\(400\) 5.19510e10 0.101467
\(401\) 5.55697e11 1.07322 0.536609 0.843831i \(-0.319705\pi\)
0.536609 + 0.843831i \(0.319705\pi\)
\(402\) 0 0
\(403\) −4.09831e11 −0.773984
\(404\) −5.66151e10 −0.105734
\(405\) 0 0
\(406\) 2.61014e11 0.476756
\(407\) −1.70916e11 −0.308751
\(408\) 0 0
\(409\) 1.89722e11 0.335245 0.167622 0.985851i \(-0.446391\pi\)
0.167622 + 0.985851i \(0.446391\pi\)
\(410\) 7.21609e11 1.26117
\(411\) 0 0
\(412\) −5.04133e11 −0.862001
\(413\) −7.10375e11 −1.20147
\(414\) 0 0
\(415\) 3.22920e11 0.534416
\(416\) 1.53609e12 2.51476
\(417\) 0 0
\(418\) 3.90061e11 0.624941
\(419\) 7.24161e11 1.14781 0.573907 0.818920i \(-0.305427\pi\)
0.573907 + 0.818920i \(0.305427\pi\)
\(420\) 0 0
\(421\) 1.09498e12 1.69877 0.849387 0.527771i \(-0.176972\pi\)
0.849387 + 0.527771i \(0.176972\pi\)
\(422\) 8.12411e11 1.24701
\(423\) 0 0
\(424\) −6.38736e10 −0.0959787
\(425\) 1.32805e11 0.197453
\(426\) 0 0
\(427\) 9.51475e11 1.38507
\(428\) −9.41194e11 −1.35576
\(429\) 0 0
\(430\) −1.34541e12 −1.89779
\(431\) 5.24483e11 0.732123 0.366061 0.930591i \(-0.380706\pi\)
0.366061 + 0.930591i \(0.380706\pi\)
\(432\) 0 0
\(433\) −5.33682e11 −0.729604 −0.364802 0.931085i \(-0.618863\pi\)
−0.364802 + 0.931085i \(0.618863\pi\)
\(434\) 3.84120e11 0.519712
\(435\) 0 0
\(436\) −4.47279e11 −0.592774
\(437\) −9.23697e11 −1.21161
\(438\) 0 0
\(439\) −5.42500e11 −0.697123 −0.348562 0.937286i \(-0.613330\pi\)
−0.348562 + 0.937286i \(0.613330\pi\)
\(440\) 3.36753e10 0.0428326
\(441\) 0 0
\(442\) 3.52716e12 4.39567
\(443\) −1.01686e12 −1.25442 −0.627209 0.778851i \(-0.715803\pi\)
−0.627209 + 0.778851i \(0.715803\pi\)
\(444\) 0 0
\(445\) 1.45505e12 1.75897
\(446\) −4.54164e11 −0.543507
\(447\) 0 0
\(448\) −8.24127e11 −0.966592
\(449\) 7.68289e10 0.0892105 0.0446053 0.999005i \(-0.485797\pi\)
0.0446053 + 0.999005i \(0.485797\pi\)
\(450\) 0 0
\(451\) 2.53170e11 0.288150
\(452\) −3.28950e11 −0.370686
\(453\) 0 0
\(454\) −1.81989e12 −2.01045
\(455\) −1.22480e12 −1.33972
\(456\) 0 0
\(457\) −5.54294e11 −0.594453 −0.297226 0.954807i \(-0.596062\pi\)
−0.297226 + 0.954807i \(0.596062\pi\)
\(458\) −1.04949e11 −0.111451
\(459\) 0 0
\(460\) −8.71378e11 −0.907395
\(461\) −1.09346e12 −1.12759 −0.563794 0.825915i \(-0.690659\pi\)
−0.563794 + 0.825915i \(0.690659\pi\)
\(462\) 0 0
\(463\) 1.40031e12 1.41615 0.708077 0.706135i \(-0.249563\pi\)
0.708077 + 0.706135i \(0.249563\pi\)
\(464\) 3.59596e11 0.360150
\(465\) 0 0
\(466\) −4.78779e11 −0.470325
\(467\) 1.59376e12 1.55059 0.775296 0.631599i \(-0.217601\pi\)
0.775296 + 0.631599i \(0.217601\pi\)
\(468\) 0 0
\(469\) −7.41873e11 −0.708030
\(470\) −8.34976e11 −0.789285
\(471\) 0 0
\(472\) 2.32936e11 0.216022
\(473\) −4.72026e11 −0.433602
\(474\) 0 0
\(475\) 1.75156e11 0.157871
\(476\) −1.73220e12 −1.54656
\(477\) 0 0
\(478\) −1.49959e12 −1.31386
\(479\) 8.12123e11 0.704875 0.352438 0.935835i \(-0.385353\pi\)
0.352438 + 0.935835i \(0.385353\pi\)
\(480\) 0 0
\(481\) −2.03838e12 −1.73633
\(482\) −6.10825e10 −0.0515472
\(483\) 0 0
\(484\) −1.19979e12 −0.993802
\(485\) −3.90650e11 −0.320590
\(486\) 0 0
\(487\) 8.95090e11 0.721085 0.360542 0.932743i \(-0.382592\pi\)
0.360542 + 0.932743i \(0.382592\pi\)
\(488\) −3.11994e11 −0.249033
\(489\) 0 0
\(490\) −5.92866e11 −0.464595
\(491\) −1.41149e12 −1.09600 −0.548002 0.836477i \(-0.684611\pi\)
−0.548002 + 0.836477i \(0.684611\pi\)
\(492\) 0 0
\(493\) 9.19252e11 0.700848
\(494\) 4.65194e12 3.51450
\(495\) 0 0
\(496\) 5.29197e11 0.392600
\(497\) 1.20912e11 0.0888928
\(498\) 0 0
\(499\) −1.82428e11 −0.131716 −0.0658580 0.997829i \(-0.520978\pi\)
−0.0658580 + 0.997829i \(0.520978\pi\)
\(500\) 1.61312e12 1.15426
\(501\) 0 0
\(502\) 3.35401e12 2.35721
\(503\) −2.33627e12 −1.62730 −0.813649 0.581357i \(-0.802522\pi\)
−0.813649 + 0.581357i \(0.802522\pi\)
\(504\) 0 0
\(505\) 1.32139e11 0.0904108
\(506\) −5.83452e11 −0.395665
\(507\) 0 0
\(508\) 5.65282e11 0.376599
\(509\) −3.15862e11 −0.208577 −0.104289 0.994547i \(-0.533257\pi\)
−0.104289 + 0.994547i \(0.533257\pi\)
\(510\) 0 0
\(511\) −8.13326e11 −0.527680
\(512\) −2.18534e12 −1.40542
\(513\) 0 0
\(514\) 4.14503e12 2.61935
\(515\) 1.17664e12 0.737075
\(516\) 0 0
\(517\) −2.92944e11 −0.180334
\(518\) 1.91050e12 1.16591
\(519\) 0 0
\(520\) 4.01619e11 0.240879
\(521\) −7.03557e11 −0.418340 −0.209170 0.977879i \(-0.567076\pi\)
−0.209170 + 0.977879i \(0.567076\pi\)
\(522\) 0 0
\(523\) −3.23536e12 −1.89088 −0.945441 0.325793i \(-0.894369\pi\)
−0.945441 + 0.325793i \(0.894369\pi\)
\(524\) 2.63066e12 1.52431
\(525\) 0 0
\(526\) 3.00333e12 1.71067
\(527\) 1.35281e12 0.763994
\(528\) 0 0
\(529\) −4.19489e11 −0.232901
\(530\) 1.62899e12 0.896760
\(531\) 0 0
\(532\) −2.28459e12 −1.23653
\(533\) 3.01936e12 1.62047
\(534\) 0 0
\(535\) 2.19674e12 1.15927
\(536\) 2.43265e11 0.127303
\(537\) 0 0
\(538\) 1.26699e11 0.0652010
\(539\) −2.08002e11 −0.106149
\(540\) 0 0
\(541\) −1.71900e12 −0.862759 −0.431379 0.902171i \(-0.641973\pi\)
−0.431379 + 0.902171i \(0.641973\pi\)
\(542\) −4.14647e12 −2.06387
\(543\) 0 0
\(544\) −5.07049e12 −2.48230
\(545\) 1.04394e12 0.506866
\(546\) 0 0
\(547\) 1.38622e12 0.662047 0.331024 0.943622i \(-0.392606\pi\)
0.331024 + 0.943622i \(0.392606\pi\)
\(548\) −1.91685e12 −0.907979
\(549\) 0 0
\(550\) 1.10637e11 0.0515547
\(551\) 1.21240e12 0.560354
\(552\) 0 0
\(553\) 2.42242e11 0.110150
\(554\) 4.01013e12 1.80869
\(555\) 0 0
\(556\) 2.60050e12 1.15404
\(557\) 1.75428e12 0.772236 0.386118 0.922449i \(-0.373816\pi\)
0.386118 + 0.922449i \(0.373816\pi\)
\(558\) 0 0
\(559\) −5.62948e12 −2.43846
\(560\) 1.58153e12 0.679565
\(561\) 0 0
\(562\) 5.87026e11 0.248224
\(563\) −3.55391e12 −1.49080 −0.745399 0.666618i \(-0.767741\pi\)
−0.745399 + 0.666618i \(0.767741\pi\)
\(564\) 0 0
\(565\) 7.67765e11 0.316964
\(566\) −6.54771e12 −2.68173
\(567\) 0 0
\(568\) −3.96479e10 −0.0159828
\(569\) −1.14959e12 −0.459768 −0.229884 0.973218i \(-0.573835\pi\)
−0.229884 + 0.973218i \(0.573835\pi\)
\(570\) 0 0
\(571\) −1.67560e12 −0.659641 −0.329821 0.944044i \(-0.606988\pi\)
−0.329821 + 0.944044i \(0.606988\pi\)
\(572\) 1.53965e12 0.601367
\(573\) 0 0
\(574\) −2.82994e12 −1.08811
\(575\) −2.61997e11 −0.0999520
\(576\) 0 0
\(577\) 2.71422e12 1.01942 0.509712 0.860345i \(-0.329752\pi\)
0.509712 + 0.860345i \(0.329752\pi\)
\(578\) −7.75362e12 −2.88954
\(579\) 0 0
\(580\) 1.14372e12 0.419658
\(581\) −1.26640e12 −0.461081
\(582\) 0 0
\(583\) 5.71516e11 0.204890
\(584\) 2.66695e11 0.0948760
\(585\) 0 0
\(586\) −1.73623e12 −0.608230
\(587\) 5.77644e11 0.200812 0.100406 0.994947i \(-0.467986\pi\)
0.100406 + 0.994947i \(0.467986\pi\)
\(588\) 0 0
\(589\) 1.78422e12 0.610842
\(590\) −5.94064e12 −2.01836
\(591\) 0 0
\(592\) 2.63207e12 0.880746
\(593\) 3.92531e12 1.30355 0.651776 0.758411i \(-0.274024\pi\)
0.651776 + 0.758411i \(0.274024\pi\)
\(594\) 0 0
\(595\) 4.04295e12 1.32243
\(596\) 1.28027e12 0.415616
\(597\) 0 0
\(598\) −6.95837e12 −2.22511
\(599\) 3.75910e12 1.19306 0.596532 0.802590i \(-0.296545\pi\)
0.596532 + 0.802590i \(0.296545\pi\)
\(600\) 0 0
\(601\) 1.43232e12 0.447821 0.223910 0.974610i \(-0.428118\pi\)
0.223910 + 0.974610i \(0.428118\pi\)
\(602\) 5.27631e12 1.63737
\(603\) 0 0
\(604\) −5.60741e11 −0.171434
\(605\) 2.80029e12 0.849775
\(606\) 0 0
\(607\) 3.68221e12 1.10093 0.550465 0.834858i \(-0.314450\pi\)
0.550465 + 0.834858i \(0.314450\pi\)
\(608\) −6.68743e12 −1.98469
\(609\) 0 0
\(610\) 7.95689e12 2.32680
\(611\) −3.49371e12 −1.01415
\(612\) 0 0
\(613\) 3.14562e12 0.899777 0.449888 0.893085i \(-0.351464\pi\)
0.449888 + 0.893085i \(0.351464\pi\)
\(614\) 2.00176e12 0.568399
\(615\) 0 0
\(616\) −1.32065e11 −0.0369550
\(617\) −1.84112e12 −0.511444 −0.255722 0.966750i \(-0.582313\pi\)
−0.255722 + 0.966750i \(0.582313\pi\)
\(618\) 0 0
\(619\) −2.16872e11 −0.0593739 −0.0296870 0.999559i \(-0.509451\pi\)
−0.0296870 + 0.999559i \(0.509451\pi\)
\(620\) 1.68316e12 0.457469
\(621\) 0 0
\(622\) −1.23157e12 −0.329915
\(623\) −5.70626e12 −1.51759
\(624\) 0 0
\(625\) −3.32968e12 −0.872855
\(626\) −2.93681e12 −0.764347
\(627\) 0 0
\(628\) −6.72432e12 −1.72516
\(629\) 6.72851e12 1.71392
\(630\) 0 0
\(631\) 3.08505e11 0.0774693 0.0387346 0.999250i \(-0.487667\pi\)
0.0387346 + 0.999250i \(0.487667\pi\)
\(632\) −7.94326e10 −0.0198049
\(633\) 0 0
\(634\) 7.21062e12 1.77244
\(635\) −1.31936e12 −0.322020
\(636\) 0 0
\(637\) −2.48067e12 −0.596955
\(638\) 7.65808e11 0.182990
\(639\) 0 0
\(640\) −1.16062e12 −0.273451
\(641\) 6.75425e12 1.58022 0.790108 0.612968i \(-0.210025\pi\)
0.790108 + 0.612968i \(0.210025\pi\)
\(642\) 0 0
\(643\) 9.14571e11 0.210993 0.105496 0.994420i \(-0.466357\pi\)
0.105496 + 0.994420i \(0.466357\pi\)
\(644\) 3.41728e12 0.782879
\(645\) 0 0
\(646\) −1.53556e13 −3.46914
\(647\) 1.29528e12 0.290600 0.145300 0.989388i \(-0.453585\pi\)
0.145300 + 0.989388i \(0.453585\pi\)
\(648\) 0 0
\(649\) −2.08422e12 −0.461151
\(650\) 1.31948e12 0.289929
\(651\) 0 0
\(652\) 1.13909e12 0.246856
\(653\) 5.22047e12 1.12357 0.561785 0.827283i \(-0.310115\pi\)
0.561785 + 0.827283i \(0.310115\pi\)
\(654\) 0 0
\(655\) −6.13993e12 −1.30340
\(656\) −3.89877e12 −0.821978
\(657\) 0 0
\(658\) 3.27453e12 0.680977
\(659\) −4.86991e12 −1.00586 −0.502928 0.864328i \(-0.667744\pi\)
−0.502928 + 0.864328i \(0.667744\pi\)
\(660\) 0 0
\(661\) 1.73969e12 0.354458 0.177229 0.984170i \(-0.443287\pi\)
0.177229 + 0.984170i \(0.443287\pi\)
\(662\) 5.47337e12 1.10763
\(663\) 0 0
\(664\) 4.15260e11 0.0829017
\(665\) 5.33221e12 1.05733
\(666\) 0 0
\(667\) −1.81350e12 −0.354773
\(668\) 7.15417e12 1.39016
\(669\) 0 0
\(670\) −6.20405e12 −1.18943
\(671\) 2.79160e12 0.531622
\(672\) 0 0
\(673\) 5.00841e12 0.941092 0.470546 0.882375i \(-0.344057\pi\)
0.470546 + 0.882375i \(0.344057\pi\)
\(674\) 9.38042e10 0.0175087
\(675\) 0 0
\(676\) 1.23857e13 2.28119
\(677\) −7.44082e12 −1.36136 −0.680678 0.732582i \(-0.738315\pi\)
−0.680678 + 0.732582i \(0.738315\pi\)
\(678\) 0 0
\(679\) 1.53201e12 0.276597
\(680\) −1.32571e12 −0.237770
\(681\) 0 0
\(682\) 1.12700e12 0.199477
\(683\) −9.49272e12 −1.66916 −0.834579 0.550888i \(-0.814289\pi\)
−0.834579 + 0.550888i \(0.814289\pi\)
\(684\) 0 0
\(685\) 4.47391e12 0.776390
\(686\) 9.15205e12 1.57783
\(687\) 0 0
\(688\) 7.26911e12 1.23690
\(689\) 6.81601e12 1.15224
\(690\) 0 0
\(691\) 1.30318e12 0.217447 0.108724 0.994072i \(-0.465324\pi\)
0.108724 + 0.994072i \(0.465324\pi\)
\(692\) −3.22523e12 −0.534667
\(693\) 0 0
\(694\) −5.13711e12 −0.840623
\(695\) −6.06955e12 −0.986790
\(696\) 0 0
\(697\) −9.96662e12 −1.59956
\(698\) 1.04538e12 0.166696
\(699\) 0 0
\(700\) −6.48001e11 −0.102008
\(701\) −1.24667e13 −1.94993 −0.974966 0.222354i \(-0.928626\pi\)
−0.974966 + 0.222354i \(0.928626\pi\)
\(702\) 0 0
\(703\) 8.87418e12 1.37034
\(704\) −2.41797e12 −0.371000
\(705\) 0 0
\(706\) 6.54713e12 0.991813
\(707\) −5.18210e11 −0.0780043
\(708\) 0 0
\(709\) 2.99079e12 0.444506 0.222253 0.974989i \(-0.428659\pi\)
0.222253 + 0.974989i \(0.428659\pi\)
\(710\) 1.01115e12 0.149332
\(711\) 0 0
\(712\) 1.87112e12 0.272861
\(713\) −2.66883e12 −0.386738
\(714\) 0 0
\(715\) −3.59353e12 −0.514214
\(716\) −8.62481e12 −1.22642
\(717\) 0 0
\(718\) −1.57187e12 −0.220728
\(719\) −4.07204e12 −0.568240 −0.284120 0.958789i \(-0.591701\pi\)
−0.284120 + 0.958789i \(0.591701\pi\)
\(720\) 0 0
\(721\) −4.61444e12 −0.635931
\(722\) −9.66959e12 −1.32431
\(723\) 0 0
\(724\) 8.59672e12 1.16281
\(725\) 3.43884e11 0.0462265
\(726\) 0 0
\(727\) −1.03208e13 −1.37028 −0.685141 0.728410i \(-0.740260\pi\)
−0.685141 + 0.728410i \(0.740260\pi\)
\(728\) −1.57503e12 −0.207825
\(729\) 0 0
\(730\) −6.80159e12 −0.886457
\(731\) 1.85824e13 2.40698
\(732\) 0 0
\(733\) −1.09370e13 −1.39937 −0.699684 0.714452i \(-0.746676\pi\)
−0.699684 + 0.714452i \(0.746676\pi\)
\(734\) −6.20705e12 −0.789320
\(735\) 0 0
\(736\) 1.00030e13 1.25656
\(737\) −2.17664e12 −0.271758
\(738\) 0 0
\(739\) 5.74543e12 0.708635 0.354317 0.935125i \(-0.384713\pi\)
0.354317 + 0.935125i \(0.384713\pi\)
\(740\) 8.37154e12 1.02627
\(741\) 0 0
\(742\) −6.38841e12 −0.773704
\(743\) −2.53423e12 −0.305067 −0.152534 0.988298i \(-0.548743\pi\)
−0.152534 + 0.988298i \(0.548743\pi\)
\(744\) 0 0
\(745\) −2.98813e12 −0.355383
\(746\) 3.27386e12 0.387022
\(747\) 0 0
\(748\) −5.08224e12 −0.593606
\(749\) −8.61495e12 −1.00019
\(750\) 0 0
\(751\) 2.73854e12 0.314151 0.157076 0.987587i \(-0.449793\pi\)
0.157076 + 0.987587i \(0.449793\pi\)
\(752\) 4.51128e12 0.514422
\(753\) 0 0
\(754\) 9.13318e12 1.02908
\(755\) 1.30876e12 0.146589
\(756\) 0 0
\(757\) −1.27669e13 −1.41304 −0.706519 0.707694i \(-0.749736\pi\)
−0.706519 + 0.707694i \(0.749736\pi\)
\(758\) −2.22775e12 −0.245107
\(759\) 0 0
\(760\) −1.74846e12 −0.190106
\(761\) 3.97240e12 0.429361 0.214680 0.976684i \(-0.431129\pi\)
0.214680 + 0.976684i \(0.431129\pi\)
\(762\) 0 0
\(763\) −4.09404e12 −0.437312
\(764\) 1.08727e13 1.15456
\(765\) 0 0
\(766\) −1.69068e13 −1.77432
\(767\) −2.48568e13 −2.59338
\(768\) 0 0
\(769\) −5.85641e11 −0.0603897 −0.0301948 0.999544i \(-0.509613\pi\)
−0.0301948 + 0.999544i \(0.509613\pi\)
\(770\) 3.36809e12 0.345283
\(771\) 0 0
\(772\) 4.97037e12 0.503629
\(773\) 4.19065e12 0.422157 0.211079 0.977469i \(-0.432302\pi\)
0.211079 + 0.977469i \(0.432302\pi\)
\(774\) 0 0
\(775\) 5.06075e11 0.0503915
\(776\) −5.02356e11 −0.0497317
\(777\) 0 0
\(778\) 6.46099e12 0.632253
\(779\) −1.31449e13 −1.27891
\(780\) 0 0
\(781\) 3.54754e11 0.0341191
\(782\) 2.29689e13 2.19639
\(783\) 0 0
\(784\) 3.20318e12 0.302803
\(785\) 1.56945e13 1.47514
\(786\) 0 0
\(787\) 8.90686e12 0.827634 0.413817 0.910360i \(-0.364195\pi\)
0.413817 + 0.910360i \(0.364195\pi\)
\(788\) −3.46340e12 −0.319989
\(789\) 0 0
\(790\) 2.02579e12 0.185043
\(791\) −3.01095e12 −0.273469
\(792\) 0 0
\(793\) 3.32932e13 2.98969
\(794\) 1.92429e13 1.71822
\(795\) 0 0
\(796\) 7.45474e12 0.658148
\(797\) −1.53960e12 −0.135159 −0.0675797 0.997714i \(-0.521528\pi\)
−0.0675797 + 0.997714i \(0.521528\pi\)
\(798\) 0 0
\(799\) 1.15324e13 1.00106
\(800\) −1.89682e12 −0.163728
\(801\) 0 0
\(802\) −1.82246e13 −1.55551
\(803\) −2.38628e12 −0.202536
\(804\) 0 0
\(805\) −7.97591e12 −0.669420
\(806\) 1.34408e13 1.12181
\(807\) 0 0
\(808\) 1.69924e11 0.0140250
\(809\) 2.05894e13 1.68996 0.844979 0.534799i \(-0.179613\pi\)
0.844979 + 0.534799i \(0.179613\pi\)
\(810\) 0 0
\(811\) −7.35060e12 −0.596663 −0.298331 0.954462i \(-0.596430\pi\)
−0.298331 + 0.954462i \(0.596430\pi\)
\(812\) −4.48535e12 −0.362071
\(813\) 0 0
\(814\) 5.60537e12 0.447501
\(815\) −2.65862e12 −0.211080
\(816\) 0 0
\(817\) 2.45082e13 1.92447
\(818\) −6.22210e12 −0.485901
\(819\) 0 0
\(820\) −1.24004e13 −0.957794
\(821\) 7.03985e12 0.540778 0.270389 0.962751i \(-0.412848\pi\)
0.270389 + 0.962751i \(0.412848\pi\)
\(822\) 0 0
\(823\) 3.39772e11 0.0258159 0.0129080 0.999917i \(-0.495891\pi\)
0.0129080 + 0.999917i \(0.495891\pi\)
\(824\) 1.51310e12 0.114339
\(825\) 0 0
\(826\) 2.32974e13 1.74140
\(827\) 1.68131e13 1.24989 0.624947 0.780668i \(-0.285121\pi\)
0.624947 + 0.780668i \(0.285121\pi\)
\(828\) 0 0
\(829\) 6.50421e12 0.478299 0.239149 0.970983i \(-0.423131\pi\)
0.239149 + 0.970983i \(0.423131\pi\)
\(830\) −1.05905e13 −0.774577
\(831\) 0 0
\(832\) −2.88372e13 −2.08640
\(833\) 8.18846e12 0.589250
\(834\) 0 0
\(835\) −1.66978e13 −1.18869
\(836\) −6.70294e12 −0.474610
\(837\) 0 0
\(838\) −2.37496e13 −1.66363
\(839\) 2.10850e12 0.146908 0.0734538 0.997299i \(-0.476598\pi\)
0.0734538 + 0.997299i \(0.476598\pi\)
\(840\) 0 0
\(841\) −1.21268e13 −0.835922
\(842\) −3.59108e13 −2.46219
\(843\) 0 0
\(844\) −1.39607e13 −0.947037
\(845\) −2.89081e13 −1.95059
\(846\) 0 0
\(847\) −1.09819e13 −0.733166
\(848\) −8.80123e12 −0.584470
\(849\) 0 0
\(850\) −4.35547e12 −0.286187
\(851\) −1.32740e13 −0.867597
\(852\) 0 0
\(853\) 1.74244e13 1.12691 0.563453 0.826148i \(-0.309473\pi\)
0.563453 + 0.826148i \(0.309473\pi\)
\(854\) −3.12046e13 −2.00751
\(855\) 0 0
\(856\) 2.82489e12 0.179833
\(857\) −1.54986e12 −0.0981475 −0.0490737 0.998795i \(-0.515627\pi\)
−0.0490737 + 0.998795i \(0.515627\pi\)
\(858\) 0 0
\(859\) 1.94553e13 1.21918 0.609592 0.792715i \(-0.291333\pi\)
0.609592 + 0.792715i \(0.291333\pi\)
\(860\) 2.31200e13 1.44127
\(861\) 0 0
\(862\) −1.72009e13 −1.06113
\(863\) 1.23365e13 0.757080 0.378540 0.925585i \(-0.376426\pi\)
0.378540 + 0.925585i \(0.376426\pi\)
\(864\) 0 0
\(865\) 7.52765e12 0.457180
\(866\) 1.75026e13 1.05748
\(867\) 0 0
\(868\) −6.60084e12 −0.394694
\(869\) 7.10732e11 0.0422782
\(870\) 0 0
\(871\) −2.59590e13 −1.52829
\(872\) 1.34246e12 0.0786280
\(873\) 0 0
\(874\) 3.02936e13 1.75610
\(875\) 1.47653e13 0.851540
\(876\) 0 0
\(877\) −2.37694e13 −1.35681 −0.678406 0.734687i \(-0.737329\pi\)
−0.678406 + 0.734687i \(0.737329\pi\)
\(878\) 1.77918e13 1.01040
\(879\) 0 0
\(880\) 4.64017e12 0.260833
\(881\) −2.37158e13 −1.32631 −0.663156 0.748481i \(-0.730783\pi\)
−0.663156 + 0.748481i \(0.730783\pi\)
\(882\) 0 0
\(883\) 1.17562e13 0.650795 0.325397 0.945577i \(-0.394502\pi\)
0.325397 + 0.945577i \(0.394502\pi\)
\(884\) −6.06118e13 −3.33828
\(885\) 0 0
\(886\) 3.33488e13 1.81814
\(887\) 3.11342e13 1.68881 0.844406 0.535704i \(-0.179954\pi\)
0.844406 + 0.535704i \(0.179954\pi\)
\(888\) 0 0
\(889\) 5.17415e12 0.277831
\(890\) −4.77197e13 −2.54943
\(891\) 0 0
\(892\) 7.80449e12 0.412765
\(893\) 1.52100e13 0.800383
\(894\) 0 0
\(895\) 2.01302e13 1.04868
\(896\) 4.55160e12 0.235927
\(897\) 0 0
\(898\) −2.51968e12 −0.129301
\(899\) 3.50296e12 0.178861
\(900\) 0 0
\(901\) −2.24990e13 −1.13737
\(902\) −8.30297e12 −0.417642
\(903\) 0 0
\(904\) 9.87307e11 0.0491693
\(905\) −2.00647e13 −0.994290
\(906\) 0 0
\(907\) −3.04416e13 −1.49360 −0.746802 0.665047i \(-0.768412\pi\)
−0.746802 + 0.665047i \(0.768412\pi\)
\(908\) 3.12736e13 1.52683
\(909\) 0 0
\(910\) 4.01685e13 1.94178
\(911\) 1.74487e13 0.839327 0.419664 0.907680i \(-0.362148\pi\)
0.419664 + 0.907680i \(0.362148\pi\)
\(912\) 0 0
\(913\) −3.71558e12 −0.176973
\(914\) 1.81786e13 0.861595
\(915\) 0 0
\(916\) 1.80348e12 0.0846411
\(917\) 2.40790e13 1.12454
\(918\) 0 0
\(919\) 9.40533e12 0.434965 0.217483 0.976064i \(-0.430215\pi\)
0.217483 + 0.976064i \(0.430215\pi\)
\(920\) 2.61535e12 0.120361
\(921\) 0 0
\(922\) 3.58613e13 1.63432
\(923\) 4.23086e12 0.191876
\(924\) 0 0
\(925\) 2.51707e12 0.113047
\(926\) −4.59247e13 −2.05256
\(927\) 0 0
\(928\) −1.31295e13 −0.581140
\(929\) −8.43027e12 −0.371339 −0.185670 0.982612i \(-0.559445\pi\)
−0.185670 + 0.982612i \(0.559445\pi\)
\(930\) 0 0
\(931\) 1.07997e13 0.471127
\(932\) 8.22749e12 0.357187
\(933\) 0 0
\(934\) −5.22690e13 −2.24741
\(935\) 1.18619e13 0.507577
\(936\) 0 0
\(937\) 2.45230e10 0.00103931 0.000519656 1.00000i \(-0.499835\pi\)
0.000519656 1.00000i \(0.499835\pi\)
\(938\) 2.43304e13 1.02621
\(939\) 0 0
\(940\) 1.43485e13 0.599420
\(941\) −3.52870e13 −1.46711 −0.733553 0.679632i \(-0.762139\pi\)
−0.733553 + 0.679632i \(0.762139\pi\)
\(942\) 0 0
\(943\) 1.96621e13 0.809707
\(944\) 3.20966e13 1.31548
\(945\) 0 0
\(946\) 1.54806e13 0.628459
\(947\) 1.73678e13 0.701730 0.350865 0.936426i \(-0.385888\pi\)
0.350865 + 0.936426i \(0.385888\pi\)
\(948\) 0 0
\(949\) −2.84592e13 −1.13900
\(950\) −5.74440e12 −0.228817
\(951\) 0 0
\(952\) 5.19903e12 0.205143
\(953\) 1.07207e13 0.421024 0.210512 0.977591i \(-0.432487\pi\)
0.210512 + 0.977591i \(0.432487\pi\)
\(954\) 0 0
\(955\) −2.53767e13 −0.987234
\(956\) 2.57695e13 0.997805
\(957\) 0 0
\(958\) −2.66344e13 −1.02164
\(959\) −1.75454e13 −0.669851
\(960\) 0 0
\(961\) −2.12845e13 −0.805023
\(962\) 6.68507e13 2.51662
\(963\) 0 0
\(964\) 1.04966e12 0.0391474
\(965\) −1.16008e13 −0.430641
\(966\) 0 0
\(967\) −4.40236e13 −1.61907 −0.809537 0.587068i \(-0.800282\pi\)
−0.809537 + 0.587068i \(0.800282\pi\)
\(968\) 3.60103e12 0.131822
\(969\) 0 0
\(970\) 1.28117e13 0.464660
\(971\) 3.18653e13 1.15035 0.575177 0.818029i \(-0.304933\pi\)
0.575177 + 0.818029i \(0.304933\pi\)
\(972\) 0 0
\(973\) 2.38030e13 0.851380
\(974\) −2.93554e13 −1.04513
\(975\) 0 0
\(976\) −4.29901e13 −1.51651
\(977\) 3.67219e13 1.28944 0.644718 0.764420i \(-0.276975\pi\)
0.644718 + 0.764420i \(0.276975\pi\)
\(978\) 0 0
\(979\) −1.67420e13 −0.582487
\(980\) 1.01880e13 0.352835
\(981\) 0 0
\(982\) 4.62913e13 1.58854
\(983\) 1.38475e13 0.473020 0.236510 0.971629i \(-0.423996\pi\)
0.236510 + 0.971629i \(0.423996\pi\)
\(984\) 0 0
\(985\) 8.08355e12 0.273614
\(986\) −3.01478e13 −1.01580
\(987\) 0 0
\(988\) −7.99405e13 −2.66907
\(989\) −3.66593e13 −1.21843
\(990\) 0 0
\(991\) 4.28865e12 0.141250 0.0706252 0.997503i \(-0.477501\pi\)
0.0706252 + 0.997503i \(0.477501\pi\)
\(992\) −1.93219e13 −0.633501
\(993\) 0 0
\(994\) −3.96544e12 −0.128841
\(995\) −1.73993e13 −0.562766
\(996\) 0 0
\(997\) 5.09035e13 1.63162 0.815811 0.578319i \(-0.196291\pi\)
0.815811 + 0.578319i \(0.196291\pi\)
\(998\) 5.98290e12 0.190908
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.10.a.c.1.1 yes 3
3.2 odd 2 27.10.a.b.1.3 3
9.2 odd 6 81.10.c.h.28.1 6
9.4 even 3 81.10.c.g.55.3 6
9.5 odd 6 81.10.c.h.55.1 6
9.7 even 3 81.10.c.g.28.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.a.b.1.3 3 3.2 odd 2
27.10.a.c.1.1 yes 3 1.1 even 1 trivial
81.10.c.g.28.3 6 9.7 even 3
81.10.c.g.55.3 6 9.4 even 3
81.10.c.h.28.1 6 9.2 odd 6
81.10.c.h.55.1 6 9.5 odd 6