Properties

Label 27.10.a.c
Level $27$
Weight $10$
Character orbit 27.a
Self dual yes
Analytic conductor $13.906$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,10,Mod(1,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.9059675764\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.177113.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 118x + 136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{2} + (\beta_{2} - 2 \beta_1 + 199) q^{4} + ( - 3 \beta_{2} - 7 \beta_1 - 661) q^{5} + ( - 5 \beta_{2} - 233 \beta_1 - 1231) q^{7} + (3 \beta_{2} + 32 \beta_1 - 1501) q^{8} + ( - 22 \beta_{2} - 1657 \beta_1 - 6327) q^{10}+ \cdots + (1523280 \beta_{2} + 25616490 \beta_1 + 864060762) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 597 q^{4} - 1983 q^{5} - 3693 q^{7} - 4503 q^{8} - 18981 q^{10} - 16863 q^{11} + 116916 q^{13} - 503463 q^{14} - 239919 q^{16} - 1014048 q^{17} - 15222 q^{19} - 2548407 q^{20} + 305721 q^{22}+ \cdots + 2592182286 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 118x + 136 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 9\nu^{2} + 6\nu - 713 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} - 2\beta _1 + 711 ) / 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.9320
1.15428
10.7777
−32.7960 0 563.577 −1315.38 0 5158.54 −1691.52 0 43139.3
1.2 3.46285 0 −500.009 1404.01 0 1665.57 −3504.44 0 4861.88
1.3 32.3331 0 533.432 −2071.63 0 −10517.1 692.954 0 −66982.2
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.10.a.c yes 3
3.b odd 2 1 27.10.a.b 3
9.c even 3 2 81.10.c.g 6
9.d odd 6 2 81.10.c.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.10.a.b 3 3.b odd 2 1
27.10.a.c yes 3 1.a even 1 1 trivial
81.10.c.g 6 9.c even 3 2
81.10.c.h 6 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 3T_{2}^{2} - 1062T_{2} + 3672 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(27))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3 T^{2} + \cdots + 3672 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots - 3825897975 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 90362069875 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 30446445345165 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 955953747392320 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 78\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 44\!\cdots\!64 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 45\!\cdots\!72 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 42\!\cdots\!80 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 62\!\cdots\!31 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 10\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 36\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 45\!\cdots\!60 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 10\!\cdots\!60 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 13\!\cdots\!97 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 52\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 11\!\cdots\!48 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 98\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 64\!\cdots\!45 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 83\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 21\!\cdots\!07 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 26\!\cdots\!55 \) Copy content Toggle raw display
show more
show less