Properties

Label 27.10.a.a
Level $27$
Weight $10$
Character orbit 27.a
Self dual yes
Analytic conductor $13.906$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,10,Mod(1,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.9059675764\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 8 q^{4} - 22 \beta q^{5} - 763 q^{7} - 520 \beta q^{8} - 11088 q^{10} - 2534 \beta q^{11} - 73015 q^{13} - 763 \beta q^{14} - 257984 q^{16} + 7494 \beta q^{17} - 598129 q^{19} + 176 \beta q^{20} + \cdots - 39771438 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{4} - 1526 q^{7} - 22176 q^{10} - 146030 q^{13} - 515968 q^{16} - 1196258 q^{19} - 2554272 q^{22} - 3418378 q^{25} + 12208 q^{28} - 3648200 q^{31} + 7553952 q^{34} + 28544350 q^{37} + 11531520 q^{40}+ \cdots - 470613686 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.74166
3.74166
−22.4499 0 −8.00000 493.899 0 −763.000 11674.0 0 −11088.0
1.2 22.4499 0 −8.00000 −493.899 0 −763.000 −11674.0 0 −11088.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.10.a.a 2
3.b odd 2 1 inner 27.10.a.a 2
9.c even 3 2 81.10.c.f 4
9.d odd 6 2 81.10.c.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.10.a.a 2 1.a even 1 1 trivial
27.10.a.a 2 3.b odd 2 1 inner
81.10.c.f 4 9.c even 3 2
81.10.c.f 4 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 504 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(27))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 504 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 243936 \) Copy content Toggle raw display
$7$ \( (T + 763)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 3236262624 \) Copy content Toggle raw display
$13$ \( (T + 73015)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 28304658144 \) Copy content Toggle raw display
$19$ \( (T + 598129)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 5761886298336 \) Copy content Toggle raw display
$29$ \( T^{2} - 21657702334464 \) Copy content Toggle raw display
$31$ \( (T + 1824100)^{2} \) Copy content Toggle raw display
$37$ \( (T - 14272175)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 889488991641600 \) Copy content Toggle raw display
$43$ \( (T - 7756904)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 960399142780896 \) Copy content Toggle raw display
$53$ \( T^{2} - 98034427661184 \) Copy content Toggle raw display
$59$ \( T^{2} - 15\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( (T + 152766493)^{2} \) Copy content Toggle raw display
$67$ \( (T + 320752069)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 11\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( (T - 66463985)^{2} \) Copy content Toggle raw display
$79$ \( (T + 115357453)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 37\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{2} - 11\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( (T + 235306843)^{2} \) Copy content Toggle raw display
show more
show less