Properties

Label 27.10
Level 27
Weight 10
Dimension 184
Nonzero newspaces 3
Newform subspaces 6
Sturm bound 540
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 6 \)
Sturm bound: \(540\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(27))\).

Total New Old
Modular forms 258 200 58
Cusp forms 228 184 44
Eisenstein series 30 16 14

Trace form

\( 184 q - 21 q^{2} - 6 q^{3} + 1615 q^{4} + 1929 q^{5} - 6822 q^{6} + 2591 q^{7} + 51339 q^{8} + 2538 q^{9} - 100881 q^{10} - 220917 q^{11} + 319935 q^{12} + 299915 q^{13} - 1115241 q^{14} - 706356 q^{15}+ \cdots + 5248107342 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(27))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
27.10.a \(\chi_{27}(1, \cdot)\) 27.10.a.a 2 1
27.10.a.b 3
27.10.a.c 3
27.10.a.d 4
27.10.c \(\chi_{27}(10, \cdot)\) 27.10.c.a 16 2
27.10.e \(\chi_{27}(4, \cdot)\) 27.10.e.a 156 6

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(27))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(27)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)