Properties

Label 2695.2.a.a
Level $2695$
Weight $2$
Character orbit 2695.a
Self dual yes
Analytic conductor $21.520$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2695.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(21.5196833447\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 385)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{4} - q^{5} + 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - q^{4} - q^{5} + 3 q^{8} - 3 q^{9} + q^{10} + q^{11} + 6 q^{13} - q^{16} - 6 q^{17} + 3 q^{18} + 4 q^{19} + q^{20} - q^{22} - 8 q^{23} + q^{25} - 6 q^{26} - 10 q^{29} + 4 q^{31} - 5 q^{32} + 6 q^{34} + 3 q^{36} + 6 q^{37} - 4 q^{38} - 3 q^{40} + 10 q^{41} + 4 q^{43} - q^{44} + 3 q^{45} + 8 q^{46} + 4 q^{47} - q^{50} - 6 q^{52} + 6 q^{53} - q^{55} + 10 q^{58} + 6 q^{61} - 4 q^{62} + 7 q^{64} - 6 q^{65} + 4 q^{67} + 6 q^{68} - 9 q^{72} - 6 q^{73} - 6 q^{74} - 4 q^{76} - 8 q^{79} + q^{80} + 9 q^{81} - 10 q^{82} - 12 q^{83} + 6 q^{85} - 4 q^{86} + 3 q^{88} - 10 q^{89} - 3 q^{90} + 8 q^{92} - 4 q^{94} - 4 q^{95} - 10 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 −1.00000 −1.00000 0 0 3.00000 −3.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \(1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2695.2.a.a 1
7.b odd 2 1 385.2.a.b 1
21.c even 2 1 3465.2.a.k 1
28.d even 2 1 6160.2.a.g 1
35.c odd 2 1 1925.2.a.i 1
35.f even 4 2 1925.2.b.b 2
77.b even 2 1 4235.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
385.2.a.b 1 7.b odd 2 1
1925.2.a.i 1 35.c odd 2 1
1925.2.b.b 2 35.f even 4 2
2695.2.a.a 1 1.a even 1 1 trivial
3465.2.a.k 1 21.c even 2 1
4235.2.a.g 1 77.b even 2 1
6160.2.a.g 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2695))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T - 6 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T + 8 \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T - 10 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 6 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 12 \) Copy content Toggle raw display
$89$ \( T + 10 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less