Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2695))\).
|
Total |
New |
Old |
Modular forms
| 287040 |
246750 |
40290 |
Cusp forms
| 277441 |
241510 |
35931 |
Eisenstein series
| 9599 |
5240 |
4359 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2695))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
2695.2.a |
\(\chi_{2695}(1, \cdot)\) |
2695.2.a.a |
1 |
1 |
2695.2.a.b |
1 |
2695.2.a.c |
1 |
2695.2.a.d |
2 |
2695.2.a.e |
2 |
2695.2.a.f |
2 |
2695.2.a.g |
3 |
2695.2.a.h |
3 |
2695.2.a.i |
3 |
2695.2.a.j |
4 |
2695.2.a.k |
4 |
2695.2.a.l |
4 |
2695.2.a.m |
5 |
2695.2.a.n |
5 |
2695.2.a.o |
5 |
2695.2.a.p |
5 |
2695.2.a.q |
6 |
2695.2.a.r |
6 |
2695.2.a.s |
8 |
2695.2.a.t |
8 |
2695.2.a.u |
10 |
2695.2.a.v |
10 |
2695.2.a.w |
10 |
2695.2.a.x |
10 |
2695.2.a.y |
10 |
2695.2.a.z |
10 |
2695.2.b |
\(\chi_{2695}(1079, \cdot)\) |
n/a |
204 |
1 |
2695.2.c |
\(\chi_{2695}(1616, \cdot)\) |
n/a |
160 |
1 |
2695.2.h |
\(\chi_{2695}(2694, \cdot)\) |
n/a |
232 |
1 |
2695.2.i |
\(\chi_{2695}(606, \cdot)\) |
n/a |
264 |
2 |
2695.2.j |
\(\chi_{2695}(342, \cdot)\) |
n/a |
400 |
2 |
2695.2.k |
\(\chi_{2695}(197, \cdot)\) |
n/a |
472 |
2 |
2695.2.n |
\(\chi_{2695}(246, \cdot)\) |
n/a |
656 |
4 |
2695.2.o |
\(\chi_{2695}(1979, \cdot)\) |
n/a |
464 |
2 |
2695.2.t |
\(\chi_{2695}(1684, \cdot)\) |
n/a |
400 |
2 |
2695.2.u |
\(\chi_{2695}(901, \cdot)\) |
n/a |
320 |
2 |
2695.2.v |
\(\chi_{2695}(386, \cdot)\) |
n/a |
1104 |
6 |
2695.2.w |
\(\chi_{2695}(244, \cdot)\) |
n/a |
928 |
4 |
2695.2.bb |
\(\chi_{2695}(391, \cdot)\) |
n/a |
640 |
4 |
2695.2.bc |
\(\chi_{2695}(344, \cdot)\) |
n/a |
944 |
4 |
2695.2.bd |
\(\chi_{2695}(263, \cdot)\) |
n/a |
928 |
4 |
2695.2.be |
\(\chi_{2695}(1783, \cdot)\) |
n/a |
800 |
4 |
2695.2.bh |
\(\chi_{2695}(384, \cdot)\) |
n/a |
1992 |
6 |
2695.2.bm |
\(\chi_{2695}(76, \cdot)\) |
n/a |
1344 |
6 |
2695.2.bn |
\(\chi_{2695}(309, \cdot)\) |
n/a |
1680 |
6 |
2695.2.bo |
\(\chi_{2695}(361, \cdot)\) |
n/a |
1280 |
8 |
2695.2.br |
\(\chi_{2695}(393, \cdot)\) |
n/a |
1888 |
8 |
2695.2.bs |
\(\chi_{2695}(48, \cdot)\) |
n/a |
1856 |
8 |
2695.2.bt |
\(\chi_{2695}(221, \cdot)\) |
n/a |
2256 |
12 |
2695.2.bw |
\(\chi_{2695}(43, \cdot)\) |
n/a |
3984 |
12 |
2695.2.bx |
\(\chi_{2695}(188, \cdot)\) |
n/a |
3360 |
12 |
2695.2.by |
\(\chi_{2695}(656, \cdot)\) |
n/a |
1280 |
8 |
2695.2.bz |
\(\chi_{2695}(214, \cdot)\) |
n/a |
1856 |
8 |
2695.2.ce |
\(\chi_{2695}(19, \cdot)\) |
n/a |
1856 |
8 |
2695.2.cf |
\(\chi_{2695}(36, \cdot)\) |
n/a |
5376 |
24 |
2695.2.cg |
\(\chi_{2695}(131, \cdot)\) |
n/a |
2688 |
12 |
2695.2.ch |
\(\chi_{2695}(144, \cdot)\) |
n/a |
3360 |
12 |
2695.2.cm |
\(\chi_{2695}(54, \cdot)\) |
n/a |
3984 |
12 |
2695.2.cp |
\(\chi_{2695}(313, \cdot)\) |
n/a |
3712 |
16 |
2695.2.cq |
\(\chi_{2695}(18, \cdot)\) |
n/a |
3712 |
16 |
2695.2.cr |
\(\chi_{2695}(64, \cdot)\) |
n/a |
7968 |
24 |
2695.2.cs |
\(\chi_{2695}(6, \cdot)\) |
n/a |
5376 |
24 |
2695.2.cx |
\(\chi_{2695}(139, \cdot)\) |
n/a |
7968 |
24 |
2695.2.da |
\(\chi_{2695}(12, \cdot)\) |
n/a |
6720 |
24 |
2695.2.db |
\(\chi_{2695}(32, \cdot)\) |
n/a |
7968 |
24 |
2695.2.dc |
\(\chi_{2695}(16, \cdot)\) |
n/a |
10752 |
48 |
2695.2.dd |
\(\chi_{2695}(27, \cdot)\) |
n/a |
15936 |
48 |
2695.2.de |
\(\chi_{2695}(8, \cdot)\) |
n/a |
15936 |
48 |
2695.2.dh |
\(\chi_{2695}(24, \cdot)\) |
n/a |
15936 |
48 |
2695.2.dm |
\(\chi_{2695}(4, \cdot)\) |
n/a |
15936 |
48 |
2695.2.dn |
\(\chi_{2695}(61, \cdot)\) |
n/a |
10752 |
48 |
2695.2.do |
\(\chi_{2695}(2, \cdot)\) |
n/a |
31872 |
96 |
2695.2.dp |
\(\chi_{2695}(3, \cdot)\) |
n/a |
31872 |
96 |
"n/a" means that newforms for that character have not been added to the database yet