Properties

Label 2695.1.g.c
Level $2695$
Weight $1$
Character orbit 2695.g
Self dual yes
Analytic conductor $1.345$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -11, -55, 5
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2695,1,Mod(1814,2695)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2695, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2695.1814"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,-1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-11})\)
Artin image: $D_4$
Artin field: Galois closure of 4.2.13475.1
Stark unit: Root of $x^{4} - 6339x^{3} - 799x^{2} - 6339x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{4} + q^{5} + q^{9} - q^{11} + q^{16} - q^{20} + q^{25} + 2 q^{31} - q^{36} + q^{44} + q^{45} - q^{55} - 2 q^{59} - q^{64} + 2 q^{71} + q^{80} + q^{81} + 2 q^{89} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1814.1
0
0 0 −1.00000 1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 RM by \(\Q(\sqrt{5}) \)
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2695.1.g.c 1
5.b even 2 1 RM 2695.1.g.c 1
7.b odd 2 1 55.1.d.a 1
7.c even 3 2 2695.1.q.b 2
7.d odd 6 2 2695.1.q.c 2
11.b odd 2 1 CM 2695.1.g.c 1
21.c even 2 1 495.1.h.a 1
28.d even 2 1 880.1.i.a 1
35.c odd 2 1 55.1.d.a 1
35.f even 4 2 275.1.c.a 1
35.i odd 6 2 2695.1.q.c 2
35.j even 6 2 2695.1.q.b 2
55.d odd 2 1 CM 2695.1.g.c 1
56.e even 2 1 3520.1.i.a 1
56.h odd 2 1 3520.1.i.b 1
77.b even 2 1 55.1.d.a 1
77.h odd 6 2 2695.1.q.b 2
77.i even 6 2 2695.1.q.c 2
77.j odd 10 4 605.1.h.a 4
77.l even 10 4 605.1.h.a 4
105.g even 2 1 495.1.h.a 1
105.k odd 4 2 2475.1.b.a 1
140.c even 2 1 880.1.i.a 1
231.h odd 2 1 495.1.h.a 1
280.c odd 2 1 3520.1.i.b 1
280.n even 2 1 3520.1.i.a 1
308.g odd 2 1 880.1.i.a 1
385.h even 2 1 55.1.d.a 1
385.l odd 4 2 275.1.c.a 1
385.o even 6 2 2695.1.q.c 2
385.q odd 6 2 2695.1.q.b 2
385.v even 10 4 605.1.h.a 4
385.y odd 10 4 605.1.h.a 4
385.bi odd 20 8 3025.1.x.a 4
385.bk even 20 8 3025.1.x.a 4
616.g odd 2 1 3520.1.i.a 1
616.o even 2 1 3520.1.i.b 1
1155.e odd 2 1 495.1.h.a 1
1155.t even 4 2 2475.1.b.a 1
1540.b odd 2 1 880.1.i.a 1
3080.k even 2 1 3520.1.i.b 1
3080.bc odd 2 1 3520.1.i.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.1.d.a 1 7.b odd 2 1
55.1.d.a 1 35.c odd 2 1
55.1.d.a 1 77.b even 2 1
55.1.d.a 1 385.h even 2 1
275.1.c.a 1 35.f even 4 2
275.1.c.a 1 385.l odd 4 2
495.1.h.a 1 21.c even 2 1
495.1.h.a 1 105.g even 2 1
495.1.h.a 1 231.h odd 2 1
495.1.h.a 1 1155.e odd 2 1
605.1.h.a 4 77.j odd 10 4
605.1.h.a 4 77.l even 10 4
605.1.h.a 4 385.v even 10 4
605.1.h.a 4 385.y odd 10 4
880.1.i.a 1 28.d even 2 1
880.1.i.a 1 140.c even 2 1
880.1.i.a 1 308.g odd 2 1
880.1.i.a 1 1540.b odd 2 1
2475.1.b.a 1 105.k odd 4 2
2475.1.b.a 1 1155.t even 4 2
2695.1.g.c 1 1.a even 1 1 trivial
2695.1.g.c 1 5.b even 2 1 RM
2695.1.g.c 1 11.b odd 2 1 CM
2695.1.g.c 1 55.d odd 2 1 CM
2695.1.q.b 2 7.c even 3 2
2695.1.q.b 2 35.j even 6 2
2695.1.q.b 2 77.h odd 6 2
2695.1.q.b 2 385.q odd 6 2
2695.1.q.c 2 7.d odd 6 2
2695.1.q.c 2 35.i odd 6 2
2695.1.q.c 2 77.i even 6 2
2695.1.q.c 2 385.o even 6 2
3025.1.x.a 4 385.bi odd 20 8
3025.1.x.a 4 385.bk even 20 8
3520.1.i.a 1 56.e even 2 1
3520.1.i.a 1 280.n even 2 1
3520.1.i.a 1 616.g odd 2 1
3520.1.i.a 1 3080.bc odd 2 1
3520.1.i.b 1 56.h odd 2 1
3520.1.i.b 1 280.c odd 2 1
3520.1.i.b 1 616.o even 2 1
3520.1.i.b 1 3080.k even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2695, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{31} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 2 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T + 2 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T - 2 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 2 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less