Defining parameters
| Level: | \( N \) | \(=\) | \( 2695 = 5 \cdot 7^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2695.g (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2695, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 34 | 25 | 9 |
| Cusp forms | 18 | 15 | 3 |
| Eisenstein series | 16 | 10 | 6 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 15 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2695, [\chi])\) into newform subspaces
Decomposition of \(S_{1}^{\mathrm{old}}(2695, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2695, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)