Properties

Label 2695.1.g
Level $2695$
Weight $1$
Character orbit 2695.g
Rep. character $\chi_{2695}(1814,\cdot)$
Character field $\Q$
Dimension $15$
Newform subspaces $9$
Sturm bound $336$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(336\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2695, [\chi])\).

Total New Old
Modular forms 34 25 9
Cusp forms 18 15 3
Eisenstein series 16 10 6

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 15 0 0 0

Trace form

\( 15 q + q^{4} + q^{5} - q^{9} + q^{11} + 7 q^{16} - q^{20} + 7 q^{25} + 2 q^{31} + 17 q^{36} - 9 q^{44} + q^{45} - q^{55} - 2 q^{59} - 7 q^{64} - 10 q^{71} + q^{80} + 15 q^{81} - 8 q^{86} + 2 q^{89}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2695, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2695.1.g.a 2695.g 55.d $1$ $1.345$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-55}) \) None 385.1.q.a \(-1\) \(0\) \(-1\) \(0\) \(q-q^{2}-q^{5}+q^{8}+q^{9}+q^{10}+q^{11}+\cdots\)
2695.1.g.b 2695.g 55.d $1$ $1.345$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-55}) \) None 385.1.q.a \(-1\) \(0\) \(1\) \(0\) \(q-q^{2}+q^{5}+q^{8}+q^{9}-q^{10}+q^{11}+\cdots\)
2695.1.g.c 2695.g 55.d $1$ $1.345$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-55}) \) \(\Q(\sqrt{5}) \) 55.1.d.a \(0\) \(0\) \(1\) \(0\) \(q-q^{4}+q^{5}+q^{9}-q^{11}+q^{16}-q^{20}+\cdots\)
2695.1.g.d 2695.g 55.d $1$ $1.345$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-55}) \) None 385.1.q.a \(1\) \(0\) \(-1\) \(0\) \(q+q^{2}-q^{5}-q^{8}+q^{9}-q^{10}+q^{11}+\cdots\)
2695.1.g.e 2695.g 55.d $1$ $1.345$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-55}) \) None 385.1.q.a \(1\) \(0\) \(1\) \(0\) \(q+q^{2}+q^{5}-q^{8}+q^{9}+q^{10}+q^{11}+\cdots\)
2695.1.g.f 2695.g 55.d $2$ $1.345$ \(\Q(\sqrt{-1}) \) $D_{2}$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-35}) \) \(\Q(\sqrt{385}) \) 2695.1.g.f \(0\) \(0\) \(0\) \(0\) \(q-2 i q^{3}-q^{4}-i q^{5}-3 q^{9}-q^{11}+\cdots\)
2695.1.g.g 2695.g 55.d $2$ $1.345$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-55}) \) None 385.1.q.c \(0\) \(0\) \(-2\) \(0\) \(q-\beta q^{2}+2q^{4}-q^{5}-\beta q^{8}+q^{9}+\beta q^{10}+\cdots\)
2695.1.g.h 2695.g 55.d $2$ $1.345$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-55}) \) None 385.1.q.c \(0\) \(0\) \(2\) \(0\) \(q-\beta q^{2}+2q^{4}+q^{5}-\beta q^{8}+q^{9}-\beta q^{10}+\cdots\)
2695.1.g.i 2695.g 55.d $4$ $1.345$ \(\Q(\zeta_{8})\) $D_{4}$ \(\Q(\sqrt{-11}) \) None 2695.1.g.i \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{8}+\zeta_{8}^{3})q^{3}-q^{4}-\zeta_{8}q^{5}-q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2695, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2695, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)