Properties

Label 2664.2.a.q
Level $2664$
Weight $2$
Character orbit 2664.a
Self dual yes
Analytic conductor $21.272$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2664,2,Mod(1,2664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,2,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2721470985\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 1) q^{5} + ( - \beta_{2} - \beta_1 + 2) q^{7} - 2 q^{13} + (\beta_{2} - 2 \beta_1 + 1) q^{17} + (\beta_{2} + \beta_1 - 4) q^{19} + ( - \beta_{2} - 2 \beta_1 + 5) q^{23} + ( - 3 \beta_{2} - \beta_1 + 3) q^{25}+ \cdots + (2 \beta_{2} - 2 \beta_1 - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{5} + 4 q^{7} - 6 q^{13} + 2 q^{17} - 10 q^{19} + 12 q^{23} + 5 q^{25} + 6 q^{29} + 14 q^{31} + 20 q^{35} - 3 q^{37} + 20 q^{41} + 2 q^{43} + 8 q^{47} + 11 q^{49} + 4 q^{59} - 18 q^{61} - 4 q^{65}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
2.17009
−1.48119
0 0 0 −1.52543 0 1.37778 0 0 0
1.2 0 0 0 −0.630898 0 −2.34017 0 0 0
1.3 0 0 0 4.15633 0 4.96239 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2664.2.a.q yes 3
3.b odd 2 1 2664.2.a.n 3
4.b odd 2 1 5328.2.a.bo 3
12.b even 2 1 5328.2.a.bk 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2664.2.a.n 3 3.b odd 2 1
2664.2.a.q yes 3 1.a even 1 1 trivial
5328.2.a.bk 3 12.b even 2 1
5328.2.a.bo 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2664))\):

\( T_{5}^{3} - 2T_{5}^{2} - 8T_{5} - 4 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 8T_{7} + 16 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( (T + 2)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} + \cdots - 52 \) Copy content Toggle raw display
$19$ \( T^{3} + 10 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$23$ \( T^{3} - 12 T^{2} + \cdots + 100 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$31$ \( T^{3} - 14 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$37$ \( (T + 1)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} - 20 T^{2} + \cdots - 160 \) Copy content Toggle raw display
$43$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$47$ \( T^{3} - 8 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$53$ \( T^{3} - 64T - 128 \) Copy content Toggle raw display
$59$ \( T^{3} - 4 T^{2} + \cdots + 116 \) Copy content Toggle raw display
$61$ \( T^{3} + 18 T^{2} + \cdots - 296 \) Copy content Toggle raw display
$67$ \( T^{3} - 4 T^{2} + \cdots - 80 \) Copy content Toggle raw display
$71$ \( T^{3} - 16 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$73$ \( T^{3} + 6 T^{2} + \cdots - 712 \) Copy content Toggle raw display
$79$ \( T^{3} - 14 T^{2} + \cdots + 472 \) Copy content Toggle raw display
$83$ \( T^{3} - 112T - 416 \) Copy content Toggle raw display
$89$ \( T^{3} - 10 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$97$ \( T^{3} + 6 T^{2} + \cdots - 248 \) Copy content Toggle raw display
show more
show less