Properties

Label 2664.2.a.o
Level $2664$
Weight $2$
Character orbit 2664.a
Self dual yes
Analytic conductor $21.272$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2664,2,Mod(1,2664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,-1,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2721470985\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 888)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1) q^{5} + \beta_{2} q^{7} + (\beta_{2} - 2) q^{11} - \beta_{2} q^{13} + (3 \beta_1 - 2) q^{17} + (\beta_{2} + 2 \beta_1 + 2) q^{19} + ( - \beta_1 - 4) q^{23} + ( - 2 \beta_{2} + 1) q^{25}+ \cdots + (2 \beta_{2} + 6 \beta_1 - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{7} - 7 q^{11} + q^{13} - 3 q^{17} + 7 q^{19} - 13 q^{23} + 5 q^{25} - 2 q^{31} - 12 q^{35} - 3 q^{37} - 6 q^{41} + 4 q^{43} - 10 q^{47} - 4 q^{49} - 5 q^{53} - 12 q^{55} - 28 q^{59} - 18 q^{61}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.12489
−1.76156
−0.363328
0 0 0 −2.64002 0 −0.484862 0 0 0
1.2 0 0 0 −0.864641 0 2.62620 0 0 0
1.3 0 0 0 3.50466 0 −3.14134 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2664.2.a.o 3
3.b odd 2 1 888.2.a.j 3
4.b odd 2 1 5328.2.a.bm 3
12.b even 2 1 1776.2.a.r 3
24.f even 2 1 7104.2.a.bx 3
24.h odd 2 1 7104.2.a.br 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
888.2.a.j 3 3.b odd 2 1
1776.2.a.r 3 12.b even 2 1
2664.2.a.o 3 1.a even 1 1 trivial
5328.2.a.bm 3 4.b odd 2 1
7104.2.a.br 3 24.h odd 2 1
7104.2.a.bx 3 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2664))\):

\( T_{5}^{3} - 10T_{5} - 8 \) Copy content Toggle raw display
\( T_{7}^{3} + T_{7}^{2} - 8T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{3} + 7T_{11}^{2} + 8T_{11} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 10T - 8 \) Copy content Toggle raw display
$7$ \( T^{3} + T^{2} - 8T - 4 \) Copy content Toggle raw display
$11$ \( T^{3} + 7 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$13$ \( T^{3} - T^{2} - 8T + 4 \) Copy content Toggle raw display
$17$ \( T^{3} + 3 T^{2} + \cdots - 166 \) Copy content Toggle raw display
$19$ \( T^{3} - 7 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{3} + 13 T^{2} + \cdots + 58 \) Copy content Toggle raw display
$29$ \( T^{3} - 10T + 8 \) Copy content Toggle raw display
$31$ \( T^{3} + 2 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( (T + 1)^{3} \) Copy content Toggle raw display
$41$ \( (T + 2)^{3} \) Copy content Toggle raw display
$43$ \( T^{3} - 4 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots - 512 \) Copy content Toggle raw display
$53$ \( T^{3} + 5 T^{2} + \cdots - 212 \) Copy content Toggle raw display
$59$ \( T^{3} + 28 T^{2} + \cdots + 200 \) Copy content Toggle raw display
$61$ \( (T + 6)^{3} \) Copy content Toggle raw display
$67$ \( T^{3} - 2 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$71$ \( T^{3} - 160T - 512 \) Copy content Toggle raw display
$73$ \( T^{3} + 11 T^{2} + \cdots - 976 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$83$ \( T^{3} + 7 T^{2} + \cdots - 328 \) Copy content Toggle raw display
$89$ \( T^{3} - 5 T^{2} + \cdots + 794 \) Copy content Toggle raw display
$97$ \( T^{3} + 2 T^{2} + \cdots - 1208 \) Copy content Toggle raw display
show more
show less