Properties

Label 2664.1.m.c.739.2
Level $2664$
Weight $1$
Character 2664.739
Analytic conductor $1.330$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -111
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2664,1,Mod(739,2664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2664.739"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2664.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.32950919365\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.2.207267213312.2

Embedding invariants

Embedding label 739.2
Root \(0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 2664.739
Dual form 2664.1.m.c.739.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 + 0.382683i) q^{2} +(0.707107 - 0.707107i) q^{4} -0.765367 q^{5} +1.41421i q^{7} +(-0.382683 + 0.923880i) q^{8} +(0.707107 - 0.292893i) q^{10} +(-0.541196 - 1.30656i) q^{14} -1.00000i q^{16} +0.765367i q^{17} +(-0.541196 + 0.541196i) q^{20} +0.765367 q^{23} -0.414214 q^{25} +(1.00000 + 1.00000i) q^{28} -1.84776 q^{29} +(0.382683 + 0.923880i) q^{32} +(-0.292893 - 0.707107i) q^{34} -1.08239i q^{35} +1.00000i q^{37} +(0.292893 - 0.707107i) q^{40} +(-0.707107 + 0.292893i) q^{46} -1.00000 q^{49} +(0.382683 - 0.158513i) q^{50} +(-1.30656 - 0.541196i) q^{56} +(1.70711 - 0.707107i) q^{58} -0.765367i q^{59} +(-0.707107 - 0.707107i) q^{64} -1.41421 q^{67} +(0.541196 + 0.541196i) q^{68} +(0.414214 + 1.00000i) q^{70} -1.41421 q^{73} +(-0.382683 - 0.923880i) q^{74} +0.765367i q^{80} -0.585786i q^{85} +1.84776i q^{89} +(0.541196 - 0.541196i) q^{92} +(0.923880 - 0.382683i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{25} + 8 q^{28} - 8 q^{34} + 8 q^{40} - 8 q^{49} + 8 q^{58} - 8 q^{70}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(3\) 0 0
\(4\) 0.707107 0.707107i 0.707107 0.707107i
\(5\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(6\) 0 0
\(7\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(9\) 0 0
\(10\) 0.707107 0.292893i 0.707107 0.292893i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −0.541196 1.30656i −0.541196 1.30656i
\(15\) 0 0
\(16\) 1.00000i 1.00000i
\(17\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(21\) 0 0
\(22\) 0 0
\(23\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(24\) 0 0
\(25\) −0.414214 −0.414214
\(26\) 0 0
\(27\) 0 0
\(28\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(29\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(33\) 0 0
\(34\) −0.292893 0.707107i −0.292893 0.707107i
\(35\) 1.08239i 1.08239i
\(36\) 0 0
\(37\) 1.00000i 1.00000i
\(38\) 0 0
\(39\) 0 0
\(40\) 0.292893 0.707107i 0.292893 0.707107i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.00000 −1.00000
\(50\) 0.382683 0.158513i 0.382683 0.158513i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.30656 0.541196i −1.30656 0.541196i
\(57\) 0 0
\(58\) 1.70711 0.707107i 1.70711 0.707107i
\(59\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.707107 0.707107i −0.707107 0.707107i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(69\) 0 0
\(70\) 0.414214 + 1.00000i 0.414214 + 1.00000i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) −0.382683 0.923880i −0.382683 0.923880i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0.765367i 0.765367i
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0.585786i 0.585786i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.541196 0.541196i 0.541196 0.541196i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.923880 0.382683i 0.923880 0.382683i
\(99\) 0 0
\(100\) −0.292893 + 0.292893i −0.292893 + 0.292893i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.41421 1.41421
\(113\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(114\) 0 0
\(115\) −0.585786 −0.585786
\(116\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(117\) 0 0
\(118\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(119\) −1.08239 −1.08239
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.08239 1.08239
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.30656 0.541196i 1.30656 0.541196i
\(135\) 0 0
\(136\) −0.707107 0.292893i −0.707107 0.292893i
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(140\) −0.765367 0.765367i −0.765367 0.765367i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.41421 1.41421
\(146\) 1.30656 0.541196i 1.30656 0.541196i
\(147\) 0 0
\(148\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.292893 0.707107i −0.292893 0.707107i
\(161\) 1.08239i 1.08239i
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(168\) 0 0
\(169\) −1.00000 −1.00000
\(170\) 0.224171 + 0.541196i 0.224171 + 0.541196i
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0.585786i 0.585786i
\(176\) 0 0
\(177\) 0 0
\(178\) −0.707107 1.70711i −0.707107 1.70711i
\(179\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(180\) 0 0
\(181\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(185\) 0.765367i 0.765367i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0.158513 0.382683i 0.158513 0.382683i
\(201\) 0 0
\(202\) 0 0
\(203\) 2.61313i 2.61313i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(224\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(225\) 0 0
\(226\) −0.707107 1.70711i −0.707107 1.70711i
\(227\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(228\) 0 0
\(229\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0.541196 0.224171i 0.541196 0.224171i
\(231\) 0 0
\(232\) 0.707107 1.70711i 0.707107 1.70711i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.541196 0.541196i −0.541196 0.541196i
\(237\) 0 0
\(238\) 1.00000 0.414214i 1.00000 0.414214i
\(239\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0.923880 0.382683i 0.923880 0.382683i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.765367 0.765367
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −1.00000 + 0.414214i −1.00000 + 0.414214i
\(251\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −1.00000 −1.00000
\(257\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(258\) 0 0
\(259\) −1.41421 −1.41421
\(260\) 0 0
\(261\) 0 0
\(262\) −0.292893 0.707107i −0.292893 0.707107i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(272\) 0.765367 0.765367
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 1.30656 0.541196i 1.30656 0.541196i
\(279\) 0 0
\(280\) 1.00000 + 0.414214i 1.00000 + 0.414214i
\(281\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.414214 0.414214
\(290\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(291\) 0 0
\(292\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0.585786i 0.585786i
\(296\) −0.923880 0.382683i −0.923880 0.382683i
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −0.765367 1.84776i −0.765367 1.84776i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −0.541196 1.30656i −0.541196 1.30656i
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(321\) 0 0
\(322\) −0.414214 1.00000i −0.414214 1.00000i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(335\) 1.08239 1.08239
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0.923880 0.382683i 0.923880 0.382683i
\(339\) 0 0
\(340\) −0.414214 0.414214i −0.414214 0.414214i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(348\) 0 0
\(349\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) 0.224171 + 0.541196i 0.224171 + 0.541196i
\(351\) 0 0
\(352\) 0 0
\(353\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(357\) 0 0
\(358\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.08239 1.08239
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0.765367i 0.765367i
\(369\) 0 0
\(370\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(371\) 0 0
\(372\) 0 0
\(373\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.70711 0.707107i 1.70711 0.707107i
\(383\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(390\) 0 0
\(391\) 0.585786i 0.585786i
\(392\) 0.382683 0.923880i 0.382683 0.923880i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.414214i 0.414214i
\(401\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 1.00000 + 2.41421i 1.00000 + 2.41421i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.08239 1.08239
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) −1.84776 + 0.765367i −1.84776 + 0.765367i
\(423\) 0 0
\(424\) 0 0
\(425\) 0.317025i 0.317025i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(432\) 0 0
\(433\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 1.41421i 1.41421i
\(446\) 0.765367 + 1.84776i 0.765367 + 1.84776i
\(447\) 0 0
\(448\) 1.00000 1.00000i 1.00000 1.00000i
\(449\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(453\) 0 0
\(454\) −0.707107 1.70711i −0.707107 1.70711i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −0.765367 1.84776i −0.765367 1.84776i
\(459\) 0 0
\(460\) −0.414214 + 0.414214i −0.414214 + 0.414214i
\(461\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 1.84776i 1.84776i
\(465\) 0 0
\(466\) 0 0
\(467\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(468\) 0 0
\(469\) 2.00000i 2.00000i
\(470\) 0 0
\(471\) 0 0
\(472\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.765367 + 0.765367i −0.765367 + 0.765367i
\(477\) 0 0
\(478\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(479\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 1.41421i 1.41421i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0.765367 0.765367i 0.765367 0.765367i
\(501\) 0 0
\(502\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(503\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 2.00000i 2.00000i
\(512\) 0.923880 0.382683i 0.923880 0.382683i
\(513\) 0 0
\(514\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 1.30656 0.541196i 1.30656 0.541196i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.414214 −0.414214
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.541196 1.30656i 0.541196 1.30656i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(543\) 0 0
\(544\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(557\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.08239 −1.08239
\(561\) 0 0
\(562\) −0.707107 1.70711i −0.707107 1.70711i
\(563\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(564\) 0 0
\(565\) 1.41421i 1.41421i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(570\) 0 0
\(571\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.317025 −0.317025
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.382683 + 0.158513i −0.382683 + 0.158513i
\(579\) 0 0
\(580\) 1.00000 1.00000i 1.00000 1.00000i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.541196 1.30656i 0.541196 1.30656i
\(585\) 0 0
\(586\) 0 0
\(587\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −0.224171 0.541196i −0.224171 0.541196i
\(591\) 0 0
\(592\) 1.00000 1.00000
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0.828427 0.828427
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(605\) 0.765367 0.765367
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −1.84776 + 0.765367i −1.84776 + 0.765367i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0.707107 0.292893i 0.707107 0.292893i
\(623\) −2.61313 −2.61313
\(624\) 0 0
\(625\) −0.414214 −0.414214
\(626\) 0 0
\(627\) 0 0
\(628\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(629\) −0.765367 −0.765367
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.707107 0.292893i −0.707107 0.292893i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0.765367 + 0.765367i 0.765367 + 0.765367i
\(645\) 0 0
\(646\) 0 0
\(647\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(654\) 0 0
\(655\) 0.585786i 0.585786i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.41421 −1.41421
\(668\) 1.30656 1.30656i 1.30656 1.30656i
\(669\) 0 0
\(670\) −1.00000 + 0.414214i −1.00000 + 0.414214i
\(671\) 0 0
\(672\) 0 0
\(673\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.541196 + 0.224171i 0.541196 + 0.224171i
\(681\) 0 0
\(682\) 0 0
\(683\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(695\) 1.08239 1.08239
\(696\) 0 0
\(697\) 0 0
\(698\) −0.541196 1.30656i −0.541196 1.30656i
\(699\) 0 0
\(700\) −0.414214 0.414214i −0.414214 0.414214i
\(701\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.70711 0.707107i −1.70711 0.707107i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −1.30656 1.30656i −1.30656 1.30656i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(723\) 0 0
\(724\) −1.00000 1.00000i −1.00000 1.00000i
\(725\) 0.765367 0.765367
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.00000 + 0.414214i −1.00000 + 0.414214i
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −0.541196 0.541196i −0.541196 0.541196i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.541196 1.30656i −0.541196 1.30656i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.53073i 1.53073i
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(765\) 0 0
\(766\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0.707107 0.292893i 0.707107 0.292893i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −0.224171 0.541196i −0.224171 0.541196i
\(783\) 0 0
\(784\) 1.00000i 1.00000i
\(785\) 1.08239i 1.08239i
\(786\) 0 0
\(787\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.61313 −2.61313
\(792\) 0 0
\(793\) 0 0
\(794\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.158513 0.382683i −0.158513 0.382683i
\(801\) 0 0
\(802\) −0.292893 0.707107i −0.292893 0.707107i
\(803\) 0 0
\(804\) 0 0
\(805\) 0.828427i 0.828427i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(810\) 0 0
\(811\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) −1.84776 1.84776i −1.84776 1.84776i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.00000 + 0.414214i −1.00000 + 0.414214i
\(827\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.765367i 0.765367i
\(834\) 0 0
\(835\) −1.41421 −1.41421
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 2.41421 2.41421
\(842\) 0 0
\(843\) 0 0
\(844\) 1.41421 1.41421i 1.41421 1.41421i
\(845\) 0.765367 0.765367
\(846\) 0 0
\(847\) 1.41421i 1.41421i
\(848\) 0 0
\(849\) 0 0
\(850\) 0.121320 + 0.292893i 0.121320 + 0.292893i
\(851\) 0.765367i 0.765367i
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.53073i 1.53073i
\(876\) 0 0
\(877\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(891\) 0 0
\(892\) −1.41421 1.41421i −1.41421 1.41421i
\(893\) 0 0
\(894\) 0 0
\(895\) 1.41421i 1.41421i
\(896\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(897\) 0 0
\(898\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.70711 0.707107i −1.70711 0.707107i
\(905\) 1.08239i 1.08239i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(909\) 0 0
\(910\) 0 0
\(911\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(917\) −1.08239 −1.08239
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0.224171 0.541196i 0.224171 0.541196i
\(921\) 0 0
\(922\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.414214i 0.414214i
\(926\) 0 0
\(927\) 0 0
\(928\) −0.707107 1.70711i −0.707107 1.70711i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −0.292893 0.707107i −0.292893 0.707107i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0.765367 + 1.84776i 0.765367 + 1.84776i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.765367 −0.765367
\(945\) 0 0
\(946\) 0 0
\(947\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0.414214 1.00000i 0.414214 1.00000i
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 1.41421 1.41421
\(956\) 0.541196 0.541196i 0.541196 0.541196i
\(957\) 0 0
\(958\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0.382683 0.923880i 0.382683 0.923880i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 2.00000i 2.00000i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.541196 0.541196i 0.541196 0.541196i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.1.m.c.739.2 yes 8
3.2 odd 2 inner 2664.1.m.c.739.7 yes 8
8.3 odd 2 inner 2664.1.m.c.739.8 yes 8
24.11 even 2 inner 2664.1.m.c.739.1 8
37.36 even 2 inner 2664.1.m.c.739.7 yes 8
111.110 odd 2 CM 2664.1.m.c.739.2 yes 8
296.147 odd 2 inner 2664.1.m.c.739.1 8
888.443 even 2 inner 2664.1.m.c.739.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2664.1.m.c.739.1 8 24.11 even 2 inner
2664.1.m.c.739.1 8 296.147 odd 2 inner
2664.1.m.c.739.2 yes 8 1.1 even 1 trivial
2664.1.m.c.739.2 yes 8 111.110 odd 2 CM
2664.1.m.c.739.7 yes 8 3.2 odd 2 inner
2664.1.m.c.739.7 yes 8 37.36 even 2 inner
2664.1.m.c.739.8 yes 8 8.3 odd 2 inner
2664.1.m.c.739.8 yes 8 888.443 even 2 inner