Properties

Label 266.2.a
Level $266$
Weight $2$
Character orbit 266.a
Rep. character $\chi_{266}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $80$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 266 = 2 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 266.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(80\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(266))\).

Total New Old
Modular forms 44 9 35
Cusp forms 37 9 28
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(2\)\(0\)\(2\)\(2\)\(0\)\(2\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(-\)\(-\)\(8\)\(2\)\(6\)\(7\)\(2\)\(5\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(6\)\(2\)\(4\)\(5\)\(2\)\(3\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(6\)\(0\)\(6\)\(5\)\(0\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(7\)\(3\)\(4\)\(6\)\(3\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(5\)\(0\)\(5\)\(4\)\(0\)\(4\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(6\)\(2\)\(4\)\(5\)\(2\)\(3\)\(1\)\(0\)\(1\)
Plus space\(+\)\(17\)\(0\)\(17\)\(14\)\(0\)\(14\)\(3\)\(0\)\(3\)
Minus space\(-\)\(27\)\(9\)\(18\)\(23\)\(9\)\(14\)\(4\)\(0\)\(4\)

Trace form

\( 9 q + q^{2} + 4 q^{3} + 9 q^{4} + 6 q^{5} - 4 q^{6} - q^{7} + q^{8} + 17 q^{9} + 6 q^{10} + 8 q^{11} + 4 q^{12} + 6 q^{13} - q^{14} + 9 q^{16} - 6 q^{17} - 3 q^{18} - q^{19} + 6 q^{20} + 4 q^{21} - 12 q^{22}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(266))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 19
266.2.a.a 266.a 1.a $2$ $2.124$ \(\Q(\sqrt{29}) \) None 266.2.a.a \(-2\) \(1\) \(-1\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta )q^{3}+q^{4}-\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)
266.2.a.b 266.a 1.a $2$ $2.124$ \(\Q(\sqrt{5}) \) None 266.2.a.b \(-2\) \(3\) \(1\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}+(2-3\beta )q^{5}+\cdots\)
266.2.a.c 266.a 1.a $2$ $2.124$ \(\Q(\sqrt{13}) \) None 266.2.a.c \(2\) \(1\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+(1-\beta )q^{5}+\beta q^{6}+\cdots\)
266.2.a.d 266.a 1.a $3$ $2.124$ 3.3.469.1 None 266.2.a.d \(3\) \(-1\) \(5\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{2}q^{3}+q^{4}+(2-\beta _{1})q^{5}+\beta _{2}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(266))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(266)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 2}\)