Properties

Label 2646.2.t.a.2285.7
Level $2646$
Weight $2$
Character 2646.2285
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 6x^{14} + 9x^{12} + 54x^{10} - 288x^{8} + 486x^{6} + 729x^{4} - 4374x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2285.7
Root \(-0.0967785 - 1.72934i\) of defining polynomial
Character \(\chi\) \(=\) 2646.2285
Dual form 2646.2.t.a.1979.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +0.366598 q^{5} +1.00000i q^{8} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +0.366598 q^{5} +1.00000i q^{8} +(0.317483 + 0.183299i) q^{10} -0.669453i q^{11} +(0.867380 + 0.500782i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(2.49453 - 4.32065i) q^{17} +(5.50552 - 3.17861i) q^{19} +(0.183299 + 0.317483i) q^{20} +(0.334727 - 0.579764i) q^{22} -7.69459i q^{23} -4.86561 q^{25} +(0.500782 + 0.867380i) q^{26} +(-1.58394 + 0.914490i) q^{29} +(5.47837 - 3.16294i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(4.32065 - 2.49453i) q^{34} +(2.58394 + 4.47552i) q^{37} +6.35722 q^{38} +0.366598i q^{40} +(-2.15928 + 3.73998i) q^{41} +(2.24922 + 3.89576i) q^{43} +(0.579764 - 0.334727i) q^{44} +(3.84729 - 6.66371i) q^{46} +(4.16450 - 7.21313i) q^{47} +(-4.21374 - 2.43280i) q^{50} +1.00156i q^{52} -0.245420i q^{55} -1.82898 q^{58} +(4.36348 + 7.55776i) q^{59} +(-4.29351 - 2.47886i) q^{61} +6.32588 q^{62} -1.00000 q^{64} +(0.317980 + 0.183586i) q^{65} +(5.44537 + 9.43166i) q^{67} +4.98906 q^{68} -5.49843i q^{71} +(3.52744 + 2.03657i) q^{73} +5.16789i q^{74} +(5.50552 + 3.17861i) q^{76} +(-4.17784 + 7.23623i) q^{79} +(-0.183299 + 0.317483i) q^{80} +(-3.73998 + 2.15928i) q^{82} +(8.50712 + 14.7348i) q^{83} +(0.914490 - 1.58394i) q^{85} +4.49843i q^{86} +0.669453 q^{88} +(-5.35566 - 9.27628i) q^{89} +(6.66371 - 3.84729i) q^{92} +(7.21313 - 4.16450i) q^{94} +(2.01831 - 1.16527i) q^{95} +(14.9093 - 8.60787i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{4} - 8 q^{16} + 16 q^{25} + 12 q^{29} + 4 q^{37} + 4 q^{43} - 12 q^{44} - 12 q^{46} - 60 q^{50} + 24 q^{58} - 16 q^{64} + 84 q^{65} - 28 q^{67} - 4 q^{79} - 12 q^{85} + 48 q^{92} + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.366598 0.163948 0.0819738 0.996634i \(-0.473878\pi\)
0.0819738 + 0.996634i \(0.473878\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.317483 + 0.183299i 0.100397 + 0.0579643i
\(11\) 0.669453i 0.201848i −0.994894 0.100924i \(-0.967820\pi\)
0.994894 0.100924i \(-0.0321799\pi\)
\(12\) 0 0
\(13\) 0.867380 + 0.500782i 0.240568 + 0.138892i 0.615438 0.788185i \(-0.288979\pi\)
−0.374870 + 0.927077i \(0.622313\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.49453 4.32065i 0.605013 1.04791i −0.387037 0.922064i \(-0.626501\pi\)
0.992049 0.125848i \(-0.0401653\pi\)
\(18\) 0 0
\(19\) 5.50552 3.17861i 1.26305 0.729224i 0.289389 0.957212i \(-0.406548\pi\)
0.973664 + 0.227988i \(0.0732147\pi\)
\(20\) 0.183299 + 0.317483i 0.0409869 + 0.0709914i
\(21\) 0 0
\(22\) 0.334727 0.579764i 0.0713640 0.123606i
\(23\) 7.69459i 1.60443i −0.597034 0.802216i \(-0.703654\pi\)
0.597034 0.802216i \(-0.296346\pi\)
\(24\) 0 0
\(25\) −4.86561 −0.973121
\(26\) 0.500782 + 0.867380i 0.0982115 + 0.170107i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.58394 + 0.914490i −0.294131 + 0.169817i −0.639803 0.768539i \(-0.720984\pi\)
0.345672 + 0.938355i \(0.387651\pi\)
\(30\) 0 0
\(31\) 5.47837 3.16294i 0.983944 0.568081i 0.0804857 0.996756i \(-0.474353\pi\)
0.903459 + 0.428675i \(0.141020\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 4.32065 2.49453i 0.740986 0.427809i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.58394 + 4.47552i 0.424798 + 0.735771i 0.996402 0.0847585i \(-0.0270119\pi\)
−0.571604 + 0.820530i \(0.693679\pi\)
\(38\) 6.35722 1.03128
\(39\) 0 0
\(40\) 0.366598i 0.0579643i
\(41\) −2.15928 + 3.73998i −0.337223 + 0.584087i −0.983909 0.178669i \(-0.942821\pi\)
0.646686 + 0.762756i \(0.276154\pi\)
\(42\) 0 0
\(43\) 2.24922 + 3.89576i 0.343002 + 0.594098i 0.984989 0.172618i \(-0.0552228\pi\)
−0.641986 + 0.766716i \(0.721889\pi\)
\(44\) 0.579764 0.334727i 0.0874027 0.0504619i
\(45\) 0 0
\(46\) 3.84729 6.66371i 0.567252 0.982510i
\(47\) 4.16450 7.21313i 0.607455 1.05214i −0.384203 0.923249i \(-0.625524\pi\)
0.991658 0.128895i \(-0.0411429\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −4.21374 2.43280i −0.595913 0.344050i
\(51\) 0 0
\(52\) 1.00156i 0.138892i
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0 0
\(55\) 0.245420i 0.0330925i
\(56\) 0 0
\(57\) 0 0
\(58\) −1.82898 −0.240157
\(59\) 4.36348 + 7.55776i 0.568076 + 0.983937i 0.996756 + 0.0804804i \(0.0256455\pi\)
−0.428680 + 0.903456i \(0.641021\pi\)
\(60\) 0 0
\(61\) −4.29351 2.47886i −0.549727 0.317385i 0.199285 0.979942i \(-0.436138\pi\)
−0.749012 + 0.662556i \(0.769471\pi\)
\(62\) 6.32588 0.803387
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.317980 + 0.183586i 0.0394406 + 0.0227710i
\(66\) 0 0
\(67\) 5.44537 + 9.43166i 0.665258 + 1.15226i 0.979215 + 0.202823i \(0.0650117\pi\)
−0.313958 + 0.949437i \(0.601655\pi\)
\(68\) 4.98906 0.605013
\(69\) 0 0
\(70\) 0 0
\(71\) 5.49843i 0.652544i −0.945276 0.326272i \(-0.894207\pi\)
0.945276 0.326272i \(-0.105793\pi\)
\(72\) 0 0
\(73\) 3.52744 + 2.03657i 0.412856 + 0.238363i 0.692016 0.721882i \(-0.256723\pi\)
−0.279160 + 0.960245i \(0.590056\pi\)
\(74\) 5.16789i 0.600755i
\(75\) 0 0
\(76\) 5.50552 + 3.17861i 0.631526 + 0.364612i
\(77\) 0 0
\(78\) 0 0
\(79\) −4.17784 + 7.23623i −0.470044 + 0.814140i −0.999413 0.0342518i \(-0.989095\pi\)
0.529370 + 0.848391i \(0.322429\pi\)
\(80\) −0.183299 + 0.317483i −0.0204935 + 0.0354957i
\(81\) 0 0
\(82\) −3.73998 + 2.15928i −0.413012 + 0.238453i
\(83\) 8.50712 + 14.7348i 0.933778 + 1.61735i 0.776798 + 0.629750i \(0.216842\pi\)
0.156980 + 0.987602i \(0.449824\pi\)
\(84\) 0 0
\(85\) 0.914490 1.58394i 0.0991904 0.171803i
\(86\) 4.49843i 0.485079i
\(87\) 0 0
\(88\) 0.669453 0.0713640
\(89\) −5.35566 9.27628i −0.567699 0.983283i −0.996793 0.0800234i \(-0.974500\pi\)
0.429094 0.903260i \(-0.358833\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.66371 3.84729i 0.694740 0.401108i
\(93\) 0 0
\(94\) 7.21313 4.16450i 0.743978 0.429536i
\(95\) 2.01831 1.16527i 0.207074 0.119555i
\(96\) 0 0
\(97\) 14.9093 8.60787i 1.51381 0.873997i 0.513937 0.857828i \(-0.328186\pi\)
0.999869 0.0161687i \(-0.00514689\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.43280 4.21374i −0.243280 0.421374i
\(101\) 15.7317 1.56537 0.782683 0.622421i \(-0.213851\pi\)
0.782683 + 0.622421i \(0.213851\pi\)
\(102\) 0 0
\(103\) 11.4445i 1.12766i −0.825890 0.563831i \(-0.809327\pi\)
0.825890 0.563831i \(-0.190673\pi\)
\(104\) −0.500782 + 0.867380i −0.0491057 + 0.0850537i
\(105\) 0 0
\(106\) 0 0
\(107\) −9.57976 + 5.53088i −0.926111 + 0.534690i −0.885579 0.464488i \(-0.846238\pi\)
−0.0405313 + 0.999178i \(0.512905\pi\)
\(108\) 0 0
\(109\) 5.28166 9.14811i 0.505891 0.876230i −0.494085 0.869413i \(-0.664497\pi\)
0.999977 0.00681630i \(-0.00216971\pi\)
\(110\) 0.122710 0.212540i 0.0117000 0.0202649i
\(111\) 0 0
\(112\) 0 0
\(113\) −3.60226 2.07976i −0.338872 0.195648i 0.320901 0.947113i \(-0.396014\pi\)
−0.659773 + 0.751465i \(0.729348\pi\)
\(114\) 0 0
\(115\) 2.82082i 0.263043i
\(116\) −1.58394 0.914490i −0.147065 0.0849083i
\(117\) 0 0
\(118\) 8.72695i 0.803381i
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5518 0.959257
\(122\) −2.47886 4.29351i −0.224425 0.388716i
\(123\) 0 0
\(124\) 5.47837 + 3.16294i 0.491972 + 0.284040i
\(125\) −3.61671 −0.323489
\(126\) 0 0
\(127\) −1.66945 −0.148140 −0.0740700 0.997253i \(-0.523599\pi\)
−0.0740700 + 0.997253i \(0.523599\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 0.183586 + 0.317980i 0.0161015 + 0.0278887i
\(131\) −13.5321 −1.18231 −0.591154 0.806558i \(-0.701328\pi\)
−0.591154 + 0.806558i \(0.701328\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.8907i 0.940817i
\(135\) 0 0
\(136\) 4.32065 + 2.49453i 0.370493 + 0.213904i
\(137\) 8.98851i 0.767940i −0.923346 0.383970i \(-0.874557\pi\)
0.923346 0.383970i \(-0.125443\pi\)
\(138\) 0 0
\(139\) 8.05336 + 4.64961i 0.683077 + 0.394375i 0.801014 0.598646i \(-0.204294\pi\)
−0.117936 + 0.993021i \(0.537628\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.74922 4.76178i 0.230709 0.399600i
\(143\) 0.335250 0.580671i 0.0280351 0.0485581i
\(144\) 0 0
\(145\) −0.580671 + 0.335250i −0.0482221 + 0.0278410i
\(146\) 2.03657 + 3.52744i 0.168548 + 0.291933i
\(147\) 0 0
\(148\) −2.58394 + 4.47552i −0.212399 + 0.367886i
\(149\) 2.83211i 0.232016i −0.993248 0.116008i \(-0.962990\pi\)
0.993248 0.116008i \(-0.0370098\pi\)
\(150\) 0 0
\(151\) −16.5518 −1.34697 −0.673484 0.739201i \(-0.735203\pi\)
−0.673484 + 0.739201i \(0.735203\pi\)
\(152\) 3.17861 + 5.50552i 0.257820 + 0.446556i
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00836 1.15953i 0.161315 0.0931355i
\(156\) 0 0
\(157\) 2.45480 1.41728i 0.195914 0.113111i −0.398834 0.917023i \(-0.630585\pi\)
0.594748 + 0.803912i \(0.297252\pi\)
\(158\) −7.23623 + 4.17784i −0.575684 + 0.332371i
\(159\) 0 0
\(160\) −0.317483 + 0.183299i −0.0250993 + 0.0144911i
\(161\) 0 0
\(162\) 0 0
\(163\) −12.3640 21.4151i −0.968426 1.67736i −0.700113 0.714032i \(-0.746867\pi\)
−0.268313 0.963332i \(-0.586466\pi\)
\(164\) −4.31856 −0.337223
\(165\) 0 0
\(166\) 17.0142i 1.32056i
\(167\) −9.67422 + 16.7562i −0.748614 + 1.29664i 0.199874 + 0.979822i \(0.435947\pi\)
−0.948487 + 0.316815i \(0.897386\pi\)
\(168\) 0 0
\(169\) −5.99843 10.3896i −0.461418 0.799199i
\(170\) 1.58394 0.914490i 0.121483 0.0701382i
\(171\) 0 0
\(172\) −2.24922 + 3.89576i −0.171501 + 0.297049i
\(173\) −2.41827 + 4.18856i −0.183858 + 0.318451i −0.943191 0.332251i \(-0.892192\pi\)
0.759333 + 0.650702i \(0.225525\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.579764 + 0.334727i 0.0437013 + 0.0252310i
\(177\) 0 0
\(178\) 10.7113i 0.802847i
\(179\) 3.16789 + 1.82898i 0.236779 + 0.136704i 0.613695 0.789543i \(-0.289682\pi\)
−0.376916 + 0.926247i \(0.623016\pi\)
\(180\) 0 0
\(181\) 5.66796i 0.421296i −0.977562 0.210648i \(-0.932443\pi\)
0.977562 0.210648i \(-0.0675574\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7.69459 0.567252
\(185\) 0.947269 + 1.64072i 0.0696446 + 0.120628i
\(186\) 0 0
\(187\) −2.89248 1.66997i −0.211519 0.122120i
\(188\) 8.32901 0.607455
\(189\) 0 0
\(190\) 2.33055 0.169076
\(191\) 23.7098 + 13.6888i 1.71558 + 0.990490i 0.926583 + 0.376091i \(0.122732\pi\)
0.788996 + 0.614398i \(0.210601\pi\)
\(192\) 0 0
\(193\) 5.01413 + 8.68473i 0.360925 + 0.625141i 0.988113 0.153727i \(-0.0491276\pi\)
−0.627188 + 0.778868i \(0.715794\pi\)
\(194\) 17.2157 1.23602
\(195\) 0 0
\(196\) 0 0
\(197\) 18.8258i 1.34129i 0.741780 + 0.670643i \(0.233982\pi\)
−0.741780 + 0.670643i \(0.766018\pi\)
\(198\) 0 0
\(199\) −4.64541 2.68203i −0.329305 0.190124i 0.326228 0.945291i \(-0.394222\pi\)
−0.655532 + 0.755167i \(0.727556\pi\)
\(200\) 4.86561i 0.344050i
\(201\) 0 0
\(202\) 13.6241 + 7.86586i 0.958587 + 0.553440i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.791588 + 1.37107i −0.0552869 + 0.0957597i
\(206\) 5.72226 9.91124i 0.398689 0.690549i
\(207\) 0 0
\(208\) −0.867380 + 0.500782i −0.0601420 + 0.0347230i
\(209\) −2.12793 3.68569i −0.147192 0.254944i
\(210\) 0 0
\(211\) −0.828981 + 1.43584i −0.0570694 + 0.0988471i −0.893149 0.449762i \(-0.851509\pi\)
0.836079 + 0.548609i \(0.184842\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −11.0618 −0.756166
\(215\) 0.824559 + 1.42818i 0.0562344 + 0.0974009i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.14811 5.28166i 0.619588 0.357719i
\(219\) 0 0
\(220\) 0.212540 0.122710i 0.0143295 0.00827312i
\(221\) 4.32741 2.49843i 0.291093 0.168063i
\(222\) 0 0
\(223\) −14.7546 + 8.51860i −0.988044 + 0.570448i −0.904689 0.426072i \(-0.859897\pi\)
−0.0833551 + 0.996520i \(0.526564\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.07976 3.60226i −0.138344 0.239619i
\(227\) −5.11024 −0.339179 −0.169589 0.985515i \(-0.554244\pi\)
−0.169589 + 0.985515i \(0.554244\pi\)
\(228\) 0 0
\(229\) 15.2669i 1.00887i −0.863451 0.504433i \(-0.831702\pi\)
0.863451 0.504433i \(-0.168298\pi\)
\(230\) 1.41041 2.44290i 0.0929997 0.161080i
\(231\) 0 0
\(232\) −0.914490 1.58394i −0.0600392 0.103991i
\(233\) −8.82741 + 5.09651i −0.578303 + 0.333883i −0.760459 0.649386i \(-0.775026\pi\)
0.182156 + 0.983270i \(0.441693\pi\)
\(234\) 0 0
\(235\) 1.52670 2.64432i 0.0995909 0.172496i
\(236\) −4.36348 + 7.55776i −0.284038 + 0.491968i
\(237\) 0 0
\(238\) 0 0
\(239\) 16.6117 + 9.59076i 1.07452 + 0.620375i 0.929413 0.369041i \(-0.120314\pi\)
0.145108 + 0.989416i \(0.453647\pi\)
\(240\) 0 0
\(241\) 20.6853i 1.33245i −0.745749 0.666227i \(-0.767908\pi\)
0.745749 0.666227i \(-0.232092\pi\)
\(242\) 9.13815 + 5.27592i 0.587423 + 0.339149i
\(243\) 0 0
\(244\) 4.95771i 0.317385i
\(245\) 0 0
\(246\) 0 0
\(247\) 6.36717 0.405133
\(248\) 3.16294 + 5.47837i 0.200847 + 0.347877i
\(249\) 0 0
\(250\) −3.13216 1.80836i −0.198096 0.114370i
\(251\) −1.81200 −0.114373 −0.0571864 0.998364i \(-0.518213\pi\)
−0.0571864 + 0.998364i \(0.518213\pi\)
\(252\) 0 0
\(253\) −5.15117 −0.323851
\(254\) −1.44579 0.834727i −0.0907169 0.0523754i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.45545 −0.402680 −0.201340 0.979521i \(-0.564530\pi\)
−0.201340 + 0.979521i \(0.564530\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.367172i 0.0227710i
\(261\) 0 0
\(262\) −11.7192 6.76607i −0.724013 0.418009i
\(263\) 8.82062i 0.543903i 0.962311 + 0.271951i \(0.0876690\pi\)
−0.962311 + 0.271951i \(0.912331\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −5.44537 + 9.43166i −0.332629 + 0.576130i
\(269\) −7.13267 + 12.3541i −0.434886 + 0.753245i −0.997286 0.0736199i \(-0.976545\pi\)
0.562400 + 0.826865i \(0.309878\pi\)
\(270\) 0 0
\(271\) −2.64381 + 1.52641i −0.160600 + 0.0927226i −0.578146 0.815933i \(-0.696224\pi\)
0.417546 + 0.908656i \(0.362890\pi\)
\(272\) 2.49453 + 4.32065i 0.151253 + 0.261978i
\(273\) 0 0
\(274\) 4.49425 7.78428i 0.271508 0.470265i
\(275\) 3.25730i 0.196422i
\(276\) 0 0
\(277\) 1.26566 0.0760459 0.0380230 0.999277i \(-0.487894\pi\)
0.0380230 + 0.999277i \(0.487894\pi\)
\(278\) 4.64961 + 8.05336i 0.278865 + 0.483009i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.11639 + 5.26335i −0.543838 + 0.313985i −0.746633 0.665236i \(-0.768331\pi\)
0.202795 + 0.979221i \(0.434998\pi\)
\(282\) 0 0
\(283\) −17.2094 + 9.93588i −1.02300 + 0.590627i −0.914970 0.403522i \(-0.867786\pi\)
−0.108025 + 0.994148i \(0.534453\pi\)
\(284\) 4.76178 2.74922i 0.282560 0.163136i
\(285\) 0 0
\(286\) 0.580671 0.335250i 0.0343358 0.0198238i
\(287\) 0 0
\(288\) 0 0
\(289\) −3.94537 6.83358i −0.232081 0.401975i
\(290\) −0.670501 −0.0393732
\(291\) 0 0
\(292\) 4.07314i 0.238363i
\(293\) 6.70606 11.6152i 0.391772 0.678569i −0.600911 0.799316i \(-0.705196\pi\)
0.992683 + 0.120747i \(0.0385289\pi\)
\(294\) 0 0
\(295\) 1.59964 + 2.77066i 0.0931348 + 0.161314i
\(296\) −4.47552 + 2.58394i −0.260134 + 0.150189i
\(297\) 0 0
\(298\) 1.41606 2.45268i 0.0820299 0.142080i
\(299\) 3.85331 6.67413i 0.222843 0.385975i
\(300\) 0 0
\(301\) 0 0
\(302\) −14.3343 8.27592i −0.824847 0.476225i
\(303\) 0 0
\(304\) 6.35722i 0.364612i
\(305\) −1.57399 0.908744i −0.0901265 0.0520346i
\(306\) 0 0
\(307\) 0.653728i 0.0373102i −0.999826 0.0186551i \(-0.994062\pi\)
0.999826 0.0186551i \(-0.00593845\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.31905 0.131713
\(311\) 4.62246 + 8.00634i 0.262116 + 0.453998i 0.966804 0.255519i \(-0.0822464\pi\)
−0.704688 + 0.709517i \(0.748913\pi\)
\(312\) 0 0
\(313\) −5.33830 3.08207i −0.301739 0.174209i 0.341485 0.939887i \(-0.389070\pi\)
−0.643224 + 0.765678i \(0.722403\pi\)
\(314\) 2.83456 0.159963
\(315\) 0 0
\(316\) −8.35568 −0.470044
\(317\) −17.8876 10.3274i −1.00467 0.580045i −0.0950420 0.995473i \(-0.530299\pi\)
−0.909626 + 0.415428i \(0.863632\pi\)
\(318\) 0 0
\(319\) 0.612209 + 1.06038i 0.0342771 + 0.0593697i
\(320\) −0.366598 −0.0204935
\(321\) 0 0
\(322\) 0 0
\(323\) 31.7166i 1.76476i
\(324\) 0 0
\(325\) −4.22033 2.43661i −0.234102 0.135159i
\(326\) 24.7281i 1.36956i
\(327\) 0 0
\(328\) −3.73998 2.15928i −0.206506 0.119226i
\(329\) 0 0
\(330\) 0 0
\(331\) −5.35568 + 9.27631i −0.294375 + 0.509872i −0.974839 0.222909i \(-0.928445\pi\)
0.680464 + 0.732781i \(0.261778\pi\)
\(332\) −8.50712 + 14.7348i −0.466889 + 0.808676i
\(333\) 0 0
\(334\) −16.7562 + 9.67422i −0.916861 + 0.529350i
\(335\) 1.99626 + 3.45763i 0.109067 + 0.188910i
\(336\) 0 0
\(337\) 3.77592 6.54008i 0.205687 0.356261i −0.744664 0.667439i \(-0.767390\pi\)
0.950351 + 0.311179i \(0.100724\pi\)
\(338\) 11.9969i 0.652544i
\(339\) 0 0
\(340\) 1.82898 0.0991904
\(341\) −2.11744 3.66751i −0.114666 0.198607i
\(342\) 0 0
\(343\) 0 0
\(344\) −3.89576 + 2.24922i −0.210045 + 0.121270i
\(345\) 0 0
\(346\) −4.18856 + 2.41827i −0.225179 + 0.130007i
\(347\) −9.46737 + 5.46599i −0.508235 + 0.293430i −0.732108 0.681189i \(-0.761463\pi\)
0.223873 + 0.974618i \(0.428130\pi\)
\(348\) 0 0
\(349\) −1.02562 + 0.592145i −0.0549004 + 0.0316968i −0.527199 0.849742i \(-0.676758\pi\)
0.472299 + 0.881439i \(0.343424\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.334727 + 0.579764i 0.0178410 + 0.0309015i
\(353\) −33.5824 −1.78741 −0.893706 0.448653i \(-0.851904\pi\)
−0.893706 + 0.448653i \(0.851904\pi\)
\(354\) 0 0
\(355\) 2.01572i 0.106983i
\(356\) 5.35566 9.27628i 0.283849 0.491642i
\(357\) 0 0
\(358\) 1.82898 + 3.16789i 0.0966646 + 0.167428i
\(359\) 8.77122 5.06407i 0.462927 0.267271i −0.250347 0.968156i \(-0.580545\pi\)
0.713274 + 0.700885i \(0.247211\pi\)
\(360\) 0 0
\(361\) 10.7072 18.5453i 0.563534 0.976070i
\(362\) 2.83398 4.90860i 0.148951 0.257990i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.29315 + 0.746603i 0.0676868 + 0.0390790i
\(366\) 0 0
\(367\) 18.0021i 0.939701i 0.882746 + 0.469850i \(0.155692\pi\)
−0.882746 + 0.469850i \(0.844308\pi\)
\(368\) 6.66371 + 3.84729i 0.347370 + 0.200554i
\(369\) 0 0
\(370\) 1.89454i 0.0984923i
\(371\) 0 0
\(372\) 0 0
\(373\) 16.4090 0.849627 0.424814 0.905281i \(-0.360340\pi\)
0.424814 + 0.905281i \(0.360340\pi\)
\(374\) −1.66997 2.89248i −0.0863522 0.149566i
\(375\) 0 0
\(376\) 7.21313 + 4.16450i 0.371989 + 0.214768i
\(377\) −1.83184 −0.0943447
\(378\) 0 0
\(379\) −2.91372 −0.149668 −0.0748339 0.997196i \(-0.523843\pi\)
−0.0748339 + 0.997196i \(0.523843\pi\)
\(380\) 2.01831 + 1.16527i 0.103537 + 0.0597773i
\(381\) 0 0
\(382\) 13.6888 + 23.7098i 0.700382 + 1.21310i
\(383\) 8.57443 0.438133 0.219066 0.975710i \(-0.429699\pi\)
0.219066 + 0.975710i \(0.429699\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0283i 0.510425i
\(387\) 0 0
\(388\) 14.9093 + 8.60787i 0.756903 + 0.436998i
\(389\) 35.5539i 1.80266i 0.433137 + 0.901328i \(0.357406\pi\)
−0.433137 + 0.901328i \(0.642594\pi\)
\(390\) 0 0
\(391\) −33.2456 19.1944i −1.68130 0.970702i
\(392\) 0 0
\(393\) 0 0
\(394\) −9.41292 + 16.3037i −0.474216 + 0.821367i
\(395\) −1.53159 + 2.65279i −0.0770626 + 0.133476i
\(396\) 0 0
\(397\) 3.10066 1.79017i 0.155618 0.0898460i −0.420169 0.907446i \(-0.638029\pi\)
0.575787 + 0.817600i \(0.304696\pi\)
\(398\) −2.68203 4.64541i −0.134438 0.232853i
\(399\) 0 0
\(400\) 2.43280 4.21374i 0.121640 0.210687i
\(401\) 0.190871i 0.00953167i 0.999989 + 0.00476583i \(0.00151702\pi\)
−0.999989 + 0.00476583i \(0.998483\pi\)
\(402\) 0 0
\(403\) 6.33577 0.315607
\(404\) 7.86586 + 13.6241i 0.391341 + 0.677823i
\(405\) 0 0
\(406\) 0 0
\(407\) 2.99615 1.72983i 0.148514 0.0857445i
\(408\) 0 0
\(409\) −3.00832 + 1.73685i −0.148752 + 0.0858819i −0.572529 0.819885i \(-0.694037\pi\)
0.423777 + 0.905767i \(0.360704\pi\)
\(410\) −1.37107 + 0.791588i −0.0677124 + 0.0390938i
\(411\) 0 0
\(412\) 9.91124 5.72226i 0.488292 0.281915i
\(413\) 0 0
\(414\) 0 0
\(415\) 3.11870 + 5.40174i 0.153091 + 0.265161i
\(416\) −1.00156 −0.0491057
\(417\) 0 0
\(418\) 4.25587i 0.208161i
\(419\) 0.703955 1.21929i 0.0343905 0.0595660i −0.848318 0.529487i \(-0.822384\pi\)
0.882708 + 0.469921i \(0.155718\pi\)
\(420\) 0 0
\(421\) 15.1930 + 26.3151i 0.740463 + 1.28252i 0.952285 + 0.305211i \(0.0987268\pi\)
−0.211822 + 0.977308i \(0.567940\pi\)
\(422\) −1.43584 + 0.828981i −0.0698954 + 0.0403541i
\(423\) 0 0
\(424\) 0 0
\(425\) −12.1374 + 21.0226i −0.588751 + 1.01975i
\(426\) 0 0
\(427\) 0 0
\(428\) −9.57976 5.53088i −0.463055 0.267345i
\(429\) 0 0
\(430\) 1.64912i 0.0795275i
\(431\) −23.6206 13.6373i −1.13776 0.656888i −0.191887 0.981417i \(-0.561461\pi\)
−0.945876 + 0.324529i \(0.894794\pi\)
\(432\) 0 0
\(433\) 8.15047i 0.391686i −0.980635 0.195843i \(-0.937256\pi\)
0.980635 0.195843i \(-0.0627444\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.5633 0.505891
\(437\) −24.4581 42.3627i −1.16999 2.02648i
\(438\) 0 0
\(439\) 10.6005 + 6.12020i 0.505934 + 0.292101i 0.731161 0.682205i \(-0.238979\pi\)
−0.225226 + 0.974306i \(0.572312\pi\)
\(440\) 0.245420 0.0117000
\(441\) 0 0
\(442\) 4.99687 0.237677
\(443\) 6.93544 + 4.00418i 0.329513 + 0.190244i 0.655625 0.755087i \(-0.272405\pi\)
−0.326112 + 0.945331i \(0.605739\pi\)
\(444\) 0 0
\(445\) −1.96337 3.40067i −0.0930729 0.161207i
\(446\) −17.0372 −0.806735
\(447\) 0 0
\(448\) 0 0
\(449\) 14.5183i 0.685163i −0.939488 0.342581i \(-0.888699\pi\)
0.939488 0.342581i \(-0.111301\pi\)
\(450\) 0 0
\(451\) 2.50374 + 1.44554i 0.117897 + 0.0680677i
\(452\) 4.15953i 0.195648i
\(453\) 0 0
\(454\) −4.42560 2.55512i −0.207704 0.119918i
\(455\) 0 0
\(456\) 0 0
\(457\) −4.97751 + 8.62130i −0.232838 + 0.403287i −0.958642 0.284614i \(-0.908135\pi\)
0.725804 + 0.687901i \(0.241468\pi\)
\(458\) 7.63345 13.2215i 0.356688 0.617801i
\(459\) 0 0
\(460\) 2.44290 1.41041i 0.113901 0.0657607i
\(461\) −16.1635 27.9960i −0.752810 1.30391i −0.946456 0.322834i \(-0.895364\pi\)
0.193645 0.981072i \(-0.437969\pi\)
\(462\) 0 0
\(463\) −4.72516 + 8.18421i −0.219597 + 0.380353i −0.954685 0.297619i \(-0.903807\pi\)
0.735088 + 0.677972i \(0.237141\pi\)
\(464\) 1.82898i 0.0849083i
\(465\) 0 0
\(466\) −10.1930 −0.472183
\(467\) −10.3312 17.8941i −0.478069 0.828039i 0.521615 0.853181i \(-0.325330\pi\)
−0.999684 + 0.0251414i \(0.991996\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2.64432 1.52670i 0.121973 0.0704214i
\(471\) 0 0
\(472\) −7.55776 + 4.36348i −0.347874 + 0.200845i
\(473\) 2.60803 1.50575i 0.119917 0.0692343i
\(474\) 0 0
\(475\) −26.7877 + 15.4659i −1.22910 + 0.709623i
\(476\) 0 0
\(477\) 0 0
\(478\) 9.59076 + 16.6117i 0.438671 + 0.759801i
\(479\) 10.1608 0.464261 0.232131 0.972685i \(-0.425430\pi\)
0.232131 + 0.972685i \(0.425430\pi\)
\(480\) 0 0
\(481\) 5.17597i 0.236004i
\(482\) 10.3426 17.9140i 0.471094 0.815958i
\(483\) 0 0
\(484\) 5.27592 + 9.13815i 0.239814 + 0.415371i
\(485\) 5.46571 3.15563i 0.248185 0.143290i
\(486\) 0 0
\(487\) 15.6148 27.0457i 0.707575 1.22556i −0.258179 0.966097i \(-0.583122\pi\)
0.965754 0.259459i \(-0.0835443\pi\)
\(488\) 2.47886 4.29351i 0.112213 0.194358i
\(489\) 0 0
\(490\) 0 0
\(491\) −17.8314 10.2950i −0.804720 0.464605i 0.0403987 0.999184i \(-0.487137\pi\)
−0.845119 + 0.534578i \(0.820471\pi\)
\(492\) 0 0
\(493\) 9.12490i 0.410965i
\(494\) 5.51413 + 3.18359i 0.248093 + 0.143236i
\(495\) 0 0
\(496\) 6.32588i 0.284040i
\(497\) 0 0
\(498\) 0 0
\(499\) −25.1533 −1.12601 −0.563007 0.826452i \(-0.690356\pi\)
−0.563007 + 0.826452i \(0.690356\pi\)
\(500\) −1.80836 3.13216i −0.0808722 0.140075i
\(501\) 0 0
\(502\) −1.56924 0.906002i −0.0700387 0.0404369i
\(503\) −31.1553 −1.38915 −0.694574 0.719421i \(-0.744407\pi\)
−0.694574 + 0.719421i \(0.744407\pi\)
\(504\) 0 0
\(505\) 5.76722 0.256638
\(506\) −4.46104 2.57558i −0.198317 0.114499i
\(507\) 0 0
\(508\) −0.834727 1.44579i −0.0370350 0.0641465i
\(509\) 4.83347 0.214240 0.107120 0.994246i \(-0.465837\pi\)
0.107120 + 0.994246i \(0.465837\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −5.59059 3.22773i −0.246590 0.142369i
\(515\) 4.19554i 0.184877i
\(516\) 0 0
\(517\) −4.82886 2.78794i −0.212373 0.122613i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.183586 + 0.317980i −0.00805077 + 0.0139443i
\(521\) −8.76611 + 15.1834i −0.384050 + 0.665195i −0.991637 0.129059i \(-0.958804\pi\)
0.607587 + 0.794253i \(0.292138\pi\)
\(522\) 0 0
\(523\) 16.5427 9.55094i 0.723362 0.417633i −0.0926268 0.995701i \(-0.529526\pi\)
0.815989 + 0.578068i \(0.196193\pi\)
\(524\) −6.76607 11.7192i −0.295577 0.511955i
\(525\) 0 0
\(526\) −4.41031 + 7.63888i −0.192299 + 0.333071i
\(527\) 31.5602i 1.37478i
\(528\) 0 0
\(529\) −36.2067 −1.57420
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.74584 + 2.16266i −0.162250 + 0.0936752i
\(534\) 0 0
\(535\) −3.51192 + 2.02761i −0.151834 + 0.0876612i
\(536\) −9.43166 + 5.44537i −0.407386 + 0.235204i
\(537\) 0 0
\(538\) −12.3541 + 7.13267i −0.532625 + 0.307511i
\(539\) 0 0
\(540\) 0 0
\(541\) −6.83211 11.8336i −0.293735 0.508765i 0.680954 0.732326i \(-0.261565\pi\)
−0.974690 + 0.223561i \(0.928232\pi\)
\(542\) −3.05281 −0.131130
\(543\) 0 0
\(544\) 4.98906i 0.213904i
\(545\) 1.93625 3.35368i 0.0829397 0.143656i
\(546\) 0 0
\(547\) 4.94380 + 8.56292i 0.211382 + 0.366124i 0.952147 0.305640i \(-0.0988703\pi\)
−0.740765 + 0.671764i \(0.765537\pi\)
\(548\) 7.78428 4.49425i 0.332528 0.191985i
\(549\) 0 0
\(550\) −1.62865 + 2.82090i −0.0694458 + 0.120284i
\(551\) −5.81362 + 10.0695i −0.247669 + 0.428975i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.09609 + 0.632828i 0.0465684 + 0.0268863i
\(555\) 0 0
\(556\) 9.29922i 0.394375i
\(557\) −10.8946 6.29002i −0.461621 0.266517i 0.251105 0.967960i \(-0.419206\pi\)
−0.712725 + 0.701443i \(0.752539\pi\)
\(558\) 0 0
\(559\) 4.50547i 0.190561i
\(560\) 0 0
\(561\) 0 0
\(562\) −10.5267 −0.444042
\(563\) 12.1666 + 21.0732i 0.512763 + 0.888132i 0.999890 + 0.0148007i \(0.00471137\pi\)
−0.487127 + 0.873331i \(0.661955\pi\)
\(564\) 0 0
\(565\) −1.32058 0.762437i −0.0555572 0.0320760i
\(566\) −19.8718 −0.835272
\(567\) 0 0
\(568\) 5.49843 0.230709
\(569\) −8.18746 4.72703i −0.343236 0.198167i 0.318466 0.947934i \(-0.396832\pi\)
−0.661702 + 0.749767i \(0.730166\pi\)
\(570\) 0 0
\(571\) 15.7843 + 27.3392i 0.660551 + 1.14411i 0.980471 + 0.196664i \(0.0630108\pi\)
−0.319920 + 0.947445i \(0.603656\pi\)
\(572\) 0.670501 0.0280351
\(573\) 0 0
\(574\) 0 0
\(575\) 37.4388i 1.56131i
\(576\) 0 0
\(577\) −29.0806 16.7897i −1.21064 0.698964i −0.247742 0.968826i \(-0.579688\pi\)
−0.962899 + 0.269862i \(0.913022\pi\)
\(578\) 7.89074i 0.328211i
\(579\) 0 0
\(580\) −0.580671 0.335250i −0.0241110 0.0139205i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −2.03657 + 3.52744i −0.0842739 + 0.145967i
\(585\) 0 0
\(586\) 11.6152 6.70606i 0.479821 0.277025i
\(587\) −9.65855 16.7291i −0.398651 0.690484i 0.594909 0.803793i \(-0.297188\pi\)
−0.993560 + 0.113310i \(0.963855\pi\)
\(588\) 0 0
\(589\) 20.1075 34.8272i 0.828516 1.43503i
\(590\) 3.19928i 0.131712i
\(591\) 0 0
\(592\) −5.16789 −0.212399
\(593\) −0.366598 0.634967i −0.0150544 0.0260750i 0.858400 0.512981i \(-0.171459\pi\)
−0.873454 + 0.486906i \(0.838125\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.45268 1.41606i 0.100466 0.0580039i
\(597\) 0 0
\(598\) 6.67413 3.85331i 0.272926 0.157574i
\(599\) 26.6548 15.3892i 1.08909 0.628785i 0.155754 0.987796i \(-0.450219\pi\)
0.933333 + 0.359011i \(0.116886\pi\)
\(600\) 0 0
\(601\) 0.786931 0.454335i 0.0320996 0.0185327i −0.483864 0.875143i \(-0.660767\pi\)
0.515964 + 0.856610i \(0.327434\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.27592 14.3343i −0.336742 0.583255i
\(605\) 3.86828 0.157268
\(606\) 0 0
\(607\) 44.7773i 1.81746i 0.417389 + 0.908728i \(0.362945\pi\)
−0.417389 + 0.908728i \(0.637055\pi\)
\(608\) −3.17861 + 5.50552i −0.128910 + 0.223278i
\(609\) 0 0
\(610\) −0.908744 1.57399i −0.0367940 0.0637290i
\(611\) 7.22442 4.17102i 0.292269 0.168741i
\(612\) 0 0
\(613\) −9.07402 + 15.7167i −0.366496 + 0.634790i −0.989015 0.147815i \(-0.952776\pi\)
0.622519 + 0.782605i \(0.286109\pi\)
\(614\) 0.326864 0.566145i 0.0131912 0.0228478i
\(615\) 0 0
\(616\) 0 0
\(617\) 19.7393 + 11.3965i 0.794674 + 0.458805i 0.841605 0.540093i \(-0.181611\pi\)
−0.0469315 + 0.998898i \(0.514944\pi\)
\(618\) 0 0
\(619\) 44.3668i 1.78325i 0.452772 + 0.891626i \(0.350435\pi\)
−0.452772 + 0.891626i \(0.649565\pi\)
\(620\) 2.00836 + 1.15953i 0.0806577 + 0.0465677i
\(621\) 0 0
\(622\) 9.24493i 0.370688i
\(623\) 0 0
\(624\) 0 0
\(625\) 23.0021 0.920086
\(626\) −3.08207 5.33830i −0.123184 0.213361i
\(627\) 0 0
\(628\) 2.45480 + 1.41728i 0.0979571 + 0.0565555i
\(629\) 25.7829 1.02803
\(630\) 0 0
\(631\) −32.5707 −1.29662 −0.648310 0.761377i \(-0.724524\pi\)
−0.648310 + 0.761377i \(0.724524\pi\)
\(632\) −7.23623 4.17784i −0.287842 0.166186i
\(633\) 0 0
\(634\) −10.3274 17.8876i −0.410154 0.710408i
\(635\) −0.612018 −0.0242872
\(636\) 0 0
\(637\) 0 0
\(638\) 1.22442i 0.0484751i
\(639\) 0 0
\(640\) −0.317483 0.183299i −0.0125496 0.00724553i
\(641\) 11.8091i 0.466433i 0.972425 + 0.233216i \(0.0749250\pi\)
−0.972425 + 0.233216i \(0.925075\pi\)
\(642\) 0 0
\(643\) −25.3714 14.6482i −1.00055 0.577668i −0.0921392 0.995746i \(-0.529370\pi\)
−0.908411 + 0.418078i \(0.862704\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 15.8583 27.4674i 0.623936 1.08069i
\(647\) 14.0841 24.3945i 0.553705 0.959045i −0.444298 0.895879i \(-0.646547\pi\)
0.998003 0.0631660i \(-0.0201198\pi\)
\(648\) 0 0
\(649\) 5.05957 2.92114i 0.198605 0.114665i
\(650\) −2.43661 4.22033i −0.0955717 0.165535i
\(651\) 0 0
\(652\) 12.3640 21.4151i 0.484213 0.838682i
\(653\) 45.0974i 1.76480i 0.470502 + 0.882399i \(0.344073\pi\)
−0.470502 + 0.882399i \(0.655927\pi\)
\(654\) 0 0
\(655\) −4.96086 −0.193837
\(656\) −2.15928 3.73998i −0.0843057 0.146022i
\(657\) 0 0
\(658\) 0 0
\(659\) −27.5435 + 15.9022i −1.07294 + 0.619463i −0.928984 0.370121i \(-0.879316\pi\)
−0.143958 + 0.989584i \(0.545983\pi\)
\(660\) 0 0
\(661\) 17.1234 9.88619i 0.666022 0.384528i −0.128546 0.991704i \(-0.541031\pi\)
0.794568 + 0.607175i \(0.207698\pi\)
\(662\) −9.27631 + 5.35568i −0.360534 + 0.208154i
\(663\) 0 0
\(664\) −14.7348 + 8.50712i −0.571820 + 0.330140i
\(665\) 0 0
\(666\) 0 0
\(667\) 7.03663 + 12.1878i 0.272459 + 0.471913i
\(668\) −19.3484 −0.748614
\(669\) 0 0
\(670\) 3.99252i 0.154245i
\(671\) −1.65948 + 2.87430i −0.0640635 + 0.110961i
\(672\) 0 0
\(673\) −0.945369 1.63743i −0.0364413 0.0631182i 0.847230 0.531227i \(-0.178269\pi\)
−0.883671 + 0.468109i \(0.844936\pi\)
\(674\) 6.54008 3.77592i 0.251914 0.145443i
\(675\) 0 0
\(676\) 5.99843 10.3896i 0.230709 0.399600i
\(677\) 10.5661 18.3010i 0.406088 0.703364i −0.588360 0.808599i \(-0.700226\pi\)
0.994447 + 0.105235i \(0.0335595\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.58394 + 0.914490i 0.0607415 + 0.0350691i
\(681\) 0 0
\(682\) 4.23488i 0.162162i
\(683\) −7.55150 4.35986i −0.288950 0.166825i 0.348518 0.937302i \(-0.386685\pi\)
−0.637468 + 0.770477i \(0.720018\pi\)
\(684\) 0 0
\(685\) 3.29517i 0.125902i
\(686\) 0 0
\(687\) 0 0
\(688\) −4.49843 −0.171501
\(689\) 0 0
\(690\) 0 0
\(691\) −15.7071 9.06850i −0.597526 0.344982i 0.170542 0.985350i \(-0.445448\pi\)
−0.768068 + 0.640369i \(0.778782\pi\)
\(692\) −4.83654 −0.183858
\(693\) 0 0
\(694\) −10.9320 −0.414972
\(695\) 2.95235 + 1.70454i 0.111989 + 0.0646568i
\(696\) 0 0
\(697\) 10.7728 + 18.6590i 0.408048 + 0.706760i
\(698\) −1.18429 −0.0448260
\(699\) 0 0
\(700\) 0 0
\(701\) 35.6167i 1.34523i −0.739995 0.672613i \(-0.765172\pi\)
0.739995 0.672613i \(-0.234828\pi\)
\(702\) 0 0
\(703\) 28.4519 + 16.4267i 1.07308 + 0.619545i
\(704\) 0.669453i 0.0252310i
\(705\) 0 0
\(706\) −29.0832 16.7912i −1.09456 0.631946i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.80385 3.12436i 0.0677449 0.117338i −0.830163 0.557520i \(-0.811753\pi\)
0.897908 + 0.440183i \(0.145086\pi\)
\(710\) 1.00786 1.74566i 0.0378242 0.0655135i
\(711\) 0 0
\(712\) 9.27628 5.35566i 0.347643 0.200712i
\(713\) −24.3375 42.1538i −0.911447 1.57867i
\(714\) 0 0
\(715\) 0.122902 0.212873i 0.00459628 0.00796099i
\(716\) 3.65796i 0.136704i
\(717\) 0 0
\(718\) 10.1281 0.377978
\(719\) 12.8915 + 22.3287i 0.480770 + 0.832718i 0.999757 0.0220642i \(-0.00702381\pi\)
−0.518986 + 0.854782i \(0.673690\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 18.5453 10.7072i 0.690186 0.398479i
\(723\) 0 0
\(724\) 4.90860 2.83398i 0.182427 0.105324i
\(725\) 7.70685 4.44955i 0.286225 0.165252i
\(726\) 0 0
\(727\) −1.32423 + 0.764544i −0.0491129 + 0.0283554i −0.524355 0.851499i \(-0.675694\pi\)
0.475242 + 0.879855i \(0.342360\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0.746603 + 1.29315i 0.0276330 + 0.0478618i
\(731\) 22.4430 0.830083
\(732\) 0 0
\(733\) 20.7739i 0.767303i −0.923478 0.383651i \(-0.874666\pi\)
0.923478 0.383651i \(-0.125334\pi\)
\(734\) −9.00104 + 15.5903i −0.332234 + 0.575447i
\(735\) 0 0
\(736\) 3.84729 + 6.66371i 0.141813 + 0.245628i
\(737\) 6.31405 3.64542i 0.232581 0.134281i
\(738\) 0 0
\(739\) 5.93544 10.2805i 0.218339 0.378174i −0.735961 0.677023i \(-0.763270\pi\)
0.954300 + 0.298850i \(0.0966029\pi\)
\(740\) −0.947269 + 1.64072i −0.0348223 + 0.0603140i
\(741\) 0 0
\(742\) 0 0
\(743\) 37.5906 + 21.7029i 1.37907 + 0.796204i 0.992047 0.125868i \(-0.0401716\pi\)
0.387019 + 0.922072i \(0.373505\pi\)
\(744\) 0 0
\(745\) 1.03825i 0.0380384i
\(746\) 14.2106 + 8.20451i 0.520288 + 0.300389i
\(747\) 0 0
\(748\) 3.33994i 0.122120i
\(749\) 0 0
\(750\) 0 0
\(751\) 2.31383 0.0844327 0.0422164 0.999108i \(-0.486558\pi\)
0.0422164 + 0.999108i \(0.486558\pi\)
\(752\) 4.16450 + 7.21313i 0.151864 + 0.263036i
\(753\) 0 0
\(754\) −1.58642 0.915921i −0.0577741 0.0333559i
\(755\) −6.06787 −0.220832
\(756\) 0 0
\(757\) −15.0946 −0.548624 −0.274312 0.961641i \(-0.588450\pi\)
−0.274312 + 0.961641i \(0.588450\pi\)
\(758\) −2.52336 1.45686i −0.0916525 0.0529156i
\(759\) 0 0
\(760\) 1.16527 + 2.01831i 0.0422689 + 0.0732119i
\(761\) −23.3379 −0.845998 −0.422999 0.906130i \(-0.639023\pi\)
−0.422999 + 0.906130i \(0.639023\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 27.3777i 0.990490i
\(765\) 0 0
\(766\) 7.42567 + 4.28721i 0.268300 + 0.154903i
\(767\) 8.74061i 0.315605i
\(768\) 0 0
\(769\) 15.8266 + 9.13748i 0.570721 + 0.329506i 0.757437 0.652908i \(-0.226451\pi\)
−0.186716 + 0.982414i \(0.559784\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.01413 + 8.68473i −0.180463 + 0.312570i
\(773\) 0.219254 0.379758i 0.00788600 0.0136590i −0.862055 0.506814i \(-0.830823\pi\)
0.869941 + 0.493155i \(0.164156\pi\)
\(774\) 0 0
\(775\) −26.6556 + 15.3896i −0.957497 + 0.552811i
\(776\) 8.60787 + 14.9093i 0.309004 + 0.535211i
\(777\) 0 0
\(778\) −17.7770 + 30.7906i −0.637335 + 1.10390i
\(779\) 27.4541i 0.983644i
\(780\) 0 0
\(781\) −3.68095 −0.131715
\(782\) −19.1944 33.2456i −0.686390 1.18886i
\(783\) 0 0
\(784\) 0 0
\(785\) 0.899924 0.519571i 0.0321197 0.0185443i
\(786\) 0 0
\(787\) −33.1317 + 19.1286i −1.18102 + 0.681861i −0.956250 0.292551i \(-0.905496\pi\)
−0.224769 + 0.974412i \(0.572163\pi\)
\(788\) −16.3037 + 9.41292i −0.580794 + 0.335322i
\(789\) 0 0
\(790\) −2.65279 + 1.53159i −0.0943820 + 0.0544915i
\(791\) 0 0
\(792\) 0 0
\(793\) −2.48274