Properties

Label 2646.2.t.a.2285.2
Level $2646$
Weight $2$
Character 2646.2285
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} + 9 x^{12} + 54 x^{10} - 288 x^{8} + 486 x^{6} + 729 x^{4} - 4374 x^{2} + 6561\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2285.2
Root \(1.40917 - 1.00709i\) of defining polynomial
Character \(\chi\) \(=\) 2646.2285
Dual form 2646.2.t.a.1979.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} -2.34936 q^{5} -1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} -2.34936 q^{5} -1.00000i q^{8} +(2.03460 + 1.17468i) q^{10} +5.67667i q^{11} +(-1.48943 - 0.859925i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(0.884414 - 1.53185i) q^{17} +(-0.986680 + 0.569660i) q^{19} +(-1.17468 - 2.03460i) q^{20} +(2.83834 - 4.91614i) q^{22} -3.67509i q^{23} +0.519482 q^{25} +(0.859925 + 1.48943i) q^{26} +(-3.59886 + 2.07781i) q^{29} +(-7.24879 + 4.18509i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-1.53185 + 0.884414i) q^{34} +(4.59886 + 7.96547i) q^{37} +1.13932 q^{38} +2.34936i q^{40} +(3.99709 - 6.92317i) q^{41} +(1.76053 + 3.04933i) q^{43} +(-4.91614 + 2.83834i) q^{44} +(-1.83755 + 3.18272i) q^{46} +(5.90494 - 10.2277i) q^{47} +(-0.449885 - 0.259741i) q^{50} -1.71985i q^{52} -13.3365i q^{55} +4.15561 q^{58} +(1.11483 + 1.93094i) q^{59} +(7.79396 + 4.49985i) q^{61} +8.37019 q^{62} -1.00000 q^{64} +(3.49921 + 2.02027i) q^{65} +(-5.43562 - 9.41477i) q^{67} +1.76883 q^{68} +4.52106i q^{71} +(-4.62660 - 2.67117i) q^{73} -9.19773i q^{74} +(-0.986680 - 0.569660i) q^{76} +(6.51422 - 11.2830i) q^{79} +(1.17468 - 2.03460i) q^{80} +(-6.92317 + 3.99709i) q^{82} +(-6.27298 - 10.8651i) q^{83} +(-2.07781 + 3.59886i) q^{85} -3.52106i q^{86} +5.67667 q^{88} +(0.580529 + 1.00551i) q^{89} +(3.18272 - 1.83755i) q^{92} +(-10.2277 + 5.90494i) q^{94} +(2.31806 - 1.33834i) q^{95} +(3.97536 - 2.29517i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + O(q^{10}) \) \( 16 q + 8 q^{4} - 8 q^{16} + 16 q^{25} + 12 q^{29} + 4 q^{37} + 4 q^{43} - 12 q^{44} - 12 q^{46} - 60 q^{50} + 24 q^{58} - 16 q^{64} + 84 q^{65} - 28 q^{67} - 4 q^{79} - 12 q^{85} + 48 q^{92} + 12 q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.34936 −1.05066 −0.525332 0.850897i \(-0.676059\pi\)
−0.525332 + 0.850897i \(0.676059\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.03460 + 1.17468i 0.643398 + 0.371466i
\(11\) 5.67667i 1.71158i 0.517323 + 0.855790i \(0.326929\pi\)
−0.517323 + 0.855790i \(0.673071\pi\)
\(12\) 0 0
\(13\) −1.48943 0.859925i −0.413094 0.238500i 0.279024 0.960284i \(-0.409989\pi\)
−0.692118 + 0.721784i \(0.743322\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.884414 1.53185i 0.214502 0.371528i −0.738616 0.674126i \(-0.764520\pi\)
0.953118 + 0.302598i \(0.0978538\pi\)
\(18\) 0 0
\(19\) −0.986680 + 0.569660i −0.226360 + 0.130689i −0.608892 0.793253i \(-0.708386\pi\)
0.382532 + 0.923942i \(0.375052\pi\)
\(20\) −1.17468 2.03460i −0.262666 0.454951i
\(21\) 0 0
\(22\) 2.83834 4.91614i 0.605135 1.04812i
\(23\) 3.67509i 0.766310i −0.923684 0.383155i \(-0.874838\pi\)
0.923684 0.383155i \(-0.125162\pi\)
\(24\) 0 0
\(25\) 0.519482 0.103896
\(26\) 0.859925 + 1.48943i 0.168645 + 0.292102i
\(27\) 0 0
\(28\) 0 0
\(29\) −3.59886 + 2.07781i −0.668292 + 0.385839i −0.795429 0.606046i \(-0.792755\pi\)
0.127137 + 0.991885i \(0.459421\pi\)
\(30\) 0 0
\(31\) −7.24879 + 4.18509i −1.30192 + 0.751665i −0.980734 0.195350i \(-0.937416\pi\)
−0.321188 + 0.947015i \(0.604082\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −1.53185 + 0.884414i −0.262710 + 0.151676i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.59886 + 7.96547i 0.756049 + 1.30951i 0.944851 + 0.327500i \(0.106206\pi\)
−0.188803 + 0.982015i \(0.560461\pi\)
\(38\) 1.13932 0.184822
\(39\) 0 0
\(40\) 2.34936i 0.371466i
\(41\) 3.99709 6.92317i 0.624241 1.08122i −0.364446 0.931225i \(-0.618742\pi\)
0.988687 0.149993i \(-0.0479251\pi\)
\(42\) 0 0
\(43\) 1.76053 + 3.04933i 0.268478 + 0.465018i 0.968469 0.249134i \(-0.0801459\pi\)
−0.699991 + 0.714152i \(0.746813\pi\)
\(44\) −4.91614 + 2.83834i −0.741136 + 0.427895i
\(45\) 0 0
\(46\) −1.83755 + 3.18272i −0.270931 + 0.469267i
\(47\) 5.90494 10.2277i 0.861324 1.49186i −0.00932669 0.999957i \(-0.502969\pi\)
0.870651 0.491901i \(-0.163698\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −0.449885 0.259741i −0.0636233 0.0367329i
\(51\) 0 0
\(52\) 1.71985i 0.238500i
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0 0
\(55\) 13.3365i 1.79830i
\(56\) 0 0
\(57\) 0 0
\(58\) 4.15561 0.545658
\(59\) 1.11483 + 1.93094i 0.145139 + 0.251387i 0.929425 0.369012i \(-0.120304\pi\)
−0.784286 + 0.620399i \(0.786971\pi\)
\(60\) 0 0
\(61\) 7.79396 + 4.49985i 0.997915 + 0.576146i 0.907631 0.419770i \(-0.137889\pi\)
0.0902842 + 0.995916i \(0.471222\pi\)
\(62\) 8.37019 1.06301
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 3.49921 + 2.02027i 0.434024 + 0.250584i
\(66\) 0 0
\(67\) −5.43562 9.41477i −0.664067 1.15020i −0.979537 0.201262i \(-0.935496\pi\)
0.315470 0.948935i \(-0.397838\pi\)
\(68\) 1.76883 0.214502
\(69\) 0 0
\(70\) 0 0
\(71\) 4.52106i 0.536551i 0.963342 + 0.268276i \(0.0864538\pi\)
−0.963342 + 0.268276i \(0.913546\pi\)
\(72\) 0 0
\(73\) −4.62660 2.67117i −0.541503 0.312637i 0.204185 0.978932i \(-0.434546\pi\)
−0.745688 + 0.666295i \(0.767879\pi\)
\(74\) 9.19773i 1.06921i
\(75\) 0 0
\(76\) −0.986680 0.569660i −0.113180 0.0653445i
\(77\) 0 0
\(78\) 0 0
\(79\) 6.51422 11.2830i 0.732907 1.26943i −0.222729 0.974880i \(-0.571497\pi\)
0.955636 0.294551i \(-0.0951701\pi\)
\(80\) 1.17468 2.03460i 0.131333 0.227476i
\(81\) 0 0
\(82\) −6.92317 + 3.99709i −0.764536 + 0.441405i
\(83\) −6.27298 10.8651i −0.688549 1.19260i −0.972307 0.233707i \(-0.924915\pi\)
0.283758 0.958896i \(-0.408419\pi\)
\(84\) 0 0
\(85\) −2.07781 + 3.59886i −0.225370 + 0.390352i
\(86\) 3.52106i 0.379686i
\(87\) 0 0
\(88\) 5.67667 0.605135
\(89\) 0.580529 + 1.00551i 0.0615360 + 0.106583i 0.895152 0.445761i \(-0.147067\pi\)
−0.833616 + 0.552344i \(0.813733\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.18272 1.83755i 0.331822 0.191577i
\(93\) 0 0
\(94\) −10.2277 + 5.90494i −1.05490 + 0.609048i
\(95\) 2.31806 1.33834i 0.237828 0.137310i
\(96\) 0 0
\(97\) 3.97536 2.29517i 0.403636 0.233039i −0.284416 0.958701i \(-0.591800\pi\)
0.688052 + 0.725662i \(0.258466\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.259741 + 0.449885i 0.0259741 + 0.0449885i
\(101\) −6.62310 −0.659023 −0.329511 0.944152i \(-0.606884\pi\)
−0.329511 + 0.944152i \(0.606884\pi\)
\(102\) 0 0
\(103\) 5.85977i 0.577381i −0.957423 0.288690i \(-0.906780\pi\)
0.957423 0.288690i \(-0.0932198\pi\)
\(104\) −0.859925 + 1.48943i −0.0843225 + 0.146051i
\(105\) 0 0
\(106\) 0 0
\(107\) −4.08386 + 2.35782i −0.394802 + 0.227939i −0.684239 0.729258i \(-0.739865\pi\)
0.289437 + 0.957197i \(0.406532\pi\)
\(108\) 0 0
\(109\) −2.11835 + 3.66908i −0.202901 + 0.351435i −0.949462 0.313882i \(-0.898370\pi\)
0.746561 + 0.665317i \(0.231704\pi\)
\(110\) −6.66826 + 11.5498i −0.635794 + 1.10123i
\(111\) 0 0
\(112\) 0 0
\(113\) −5.91693 3.41614i −0.556618 0.321363i 0.195169 0.980770i \(-0.437474\pi\)
−0.751787 + 0.659406i \(0.770808\pi\)
\(114\) 0 0
\(115\) 8.63411i 0.805135i
\(116\) −3.59886 2.07781i −0.334146 0.192919i
\(117\) 0 0
\(118\) 2.22966i 0.205257i
\(119\) 0 0
\(120\) 0 0
\(121\) −21.2246 −1.92951
\(122\) −4.49985 7.79396i −0.407397 0.705632i
\(123\) 0 0
\(124\) −7.24879 4.18509i −0.650961 0.375832i
\(125\) 10.5263 0.941504
\(126\) 0 0
\(127\) −6.67667 −0.592459 −0.296229 0.955117i \(-0.595729\pi\)
−0.296229 + 0.955117i \(0.595729\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −2.02027 3.49921i −0.177189 0.306901i
\(131\) −7.47305 −0.652923 −0.326462 0.945210i \(-0.605856\pi\)
−0.326462 + 0.945210i \(0.605856\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.8712i 0.939133i
\(135\) 0 0
\(136\) −1.53185 0.884414i −0.131355 0.0758379i
\(137\) 7.98789i 0.682452i −0.939981 0.341226i \(-0.889158\pi\)
0.939981 0.341226i \(-0.110842\pi\)
\(138\) 0 0
\(139\) −17.9792 10.3803i −1.52498 0.880446i −0.999562 0.0295993i \(-0.990577\pi\)
−0.525415 0.850846i \(-0.676090\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.26053 3.91535i 0.189699 0.328569i
\(143\) 4.88151 8.45502i 0.408212 0.707044i
\(144\) 0 0
\(145\) 8.45502 4.88151i 0.702151 0.405387i
\(146\) 2.67117 + 4.62660i 0.221068 + 0.382900i
\(147\) 0 0
\(148\) −4.59886 + 7.96547i −0.378024 + 0.654757i
\(149\) 1.19773i 0.0981218i −0.998796 0.0490609i \(-0.984377\pi\)
0.998796 0.0490609i \(-0.0156228\pi\)
\(150\) 0 0
\(151\) 15.2246 1.23896 0.619480 0.785013i \(-0.287344\pi\)
0.619480 + 0.785013i \(0.287344\pi\)
\(152\) 0.569660 + 0.986680i 0.0462055 + 0.0800303i
\(153\) 0 0
\(154\) 0 0
\(155\) 17.0300 9.83228i 1.36788 0.789748i
\(156\) 0 0
\(157\) 8.68358 5.01347i 0.693025 0.400118i −0.111719 0.993740i \(-0.535636\pi\)
0.804744 + 0.593621i \(0.202302\pi\)
\(158\) −11.2830 + 6.51422i −0.897624 + 0.518243i
\(159\) 0 0
\(160\) −2.03460 + 1.17468i −0.160850 + 0.0928665i
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00158 10.3950i −0.470080 0.814202i 0.529335 0.848413i \(-0.322442\pi\)
−0.999415 + 0.0342109i \(0.989108\pi\)
\(164\) 7.99419 0.624241
\(165\) 0 0
\(166\) 12.5460i 0.973756i
\(167\) 8.57472 14.8518i 0.663532 1.14927i −0.316150 0.948709i \(-0.602390\pi\)
0.979681 0.200561i \(-0.0642765\pi\)
\(168\) 0 0
\(169\) −5.02106 8.69673i −0.386235 0.668979i
\(170\) 3.59886 2.07781i 0.276020 0.159360i
\(171\) 0 0
\(172\) −1.76053 + 3.04933i −0.134239 + 0.232509i
\(173\) 0.993738 1.72121i 0.0755525 0.130861i −0.825774 0.564001i \(-0.809261\pi\)
0.901326 + 0.433140i \(0.142595\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.91614 2.83834i −0.370568 0.213948i
\(177\) 0 0
\(178\) 1.16106i 0.0870250i
\(179\) 7.19773 + 4.15561i 0.537984 + 0.310605i 0.744261 0.667889i \(-0.232802\pi\)
−0.206278 + 0.978493i \(0.566135\pi\)
\(180\) 0 0
\(181\) 15.4541i 1.14870i −0.818611 0.574348i \(-0.805256\pi\)
0.818611 0.574348i \(-0.194744\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.67509 −0.270931
\(185\) −10.8044 18.7137i −0.794354 1.37586i
\(186\) 0 0
\(187\) 8.69581 + 5.02053i 0.635901 + 0.367137i
\(188\) 11.8099 0.861324
\(189\) 0 0
\(190\) −2.67667 −0.194186
\(191\) 10.6851 + 6.16904i 0.773146 + 0.446376i 0.833996 0.551771i \(-0.186048\pi\)
−0.0608498 + 0.998147i \(0.519381\pi\)
\(192\) 0 0
\(193\) −2.19694 3.80521i −0.158139 0.273905i 0.776058 0.630661i \(-0.217216\pi\)
−0.934198 + 0.356756i \(0.883883\pi\)
\(194\) −4.59035 −0.329568
\(195\) 0 0
\(196\) 0 0
\(197\) 10.8865i 0.775632i −0.921737 0.387816i \(-0.873230\pi\)
0.921737 0.387816i \(-0.126770\pi\)
\(198\) 0 0
\(199\) −23.8733 13.7832i −1.69233 0.977068i −0.952629 0.304135i \(-0.901633\pi\)
−0.739703 0.672933i \(-0.765034\pi\)
\(200\) 0.519482i 0.0367329i
\(201\) 0 0
\(202\) 5.73577 + 3.31155i 0.403567 + 0.233000i
\(203\) 0 0
\(204\) 0 0
\(205\) −9.39060 + 16.2650i −0.655868 + 1.13600i
\(206\) −2.92989 + 5.07471i −0.204135 + 0.353572i
\(207\) 0 0
\(208\) 1.48943 0.859925i 0.103274 0.0596250i
\(209\) −3.23377 5.60106i −0.223685 0.387433i
\(210\) 0 0
\(211\) 5.15561 8.92978i 0.354927 0.614751i −0.632179 0.774823i \(-0.717839\pi\)
0.987105 + 0.160071i \(0.0511724\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 4.71563 0.322354
\(215\) −4.13611 7.16396i −0.282081 0.488578i
\(216\) 0 0
\(217\) 0 0
\(218\) 3.66908 2.11835i 0.248502 0.143473i
\(219\) 0 0
\(220\) 11.5498 6.66826i 0.778686 0.449574i
\(221\) −2.63455 + 1.52106i −0.177219 + 0.102318i
\(222\) 0 0
\(223\) 6.24329 3.60456i 0.418081 0.241379i −0.276175 0.961107i \(-0.589067\pi\)
0.694256 + 0.719728i \(0.255733\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.41614 + 5.91693i 0.227238 + 0.393588i
\(227\) −12.7560 −0.846645 −0.423323 0.905979i \(-0.639136\pi\)
−0.423323 + 0.905979i \(0.639136\pi\)
\(228\) 0 0
\(229\) 4.49418i 0.296984i 0.988914 + 0.148492i \(0.0474419\pi\)
−0.988914 + 0.148492i \(0.952558\pi\)
\(230\) 4.31705 7.47736i 0.284658 0.493042i
\(231\) 0 0
\(232\) 2.07781 + 3.59886i 0.136415 + 0.236277i
\(233\) −1.86545 + 1.07702i −0.122210 + 0.0705577i −0.559859 0.828588i \(-0.689145\pi\)
0.437649 + 0.899146i \(0.355811\pi\)
\(234\) 0 0
\(235\) −13.8728 + 24.0284i −0.904963 + 1.56744i
\(236\) −1.11483 + 1.93094i −0.0725693 + 0.125694i
\(237\) 0 0
\(238\) 0 0
\(239\) 8.78317 + 5.07096i 0.568136 + 0.328013i 0.756404 0.654104i \(-0.226954\pi\)
−0.188269 + 0.982118i \(0.560288\pi\)
\(240\) 0 0
\(241\) 10.5481i 0.679461i −0.940523 0.339731i \(-0.889664\pi\)
0.940523 0.339731i \(-0.110336\pi\)
\(242\) 18.3810 + 10.6123i 1.18158 + 0.682184i
\(243\) 0 0
\(244\) 8.99970i 0.576146i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.95946 0.124677
\(248\) 4.18509 + 7.24879i 0.265754 + 0.460299i
\(249\) 0 0
\(250\) −9.11608 5.26317i −0.576551 0.332872i
\(251\) −29.3005 −1.84943 −0.924714 0.380662i \(-0.875696\pi\)
−0.924714 + 0.380662i \(0.875696\pi\)
\(252\) 0 0
\(253\) 20.8623 1.31160
\(254\) 5.78217 + 3.33834i 0.362805 + 0.209466i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.62860 0.475859 0.237930 0.971282i \(-0.423531\pi\)
0.237930 + 0.971282i \(0.423531\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.04054i 0.250584i
\(261\) 0 0
\(262\) 6.47185 + 3.73653i 0.399832 + 0.230843i
\(263\) 12.1856i 0.751398i 0.926742 + 0.375699i \(0.122597\pi\)
−0.926742 + 0.375699i \(0.877403\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 5.43562 9.41477i 0.332034 0.575099i
\(269\) −1.38717 + 2.40264i −0.0845771 + 0.146492i −0.905211 0.424963i \(-0.860287\pi\)
0.820634 + 0.571454i \(0.193621\pi\)
\(270\) 0 0
\(271\) −2.77815 + 1.60396i −0.168760 + 0.0974338i −0.582001 0.813188i \(-0.697730\pi\)
0.413241 + 0.910622i \(0.364397\pi\)
\(272\) 0.884414 + 1.53185i 0.0536255 + 0.0928821i
\(273\) 0 0
\(274\) −3.99395 + 6.91772i −0.241283 + 0.417915i
\(275\) 2.94893i 0.177827i
\(276\) 0 0
\(277\) 10.0811 0.605714 0.302857 0.953036i \(-0.402060\pi\)
0.302857 + 0.953036i \(0.402060\pi\)
\(278\) 10.3803 + 17.9792i 0.622569 + 1.07832i
\(279\) 0 0
\(280\) 0 0
\(281\) −4.21999 + 2.43641i −0.251743 + 0.145344i −0.620562 0.784157i \(-0.713096\pi\)
0.368819 + 0.929501i \(0.379762\pi\)
\(282\) 0 0
\(283\) −2.44030 + 1.40891i −0.145061 + 0.0837508i −0.570774 0.821107i \(-0.693357\pi\)
0.425713 + 0.904858i \(0.360023\pi\)
\(284\) −3.91535 + 2.26053i −0.232333 + 0.134138i
\(285\) 0 0
\(286\) −8.45502 + 4.88151i −0.499956 + 0.288650i
\(287\) 0 0
\(288\) 0 0
\(289\) 6.93562 + 12.0129i 0.407978 + 0.706638i
\(290\) −9.76302 −0.573304
\(291\) 0 0
\(292\) 5.34234i 0.312637i
\(293\) −4.05694 + 7.02683i −0.237009 + 0.410512i −0.959855 0.280498i \(-0.909500\pi\)
0.722846 + 0.691010i \(0.242834\pi\)
\(294\) 0 0
\(295\) −2.61914 4.53648i −0.152492 0.264124i
\(296\) 7.96547 4.59886i 0.462983 0.267304i
\(297\) 0 0
\(298\) −0.598865 + 1.03726i −0.0346913 + 0.0600871i
\(299\) −3.16030 + 5.47381i −0.182765 + 0.316558i
\(300\) 0 0
\(301\) 0 0
\(302\) −13.1849 7.61229i −0.758705 0.438038i
\(303\) 0 0
\(304\) 1.13932i 0.0653445i
\(305\) −18.3108 10.5718i −1.04847 0.605337i
\(306\) 0 0
\(307\) 10.8996i 0.622074i 0.950398 + 0.311037i \(0.100676\pi\)
−0.950398 + 0.311037i \(0.899324\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −19.6646 −1.11687
\(311\) 4.11819 + 7.13291i 0.233521 + 0.404470i 0.958842 0.283941i \(-0.0916419\pi\)
−0.725321 + 0.688411i \(0.758309\pi\)
\(312\) 0 0
\(313\) −29.2736 16.9011i −1.65464 0.955308i −0.975127 0.221648i \(-0.928857\pi\)
−0.679516 0.733661i \(-0.737810\pi\)
\(314\) −10.0269 −0.565853
\(315\) 0 0
\(316\) 13.0284 0.732907
\(317\) 5.82913 + 3.36545i 0.327396 + 0.189022i 0.654685 0.755902i \(-0.272801\pi\)
−0.327288 + 0.944925i \(0.606135\pi\)
\(318\) 0 0
\(319\) −11.7950 20.4296i −0.660394 1.14384i
\(320\) 2.34936 0.131333
\(321\) 0 0
\(322\) 0 0
\(323\) 2.01526i 0.112132i
\(324\) 0 0
\(325\) −0.773734 0.446715i −0.0429190 0.0247793i
\(326\) 12.0032i 0.664793i
\(327\) 0 0
\(328\) −6.92317 3.99709i −0.382268 0.220703i
\(329\) 0 0
\(330\) 0 0
\(331\) 16.0284 27.7621i 0.881002 1.52594i 0.0307744 0.999526i \(-0.490203\pi\)
0.850228 0.526415i \(-0.176464\pi\)
\(332\) 6.27298 10.8651i 0.344275 0.596301i
\(333\) 0 0
\(334\) −14.8518 + 8.57472i −0.812657 + 0.469188i
\(335\) 12.7702 + 22.1187i 0.697712 + 1.20847i
\(336\) 0 0
\(337\) −12.1123 + 20.9791i −0.659799 + 1.14280i 0.320869 + 0.947124i \(0.396025\pi\)
−0.980668 + 0.195681i \(0.937308\pi\)
\(338\) 10.0421i 0.546219i
\(339\) 0 0
\(340\) −4.15561 −0.225370
\(341\) −23.7574 41.1490i −1.28654 2.22834i
\(342\) 0 0
\(343\) 0 0
\(344\) 3.04933 1.76053i 0.164409 0.0949214i
\(345\) 0 0
\(346\) −1.72121 + 0.993738i −0.0925326 + 0.0534237i
\(347\) 19.7453 11.3999i 1.05998 0.611981i 0.134554 0.990906i \(-0.457040\pi\)
0.925427 + 0.378926i \(0.123706\pi\)
\(348\) 0 0
\(349\) 2.46389 1.42253i 0.131889 0.0761461i −0.432604 0.901584i \(-0.642405\pi\)
0.564493 + 0.825438i \(0.309072\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.83834 + 4.91614i 0.151284 + 0.262031i
\(353\) 7.14424 0.380249 0.190125 0.981760i \(-0.439111\pi\)
0.190125 + 0.981760i \(0.439111\pi\)
\(354\) 0 0
\(355\) 10.6216i 0.563735i
\(356\) −0.580529 + 1.00551i −0.0307680 + 0.0532917i
\(357\) 0 0
\(358\) −4.15561 7.19773i −0.219631 0.380412i
\(359\) −10.0491 + 5.80186i −0.530372 + 0.306210i −0.741168 0.671320i \(-0.765728\pi\)
0.210796 + 0.977530i \(0.432394\pi\)
\(360\) 0 0
\(361\) −8.85097 + 15.3303i −0.465841 + 0.806860i
\(362\) −7.72706 + 13.3837i −0.406125 + 0.703429i
\(363\) 0 0
\(364\) 0 0
\(365\) 10.8695 + 6.27554i 0.568938 + 0.328477i
\(366\) 0 0
\(367\) 7.83493i 0.408980i −0.978869 0.204490i \(-0.934446\pi\)
0.978869 0.204490i \(-0.0655536\pi\)
\(368\) 3.18272 + 1.83755i 0.165911 + 0.0957887i
\(369\) 0 0
\(370\) 21.6088i 1.12339i
\(371\) 0 0
\(372\) 0 0
\(373\) 25.6677 1.32902 0.664512 0.747278i \(-0.268639\pi\)
0.664512 + 0.747278i \(0.268639\pi\)
\(374\) −5.02053 8.69581i −0.259605 0.449650i
\(375\) 0 0
\(376\) −10.2277 5.90494i −0.527451 0.304524i
\(377\) 7.14702 0.368091
\(378\) 0 0
\(379\) −15.1045 −0.775868 −0.387934 0.921687i \(-0.626811\pi\)
−0.387934 + 0.921687i \(0.626811\pi\)
\(380\) 2.31806 + 1.33834i 0.118914 + 0.0686551i
\(381\) 0 0
\(382\) −6.16904 10.6851i −0.315636 0.546697i
\(383\) −1.52664 −0.0780079 −0.0390040 0.999239i \(-0.512418\pi\)
−0.0390040 + 0.999239i \(0.512418\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.39388i 0.223643i
\(387\) 0 0
\(388\) 3.97536 + 2.29517i 0.201818 + 0.116520i
\(389\) 14.8897i 0.754936i −0.926023 0.377468i \(-0.876795\pi\)
0.926023 0.377468i \(-0.123205\pi\)
\(390\) 0 0
\(391\) −5.62969 3.25030i −0.284706 0.164375i
\(392\) 0 0
\(393\) 0 0
\(394\) −5.44325 + 9.42799i −0.274227 + 0.474975i
\(395\) −15.3042 + 26.5077i −0.770039 + 1.33375i
\(396\) 0 0
\(397\) 24.9302 14.3935i 1.25121 0.722388i 0.279862 0.960040i \(-0.409711\pi\)
0.971350 + 0.237653i \(0.0763780\pi\)
\(398\) 13.7832 + 23.8733i 0.690892 + 1.19666i
\(399\) 0 0
\(400\) −0.259741 + 0.449885i −0.0129871 + 0.0224942i
\(401\) 38.1735i 1.90629i −0.302507 0.953147i \(-0.597824\pi\)
0.302507 0.953147i \(-0.402176\pi\)
\(402\) 0 0
\(403\) 14.3955 0.717089
\(404\) −3.31155 5.73577i −0.164756 0.285365i
\(405\) 0 0
\(406\) 0 0
\(407\) −45.2173 + 26.1062i −2.24134 + 1.29404i
\(408\) 0 0
\(409\) 6.03355 3.48347i 0.298340 0.172247i −0.343357 0.939205i \(-0.611564\pi\)
0.641697 + 0.766958i \(0.278231\pi\)
\(410\) 16.2650 9.39060i 0.803271 0.463769i
\(411\) 0 0
\(412\) 5.07471 2.92989i 0.250013 0.144345i
\(413\) 0 0
\(414\) 0 0
\(415\) 14.7375 + 25.5261i 0.723435 + 1.25303i
\(416\) −1.71985 −0.0843225
\(417\) 0 0
\(418\) 6.46754i 0.316338i
\(419\) −17.4232 + 30.1778i −0.851177 + 1.47428i 0.0289690 + 0.999580i \(0.490778\pi\)
−0.880146 + 0.474702i \(0.842556\pi\)
\(420\) 0 0
\(421\) 2.84597 + 4.92936i 0.138704 + 0.240242i 0.927006 0.375046i \(-0.122373\pi\)
−0.788302 + 0.615288i \(0.789040\pi\)
\(422\) −8.92978 + 5.15561i −0.434695 + 0.250971i
\(423\) 0 0
\(424\) 0 0
\(425\) 0.459437 0.795769i 0.0222860 0.0386005i
\(426\) 0 0
\(427\) 0 0
\(428\) −4.08386 2.35782i −0.197401 0.113969i
\(429\) 0 0
\(430\) 8.27223i 0.398922i
\(431\) −26.2350 15.1468i −1.26370 0.729595i −0.289908 0.957055i \(-0.593625\pi\)
−0.973787 + 0.227460i \(0.926958\pi\)
\(432\) 0 0
\(433\) 23.6094i 1.13459i 0.823513 + 0.567297i \(0.192011\pi\)
−0.823513 + 0.567297i \(0.807989\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.23669 −0.202901
\(437\) 2.09355 + 3.62614i 0.100148 + 0.173462i
\(438\) 0 0
\(439\) 21.6681 + 12.5101i 1.03416 + 0.597075i 0.918175 0.396175i \(-0.129663\pi\)
0.115989 + 0.993250i \(0.462996\pi\)
\(440\) −13.3365 −0.635794
\(441\) 0 0
\(442\) 3.04212 0.144699
\(443\) −19.9446 11.5150i −0.947595 0.547094i −0.0552622 0.998472i \(-0.517599\pi\)
−0.892333 + 0.451377i \(0.850933\pi\)
\(444\) 0 0
\(445\) −1.36387 2.36229i −0.0646537 0.111983i
\(446\) −7.20913 −0.341362
\(447\) 0 0
\(448\) 0 0
\(449\) 15.9028i 0.750501i −0.926923 0.375251i \(-0.877557\pi\)
0.926923 0.375251i \(-0.122443\pi\)
\(450\) 0 0
\(451\) 39.3006 + 22.6902i 1.85059 + 1.06844i
\(452\) 6.83228i 0.321363i
\(453\) 0 0
\(454\) 11.0470 + 6.37800i 0.518462 + 0.299334i
\(455\) 0 0
\(456\) 0 0
\(457\) 2.83307 4.90702i 0.132525 0.229541i −0.792124 0.610360i \(-0.791025\pi\)
0.924649 + 0.380819i \(0.124358\pi\)
\(458\) 2.24709 3.89208i 0.105000 0.181865i
\(459\) 0 0
\(460\) −7.47736 + 4.31705i −0.348634 + 0.201284i
\(461\) −15.7292 27.2438i −0.732582 1.26887i −0.955776 0.294095i \(-0.904982\pi\)
0.223194 0.974774i \(-0.428352\pi\)
\(462\) 0 0
\(463\) 4.55148 7.88340i 0.211525 0.366373i −0.740667 0.671873i \(-0.765490\pi\)
0.952192 + 0.305500i \(0.0988236\pi\)
\(464\) 4.15561i 0.192919i
\(465\) 0 0
\(466\) 2.15403 0.0997837
\(467\) 15.1516 + 26.2433i 0.701132 + 1.21440i 0.968069 + 0.250682i \(0.0806549\pi\)
−0.266938 + 0.963714i \(0.586012\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 24.0284 13.8728i 1.10835 0.639906i
\(471\) 0 0
\(472\) 1.93094 1.11483i 0.0888788 0.0513142i
\(473\) −17.3100 + 9.99395i −0.795916 + 0.459522i
\(474\) 0 0
\(475\) −0.512563 + 0.295928i −0.0235180 + 0.0135781i
\(476\) 0 0
\(477\) 0 0
\(478\) −5.07096 8.78317i −0.231940 0.401733i
\(479\) 4.66286 0.213052 0.106526 0.994310i \(-0.466027\pi\)
0.106526 + 0.994310i \(0.466027\pi\)
\(480\) 0 0
\(481\) 15.8187i 0.721271i
\(482\) −5.27404 + 9.13490i −0.240226 + 0.416083i
\(483\) 0 0
\(484\) −10.6123 18.3810i −0.482377 0.835501i
\(485\) −9.33953 + 5.39218i −0.424086 + 0.244846i
\(486\) 0 0
\(487\) 9.74105 16.8720i 0.441409 0.764543i −0.556385 0.830924i \(-0.687812\pi\)
0.997794 + 0.0663816i \(0.0211455\pi\)
\(488\) 4.49985 7.79396i 0.203699 0.352816i
\(489\) 0 0
\(490\) 0 0
\(491\) 17.7437 + 10.2443i 0.800762 + 0.462320i 0.843737 0.536756i \(-0.180351\pi\)
−0.0429758 + 0.999076i \(0.513684\pi\)
\(492\) 0 0
\(493\) 7.35056i 0.331053i
\(494\) −1.69694 0.979729i −0.0763490 0.0440801i
\(495\) 0 0
\(496\) 8.37019i 0.375832i
\(497\) 0 0
\(498\) 0 0
\(499\) −10.2520 −0.458941 −0.229470 0.973316i \(-0.573699\pi\)
−0.229470 + 0.973316i \(0.573699\pi\)
\(500\) 5.26317 + 9.11608i 0.235376 + 0.407683i
\(501\) 0 0
\(502\) 25.3749 + 14.6502i 1.13254 + 0.653872i
\(503\) −14.5521 −0.648845 −0.324422 0.945912i \(-0.605170\pi\)
−0.324422 + 0.945912i \(0.605170\pi\)
\(504\) 0 0
\(505\) 15.5600 0.692412
\(506\) −18.0673 10.4311i −0.803188 0.463721i
\(507\) 0 0
\(508\) −3.33834 5.78217i −0.148115 0.256542i
\(509\) 33.3234 1.47703 0.738517 0.674235i \(-0.235527\pi\)
0.738517 + 0.674235i \(0.235527\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −6.60656 3.81430i −0.291403 0.168242i
\(515\) 13.7667i 0.606634i
\(516\) 0 0
\(517\) 58.0591 + 33.5204i 2.55343 + 1.47423i
\(518\) 0 0
\(519\) 0 0
\(520\) 2.02027 3.49921i 0.0885947 0.153451i
\(521\) 3.26963 5.66316i 0.143245 0.248108i −0.785472 0.618897i \(-0.787580\pi\)
0.928717 + 0.370790i \(0.120913\pi\)
\(522\) 0 0
\(523\) −0.681439 + 0.393429i −0.0297972 + 0.0172034i −0.514825 0.857296i \(-0.672143\pi\)
0.485027 + 0.874499i \(0.338810\pi\)
\(524\) −3.73653 6.47185i −0.163231 0.282724i
\(525\) 0 0
\(526\) 6.09281 10.5531i 0.265659 0.460135i
\(527\) 14.8054i 0.644934i
\(528\) 0 0
\(529\) 9.49369 0.412769
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11.9068 + 6.87440i −0.515741 + 0.297763i
\(534\) 0 0
\(535\) 9.59445 5.53936i 0.414804 0.239487i
\(536\) −9.41477 + 5.43562i −0.406656 + 0.234783i
\(537\) 0 0
\(538\) 2.40264 1.38717i 0.103585 0.0598050i
\(539\) 0 0
\(540\) 0 0
\(541\) −2.80227 4.85367i −0.120479 0.208676i 0.799478 0.600696i \(-0.205110\pi\)
−0.919957 + 0.392020i \(0.871776\pi\)
\(542\) 3.20793 0.137792
\(543\) 0 0
\(544\) 1.76883i 0.0758379i
\(545\) 4.97675 8.61999i 0.213181 0.369240i
\(546\) 0 0
\(547\) −6.91456 11.9764i −0.295645 0.512073i 0.679489 0.733685i \(-0.262201\pi\)
−0.975135 + 0.221612i \(0.928868\pi\)
\(548\) 6.91772 3.99395i 0.295510 0.170613i
\(549\) 0 0
\(550\) 1.47446 2.55385i 0.0628714 0.108896i
\(551\) 2.36729 4.10026i 0.100850 0.174677i
\(552\) 0 0
\(553\) 0 0
\(554\) −8.73047 5.04054i −0.370922 0.214152i
\(555\) 0 0
\(556\) 20.7606i 0.880446i
\(557\) 24.0957 + 13.9117i 1.02097 + 0.589456i 0.914384 0.404848i \(-0.132675\pi\)
0.106584 + 0.994304i \(0.466009\pi\)
\(558\) 0 0
\(559\) 6.05569i 0.256128i
\(560\) 0 0
\(561\) 0 0
\(562\) 4.87282 0.205548
\(563\) 12.2650 + 21.2436i 0.516909 + 0.895312i 0.999807 + 0.0196359i \(0.00625069\pi\)
−0.482898 + 0.875676i \(0.660416\pi\)
\(564\) 0 0
\(565\) 13.9010 + 8.02574i 0.584819 + 0.337645i
\(566\) 2.81781 0.118441
\(567\) 0 0
\(568\) 4.52106 0.189699
\(569\) −23.4762 13.5540i −0.984172 0.568212i −0.0806449 0.996743i \(-0.525698\pi\)
−0.903527 + 0.428531i \(0.859031\pi\)
\(570\) 0 0
\(571\) 14.9177 + 25.8382i 0.624287 + 1.08130i 0.988678 + 0.150051i \(0.0479438\pi\)
−0.364391 + 0.931246i \(0.618723\pi\)
\(572\) 9.76302 0.408212
\(573\) 0 0
\(574\) 0 0
\(575\) 1.90915i 0.0796169i
\(576\) 0 0
\(577\) 24.3930 + 14.0833i 1.01549 + 0.586296i 0.912796 0.408416i \(-0.133919\pi\)
0.102699 + 0.994712i \(0.467252\pi\)
\(578\) 13.8712i 0.576968i
\(579\) 0 0
\(580\) 8.45502 + 4.88151i 0.351076 + 0.202694i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −2.67117 + 4.62660i −0.110534 + 0.191450i
\(585\) 0 0
\(586\) 7.02683 4.05694i 0.290276 0.167591i
\(587\) 4.95928 + 8.58973i 0.204692 + 0.354536i 0.950034 0.312145i \(-0.101048\pi\)
−0.745343 + 0.666681i \(0.767714\pi\)
\(588\) 0 0
\(589\) 4.76816 8.25870i 0.196469 0.340294i
\(590\) 5.23827i 0.215656i
\(591\) 0 0
\(592\) −9.19773 −0.378024
\(593\) 2.34936 + 4.06921i 0.0964766 + 0.167102i 0.910224 0.414116i \(-0.135909\pi\)
−0.813747 + 0.581219i \(0.802576\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.03726 0.598865i 0.0424880 0.0245305i
\(597\) 0 0
\(598\) 5.47381 3.16030i 0.223841 0.129234i
\(599\) 12.7309 7.35019i 0.520170 0.300320i −0.216834 0.976208i \(-0.569573\pi\)
0.737004 + 0.675888i \(0.236240\pi\)
\(600\) 0 0
\(601\) −16.2923 + 9.40634i −0.664575 + 0.383693i −0.794018 0.607894i \(-0.792014\pi\)
0.129443 + 0.991587i \(0.458681\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 7.61229 + 13.1849i 0.309740 + 0.536485i
\(605\) 49.8641 2.02727
\(606\) 0 0
\(607\) 12.5922i 0.511100i 0.966796 + 0.255550i \(0.0822565\pi\)
−0.966796 + 0.255550i \(0.917743\pi\)
\(608\) −0.569660 + 0.986680i −0.0231028 + 0.0400152i
\(609\) 0 0
\(610\) 10.5718 + 18.3108i 0.428038 + 0.741383i
\(611\) −17.5900 + 10.1556i −0.711617 + 0.410852i
\(612\) 0 0
\(613\) 4.91009 8.50452i 0.198317 0.343494i −0.749666 0.661816i \(-0.769786\pi\)
0.947983 + 0.318322i \(0.103119\pi\)
\(614\) 5.44981 9.43935i 0.219937 0.380941i
\(615\) 0 0
\(616\) 0 0
\(617\) 3.25158 + 1.87730i 0.130904 + 0.0755772i 0.564022 0.825760i \(-0.309253\pi\)
−0.433118 + 0.901337i \(0.642587\pi\)
\(618\) 0 0
\(619\) 11.0494i 0.444111i −0.975034 0.222055i \(-0.928723\pi\)
0.975034 0.222055i \(-0.0712766\pi\)
\(620\) 17.0300 + 9.83228i 0.683942 + 0.394874i
\(621\) 0 0
\(622\) 8.23637i 0.330248i
\(623\) 0 0
\(624\) 0 0
\(625\) −27.3275 −1.09310
\(626\) 16.9011 + 29.2736i 0.675505 + 1.17001i
\(627\) 0 0
\(628\) 8.68358 + 5.01347i 0.346513 + 0.200059i
\(629\) 16.2692 0.648696
\(630\) 0 0
\(631\) 19.4921 0.775969 0.387984 0.921666i \(-0.373171\pi\)
0.387984 + 0.921666i \(0.373171\pi\)
\(632\) −11.2830 6.51422i −0.448812 0.259122i
\(633\) 0 0
\(634\) −3.36545 5.82913i −0.133659 0.231504i
\(635\) 15.6859 0.622475
\(636\) 0 0
\(637\) 0 0
\(638\) 23.5900i 0.933938i
\(639\) 0 0
\(640\) −2.03460 1.17468i −0.0804248 0.0464333i
\(641\) 26.1735i 1.03379i 0.856048 + 0.516896i \(0.172913\pi\)
−0.856048 + 0.516896i \(0.827087\pi\)
\(642\) 0 0
\(643\) −9.50955 5.49034i −0.375020 0.216518i 0.300629 0.953741i \(-0.402803\pi\)
−0.675649 + 0.737223i \(0.736137\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.00763 1.74527i 0.0396447 0.0686666i
\(647\) −16.0063 + 27.7237i −0.629273 + 1.08993i 0.358425 + 0.933558i \(0.383314\pi\)
−0.987698 + 0.156374i \(0.950019\pi\)
\(648\) 0 0
\(649\) −10.9613 + 6.32852i −0.430270 + 0.248416i
\(650\) 0.446715 + 0.773734i 0.0175216 + 0.0303483i
\(651\) 0 0
\(652\) 6.00158 10.3950i 0.235040 0.407101i
\(653\) 22.3649i 0.875208i 0.899168 + 0.437604i \(0.144173\pi\)
−0.899168 + 0.437604i \(0.855827\pi\)
\(654\) 0 0
\(655\) 17.5569 0.686004
\(656\) 3.99709 + 6.92317i 0.156060 + 0.270304i
\(657\) 0 0
\(658\) 0 0
\(659\) 19.2546 11.1166i 0.750053 0.433043i −0.0756603 0.997134i \(-0.524106\pi\)
0.825713 + 0.564091i \(0.190773\pi\)
\(660\) 0 0
\(661\) −9.13646 + 5.27494i −0.355367 + 0.205171i −0.667047 0.745016i \(-0.732442\pi\)
0.311679 + 0.950187i \(0.399108\pi\)
\(662\) −27.7621 + 16.0284i −1.07900 + 0.622963i
\(663\) 0 0
\(664\) −10.8651 + 6.27298i −0.421649 + 0.243439i
\(665\) 0 0
\(666\) 0 0
\(667\) 7.63613 + 13.2262i 0.295672 + 0.512119i
\(668\) 17.1494 0.663532
\(669\) 0 0
\(670\) 25.5404i 0.986713i
\(671\) −25.5442 + 44.2438i −0.986121 + 1.70801i
\(672\) 0 0
\(673\) 9.93562 + 17.2090i 0.382990 + 0.663358i 0.991488 0.130197i \(-0.0415610\pi\)
−0.608498 + 0.793555i \(0.708228\pi\)
\(674\) 20.9791 12.1123i 0.808085 0.466548i
\(675\) 0 0
\(676\) 5.02106 8.69673i 0.193118 0.334490i
\(677\) −7.96449 + 13.7949i −0.306100 + 0.530181i −0.977506 0.210909i \(-0.932358\pi\)
0.671405 + 0.741090i \(0.265691\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 3.59886 + 2.07781i 0.138010 + 0.0796802i
\(681\) 0 0
\(682\) 47.5148i 1.81944i
\(683\) −16.4777 9.51343i −0.630503 0.364021i 0.150444 0.988619i \(-0.451930\pi\)
−0.780947 + 0.624597i \(0.785263\pi\)
\(684\) 0 0
\(685\) 18.7664i 0.717028i
\(686\) 0 0
\(687\) 0 0
\(688\) −3.52106 −0.134239
\(689\) 0 0
\(690\) 0 0
\(691\) 0.139477 + 0.0805273i 0.00530597 + 0.00306340i 0.502651 0.864490i \(-0.332358\pi\)
−0.497345 + 0.867553i \(0.665692\pi\)
\(692\) 1.98748 0.0755525
\(693\) 0 0
\(694\) −22.7999 −0.865471
\(695\) 42.2396 + 24.3870i 1.60224 + 0.925053i
\(696\) 0 0
\(697\) −7.07017 12.2459i −0.267802 0.463847i
\(698\) −2.84505 −0.107687
\(699\) 0 0
\(700\) 0 0
\(701\) 9.98234i 0.377028i −0.982071 0.188514i \(-0.939633\pi\)
0.982071 0.188514i \(-0.0603670\pi\)
\(702\) 0 0
\(703\) −9.07522 5.23958i −0.342278 0.197614i
\(704\) 5.67667i 0.213948i
\(705\) 0 0
\(706\) −6.18709 3.57212i −0.232854 0.134438i
\(707\) 0 0
\(708\) 0 0
\(709\) 12.1962 21.1244i 0.458036 0.793342i −0.540821 0.841138i \(-0.681886\pi\)
0.998857 + 0.0477959i \(0.0152197\pi\)
\(710\) −5.31079 + 9.19856i −0.199311 + 0.345216i
\(711\) 0 0
\(712\) 1.00551 0.580529i 0.0376829 0.0217563i
\(713\) 15.3806 + 26.6400i 0.576008 + 0.997676i
\(714\) 0 0
\(715\) −11.4684 + 19.8639i −0.428894 + 0.742867i
\(716\) 8.31122i 0.310605i
\(717\) 0 0
\(718\) 11.6037 0.433047
\(719\) 8.13460 + 14.0895i 0.303370 + 0.525451i 0.976897 0.213711i \(-0.0685550\pi\)
−0.673527 + 0.739162i \(0.735222\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 15.3303 8.85097i 0.570536 0.329399i
\(723\) 0 0
\(724\) 13.3837 7.72706i 0.497400 0.287174i
\(725\) −1.86955 + 1.07938i −0.0694332 + 0.0400873i
\(726\) 0 0
\(727\) −20.6626 + 11.9296i −0.766335 + 0.442444i −0.831566 0.555427i \(-0.812555\pi\)
0.0652306 + 0.997870i \(0.479222\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.27554 10.8695i −0.232268 0.402300i
\(731\) 6.22815 0.230356
\(732\) 0 0
\(733\) 12.2697i 0.453193i 0.973989 + 0.226596i \(0.0727598\pi\)
−0.973989 + 0.226596i \(0.927240\pi\)
\(734\) −3.91747 + 6.78525i −0.144596 + 0.250448i
\(735\) 0 0
\(736\) −1.83755 3.18272i −0.0677329 0.117317i
\(737\) 53.4446 30.8562i 1.96866 1.13660i
\(738\) 0 0
\(739\) −20.9446 + 36.2771i −0.770459 + 1.33447i 0.166853 + 0.985982i \(0.446639\pi\)
−0.937312 + 0.348492i \(0.886694\pi\)
\(740\) 10.8044 18.7137i 0.397177 0.687931i
\(741\) 0 0
\(742\) 0 0
\(743\) −43.9160 25.3549i −1.61112 0.930182i −0.989111 0.147173i \(-0.952982\pi\)
−0.622011 0.783008i \(-0.713684\pi\)
\(744\) 0 0
\(745\) 2.81390i 0.103093i
\(746\) −22.2289 12.8339i −0.813858 0.469881i
\(747\) 0 0
\(748\) 10.0411i 0.367137i
\(749\) 0 0
\(750\) 0 0
\(751\) −32.7367 −1.19458 −0.597289 0.802026i \(-0.703756\pi\)
−0.597289 + 0.802026i \(0.703756\pi\)
\(752\) 5.90494 + 10.2277i 0.215331 + 0.372964i
\(753\) 0 0
\(754\) −6.18951 3.57351i −0.225408 0.130140i
\(755\) −35.7680 −1.30173
\(756\) 0 0
\(757\) −17.9255 −0.651512 −0.325756 0.945454i \(-0.605619\pi\)
−0.325756 + 0.945454i \(0.605619\pi\)
\(758\) 13.0809 + 7.55227i 0.475120 + 0.274311i
\(759\) 0 0
\(760\) −1.33834 2.31806i −0.0485465 0.0840850i
\(761\) −43.7019 −1.58419 −0.792096 0.610397i \(-0.791010\pi\)
−0.792096 + 0.610397i \(0.791010\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 12.3381i 0.446376i
\(765\) 0 0
\(766\) 1.32211 + 0.763322i 0.0477699 + 0.0275800i
\(767\) 3.83468i 0.138462i
\(768\) 0 0
\(769\) 37.0864 + 21.4118i 1.33737 + 0.772131i 0.986417 0.164262i \(-0.0525242\pi\)
0.350953 + 0.936393i \(0.385858\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.19694 3.80521i 0.0790696 0.136953i
\(773\) 10.8025 18.7105i 0.388540 0.672971i −0.603714 0.797201i \(-0.706313\pi\)
0.992253 + 0.124231i \(0.0396462\pi\)
\(774\) 0 0
\(775\) −3.76562 + 2.17408i −0.135265 + 0.0780953i
\(776\) −2.29517 3.97536i −0.0823919 0.142707i
\(777\) 0 0
\(778\) −7.44483 + 12.8948i −0.266910 + 0.462302i
\(779\) 9.10794i 0.326326i
\(780\) 0 0
\(781\) −25.6646 −0.918350
\(782\) 3.25030 + 5.62969i 0.116231 + 0.201317i
\(783\) 0 0
\(784\) 0 0
\(785\) −20.4008 + 11.7784i −0.728137 + 0.420390i
\(786\) 0 0
\(787\) −44.4307 + 25.6521i −1.58378 + 0.914398i −0.589484 + 0.807780i \(0.700669\pi\)
−0.994300 + 0.106618i \(0.965998\pi\)
\(788\) 9.42799 5.44325i 0.335858 0.193908i
\(789\) 0 0
\(790\) 26.5077 15.3042i 0.943102 0.544500i
\(791\) 0 0
\(792\) 0 0
\(793\) −7.73906 13.4044i −0.274822 0.476006i
\(794\) −28.7869 −1.02161
\(795\) 0