Properties

Label 2646.2.t.a.1979.7
Level $2646$
Weight $2$
Character 2646.1979
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} + 9 x^{12} + 54 x^{10} - 288 x^{8} + 486 x^{6} + 729 x^{4} - 4374 x^{2} + 6561\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1979.7
Root \(-0.0967785 + 1.72934i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1979
Dual form 2646.2.t.a.2285.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +0.366598 q^{5} -1.00000i q^{8} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +0.366598 q^{5} -1.00000i q^{8} +(0.317483 - 0.183299i) q^{10} +0.669453i q^{11} +(0.867380 - 0.500782i) q^{13} +(-0.500000 - 0.866025i) q^{16} +(2.49453 + 4.32065i) q^{17} +(5.50552 + 3.17861i) q^{19} +(0.183299 - 0.317483i) q^{20} +(0.334727 + 0.579764i) q^{22} +7.69459i q^{23} -4.86561 q^{25} +(0.500782 - 0.867380i) q^{26} +(-1.58394 - 0.914490i) q^{29} +(5.47837 + 3.16294i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(4.32065 + 2.49453i) q^{34} +(2.58394 - 4.47552i) q^{37} +6.35722 q^{38} -0.366598i q^{40} +(-2.15928 - 3.73998i) q^{41} +(2.24922 - 3.89576i) q^{43} +(0.579764 + 0.334727i) q^{44} +(3.84729 + 6.66371i) q^{46} +(4.16450 + 7.21313i) q^{47} +(-4.21374 + 2.43280i) q^{50} -1.00156i q^{52} +0.245420i q^{55} -1.82898 q^{58} +(4.36348 - 7.55776i) q^{59} +(-4.29351 + 2.47886i) q^{61} +6.32588 q^{62} -1.00000 q^{64} +(0.317980 - 0.183586i) q^{65} +(5.44537 - 9.43166i) q^{67} +4.98906 q^{68} +5.49843i q^{71} +(3.52744 - 2.03657i) q^{73} -5.16789i q^{74} +(5.50552 - 3.17861i) q^{76} +(-4.17784 - 7.23623i) q^{79} +(-0.183299 - 0.317483i) q^{80} +(-3.73998 - 2.15928i) q^{82} +(8.50712 - 14.7348i) q^{83} +(0.914490 + 1.58394i) q^{85} -4.49843i q^{86} +0.669453 q^{88} +(-5.35566 + 9.27628i) q^{89} +(6.66371 + 3.84729i) q^{92} +(7.21313 + 4.16450i) q^{94} +(2.01831 + 1.16527i) q^{95} +(14.9093 + 8.60787i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + O(q^{10}) \) \( 16 q + 8 q^{4} - 8 q^{16} + 16 q^{25} + 12 q^{29} + 4 q^{37} + 4 q^{43} - 12 q^{44} - 12 q^{46} - 60 q^{50} + 24 q^{58} - 16 q^{64} + 84 q^{65} - 28 q^{67} - 4 q^{79} - 12 q^{85} + 48 q^{92} + 12 q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.366598 0.163948 0.0819738 0.996634i \(-0.473878\pi\)
0.0819738 + 0.996634i \(0.473878\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.317483 0.183299i 0.100397 0.0579643i
\(11\) 0.669453i 0.201848i 0.994894 + 0.100924i \(0.0321799\pi\)
−0.994894 + 0.100924i \(0.967820\pi\)
\(12\) 0 0
\(13\) 0.867380 0.500782i 0.240568 0.138892i −0.374870 0.927077i \(-0.622313\pi\)
0.615438 + 0.788185i \(0.288979\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.49453 + 4.32065i 0.605013 + 1.04791i 0.992049 + 0.125848i \(0.0401653\pi\)
−0.387037 + 0.922064i \(0.626501\pi\)
\(18\) 0 0
\(19\) 5.50552 + 3.17861i 1.26305 + 0.729224i 0.973664 0.227988i \(-0.0732147\pi\)
0.289389 + 0.957212i \(0.406548\pi\)
\(20\) 0.183299 0.317483i 0.0409869 0.0709914i
\(21\) 0 0
\(22\) 0.334727 + 0.579764i 0.0713640 + 0.123606i
\(23\) 7.69459i 1.60443i 0.597034 + 0.802216i \(0.296346\pi\)
−0.597034 + 0.802216i \(0.703654\pi\)
\(24\) 0 0
\(25\) −4.86561 −0.973121
\(26\) 0.500782 0.867380i 0.0982115 0.170107i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.58394 0.914490i −0.294131 0.169817i 0.345672 0.938355i \(-0.387651\pi\)
−0.639803 + 0.768539i \(0.720984\pi\)
\(30\) 0 0
\(31\) 5.47837 + 3.16294i 0.983944 + 0.568081i 0.903459 0.428675i \(-0.141020\pi\)
0.0804857 + 0.996756i \(0.474353\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 4.32065 + 2.49453i 0.740986 + 0.427809i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.58394 4.47552i 0.424798 0.735771i −0.571604 0.820530i \(-0.693679\pi\)
0.996402 + 0.0847585i \(0.0270119\pi\)
\(38\) 6.35722 1.03128
\(39\) 0 0
\(40\) 0.366598i 0.0579643i
\(41\) −2.15928 3.73998i −0.337223 0.584087i 0.646686 0.762756i \(-0.276154\pi\)
−0.983909 + 0.178669i \(0.942821\pi\)
\(42\) 0 0
\(43\) 2.24922 3.89576i 0.343002 0.594098i −0.641986 0.766716i \(-0.721889\pi\)
0.984989 + 0.172618i \(0.0552228\pi\)
\(44\) 0.579764 + 0.334727i 0.0874027 + 0.0504619i
\(45\) 0 0
\(46\) 3.84729 + 6.66371i 0.567252 + 0.982510i
\(47\) 4.16450 + 7.21313i 0.607455 + 1.05214i 0.991658 + 0.128895i \(0.0411429\pi\)
−0.384203 + 0.923249i \(0.625524\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −4.21374 + 2.43280i −0.595913 + 0.344050i
\(51\) 0 0
\(52\) 1.00156i 0.138892i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 0 0
\(55\) 0.245420i 0.0330925i
\(56\) 0 0
\(57\) 0 0
\(58\) −1.82898 −0.240157
\(59\) 4.36348 7.55776i 0.568076 0.983937i −0.428680 0.903456i \(-0.641021\pi\)
0.996756 0.0804804i \(-0.0256455\pi\)
\(60\) 0 0
\(61\) −4.29351 + 2.47886i −0.549727 + 0.317385i −0.749012 0.662556i \(-0.769471\pi\)
0.199285 + 0.979942i \(0.436138\pi\)
\(62\) 6.32588 0.803387
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.317980 0.183586i 0.0394406 0.0227710i
\(66\) 0 0
\(67\) 5.44537 9.43166i 0.665258 1.15226i −0.313958 0.949437i \(-0.601655\pi\)
0.979215 0.202823i \(-0.0650117\pi\)
\(68\) 4.98906 0.605013
\(69\) 0 0
\(70\) 0 0
\(71\) 5.49843i 0.652544i 0.945276 + 0.326272i \(0.105793\pi\)
−0.945276 + 0.326272i \(0.894207\pi\)
\(72\) 0 0
\(73\) 3.52744 2.03657i 0.412856 0.238363i −0.279160 0.960245i \(-0.590056\pi\)
0.692016 + 0.721882i \(0.256723\pi\)
\(74\) 5.16789i 0.600755i
\(75\) 0 0
\(76\) 5.50552 3.17861i 0.631526 0.364612i
\(77\) 0 0
\(78\) 0 0
\(79\) −4.17784 7.23623i −0.470044 0.814140i 0.529370 0.848391i \(-0.322429\pi\)
−0.999413 + 0.0342518i \(0.989095\pi\)
\(80\) −0.183299 0.317483i −0.0204935 0.0354957i
\(81\) 0 0
\(82\) −3.73998 2.15928i −0.413012 0.238453i
\(83\) 8.50712 14.7348i 0.933778 1.61735i 0.156980 0.987602i \(-0.449824\pi\)
0.776798 0.629750i \(-0.216842\pi\)
\(84\) 0 0
\(85\) 0.914490 + 1.58394i 0.0991904 + 0.171803i
\(86\) 4.49843i 0.485079i
\(87\) 0 0
\(88\) 0.669453 0.0713640
\(89\) −5.35566 + 9.27628i −0.567699 + 0.983283i 0.429094 + 0.903260i \(0.358833\pi\)
−0.996793 + 0.0800234i \(0.974500\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.66371 + 3.84729i 0.694740 + 0.401108i
\(93\) 0 0
\(94\) 7.21313 + 4.16450i 0.743978 + 0.429536i
\(95\) 2.01831 + 1.16527i 0.207074 + 0.119555i
\(96\) 0 0
\(97\) 14.9093 + 8.60787i 1.51381 + 0.873997i 0.999869 + 0.0161687i \(0.00514689\pi\)
0.513937 + 0.857828i \(0.328186\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.43280 + 4.21374i −0.243280 + 0.421374i
\(101\) 15.7317 1.56537 0.782683 0.622421i \(-0.213851\pi\)
0.782683 + 0.622421i \(0.213851\pi\)
\(102\) 0 0
\(103\) 11.4445i 1.12766i 0.825890 + 0.563831i \(0.190673\pi\)
−0.825890 + 0.563831i \(0.809327\pi\)
\(104\) −0.500782 0.867380i −0.0491057 0.0850537i
\(105\) 0 0
\(106\) 0 0
\(107\) −9.57976 5.53088i −0.926111 0.534690i −0.0405313 0.999178i \(-0.512905\pi\)
−0.885579 + 0.464488i \(0.846238\pi\)
\(108\) 0 0
\(109\) 5.28166 + 9.14811i 0.505891 + 0.876230i 0.999977 + 0.00681630i \(0.00216971\pi\)
−0.494085 + 0.869413i \(0.664497\pi\)
\(110\) 0.122710 + 0.212540i 0.0117000 + 0.0202649i
\(111\) 0 0
\(112\) 0 0
\(113\) −3.60226 + 2.07976i −0.338872 + 0.195648i −0.659773 0.751465i \(-0.729348\pi\)
0.320901 + 0.947113i \(0.396014\pi\)
\(114\) 0 0
\(115\) 2.82082i 0.263043i
\(116\) −1.58394 + 0.914490i −0.147065 + 0.0849083i
\(117\) 0 0
\(118\) 8.72695i 0.803381i
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5518 0.959257
\(122\) −2.47886 + 4.29351i −0.224425 + 0.388716i
\(123\) 0 0
\(124\) 5.47837 3.16294i 0.491972 0.284040i
\(125\) −3.61671 −0.323489
\(126\) 0 0
\(127\) −1.66945 −0.148140 −0.0740700 0.997253i \(-0.523599\pi\)
−0.0740700 + 0.997253i \(0.523599\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0.183586 0.317980i 0.0161015 0.0278887i
\(131\) −13.5321 −1.18231 −0.591154 0.806558i \(-0.701328\pi\)
−0.591154 + 0.806558i \(0.701328\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.8907i 0.940817i
\(135\) 0 0
\(136\) 4.32065 2.49453i 0.370493 0.213904i
\(137\) 8.98851i 0.767940i 0.923346 + 0.383970i \(0.125443\pi\)
−0.923346 + 0.383970i \(0.874557\pi\)
\(138\) 0 0
\(139\) 8.05336 4.64961i 0.683077 0.394375i −0.117936 0.993021i \(-0.537628\pi\)
0.801014 + 0.598646i \(0.204294\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.74922 + 4.76178i 0.230709 + 0.399600i
\(143\) 0.335250 + 0.580671i 0.0280351 + 0.0485581i
\(144\) 0 0
\(145\) −0.580671 0.335250i −0.0482221 0.0278410i
\(146\) 2.03657 3.52744i 0.168548 0.291933i
\(147\) 0 0
\(148\) −2.58394 4.47552i −0.212399 0.367886i
\(149\) 2.83211i 0.232016i 0.993248 + 0.116008i \(0.0370098\pi\)
−0.993248 + 0.116008i \(0.962990\pi\)
\(150\) 0 0
\(151\) −16.5518 −1.34697 −0.673484 0.739201i \(-0.735203\pi\)
−0.673484 + 0.739201i \(0.735203\pi\)
\(152\) 3.17861 5.50552i 0.257820 0.446556i
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00836 + 1.15953i 0.161315 + 0.0931355i
\(156\) 0 0
\(157\) 2.45480 + 1.41728i 0.195914 + 0.113111i 0.594748 0.803912i \(-0.297252\pi\)
−0.398834 + 0.917023i \(0.630585\pi\)
\(158\) −7.23623 4.17784i −0.575684 0.332371i
\(159\) 0 0
\(160\) −0.317483 0.183299i −0.0250993 0.0144911i
\(161\) 0 0
\(162\) 0 0
\(163\) −12.3640 + 21.4151i −0.968426 + 1.67736i −0.268313 + 0.963332i \(0.586466\pi\)
−0.700113 + 0.714032i \(0.746867\pi\)
\(164\) −4.31856 −0.337223
\(165\) 0 0
\(166\) 17.0142i 1.32056i
\(167\) −9.67422 16.7562i −0.748614 1.29664i −0.948487 0.316815i \(-0.897386\pi\)
0.199874 0.979822i \(-0.435947\pi\)
\(168\) 0 0
\(169\) −5.99843 + 10.3896i −0.461418 + 0.799199i
\(170\) 1.58394 + 0.914490i 0.121483 + 0.0701382i
\(171\) 0 0
\(172\) −2.24922 3.89576i −0.171501 0.297049i
\(173\) −2.41827 4.18856i −0.183858 0.318451i 0.759333 0.650702i \(-0.225525\pi\)
−0.943191 + 0.332251i \(0.892192\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.579764 0.334727i 0.0437013 0.0252310i
\(177\) 0 0
\(178\) 10.7113i 0.802847i
\(179\) 3.16789 1.82898i 0.236779 0.136704i −0.376916 0.926247i \(-0.623016\pi\)
0.613695 + 0.789543i \(0.289682\pi\)
\(180\) 0 0
\(181\) 5.66796i 0.421296i 0.977562 + 0.210648i \(0.0675574\pi\)
−0.977562 + 0.210648i \(0.932443\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7.69459 0.567252
\(185\) 0.947269 1.64072i 0.0696446 0.120628i
\(186\) 0 0
\(187\) −2.89248 + 1.66997i −0.211519 + 0.122120i
\(188\) 8.32901 0.607455
\(189\) 0 0
\(190\) 2.33055 0.169076
\(191\) 23.7098 13.6888i 1.71558 0.990490i 0.788996 0.614398i \(-0.210601\pi\)
0.926583 0.376091i \(-0.122732\pi\)
\(192\) 0 0
\(193\) 5.01413 8.68473i 0.360925 0.625141i −0.627188 0.778868i \(-0.715794\pi\)
0.988113 + 0.153727i \(0.0491276\pi\)
\(194\) 17.2157 1.23602
\(195\) 0 0
\(196\) 0 0
\(197\) 18.8258i 1.34129i −0.741780 0.670643i \(-0.766018\pi\)
0.741780 0.670643i \(-0.233982\pi\)
\(198\) 0 0
\(199\) −4.64541 + 2.68203i −0.329305 + 0.190124i −0.655532 0.755167i \(-0.727556\pi\)
0.326228 + 0.945291i \(0.394222\pi\)
\(200\) 4.86561i 0.344050i
\(201\) 0 0
\(202\) 13.6241 7.86586i 0.958587 0.553440i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.791588 1.37107i −0.0552869 0.0957597i
\(206\) 5.72226 + 9.91124i 0.398689 + 0.690549i
\(207\) 0 0
\(208\) −0.867380 0.500782i −0.0601420 0.0347230i
\(209\) −2.12793 + 3.68569i −0.147192 + 0.254944i
\(210\) 0 0
\(211\) −0.828981 1.43584i −0.0570694 0.0988471i 0.836079 0.548609i \(-0.184842\pi\)
−0.893149 + 0.449762i \(0.851509\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −11.0618 −0.756166
\(215\) 0.824559 1.42818i 0.0562344 0.0974009i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.14811 + 5.28166i 0.619588 + 0.357719i
\(219\) 0 0
\(220\) 0.212540 + 0.122710i 0.0143295 + 0.00827312i
\(221\) 4.32741 + 2.49843i 0.291093 + 0.168063i
\(222\) 0 0
\(223\) −14.7546 8.51860i −0.988044 0.570448i −0.0833551 0.996520i \(-0.526564\pi\)
−0.904689 + 0.426072i \(0.859897\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.07976 + 3.60226i −0.138344 + 0.239619i
\(227\) −5.11024 −0.339179 −0.169589 0.985515i \(-0.554244\pi\)
−0.169589 + 0.985515i \(0.554244\pi\)
\(228\) 0 0
\(229\) 15.2669i 1.00887i 0.863451 + 0.504433i \(0.168298\pi\)
−0.863451 + 0.504433i \(0.831702\pi\)
\(230\) 1.41041 + 2.44290i 0.0929997 + 0.161080i
\(231\) 0 0
\(232\) −0.914490 + 1.58394i −0.0600392 + 0.103991i
\(233\) −8.82741 5.09651i −0.578303 0.333883i 0.182156 0.983270i \(-0.441693\pi\)
−0.760459 + 0.649386i \(0.775026\pi\)
\(234\) 0 0
\(235\) 1.52670 + 2.64432i 0.0995909 + 0.172496i
\(236\) −4.36348 7.55776i −0.284038 0.491968i
\(237\) 0 0
\(238\) 0 0
\(239\) 16.6117 9.59076i 1.07452 0.620375i 0.145108 0.989416i \(-0.453647\pi\)
0.929413 + 0.369041i \(0.120314\pi\)
\(240\) 0 0
\(241\) 20.6853i 1.33245i 0.745749 + 0.666227i \(0.232092\pi\)
−0.745749 + 0.666227i \(0.767908\pi\)
\(242\) 9.13815 5.27592i 0.587423 0.339149i
\(243\) 0 0
\(244\) 4.95771i 0.317385i
\(245\) 0 0
\(246\) 0 0
\(247\) 6.36717 0.405133
\(248\) 3.16294 5.47837i 0.200847 0.347877i
\(249\) 0 0
\(250\) −3.13216 + 1.80836i −0.198096 + 0.114370i
\(251\) −1.81200 −0.114373 −0.0571864 0.998364i \(-0.518213\pi\)
−0.0571864 + 0.998364i \(0.518213\pi\)
\(252\) 0 0
\(253\) −5.15117 −0.323851
\(254\) −1.44579 + 0.834727i −0.0907169 + 0.0523754i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −6.45545 −0.402680 −0.201340 0.979521i \(-0.564530\pi\)
−0.201340 + 0.979521i \(0.564530\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.367172i 0.0227710i
\(261\) 0 0
\(262\) −11.7192 + 6.76607i −0.724013 + 0.418009i
\(263\) 8.82062i 0.543903i −0.962311 0.271951i \(-0.912331\pi\)
0.962311 0.271951i \(-0.0876690\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −5.44537 9.43166i −0.332629 0.576130i
\(269\) −7.13267 12.3541i −0.434886 0.753245i 0.562400 0.826865i \(-0.309878\pi\)
−0.997286 + 0.0736199i \(0.976545\pi\)
\(270\) 0 0
\(271\) −2.64381 1.52641i −0.160600 0.0927226i 0.417546 0.908656i \(-0.362890\pi\)
−0.578146 + 0.815933i \(0.696224\pi\)
\(272\) 2.49453 4.32065i 0.151253 0.261978i
\(273\) 0 0
\(274\) 4.49425 + 7.78428i 0.271508 + 0.470265i
\(275\) 3.25730i 0.196422i
\(276\) 0 0
\(277\) 1.26566 0.0760459 0.0380230 0.999277i \(-0.487894\pi\)
0.0380230 + 0.999277i \(0.487894\pi\)
\(278\) 4.64961 8.05336i 0.278865 0.483009i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.11639 5.26335i −0.543838 0.313985i 0.202795 0.979221i \(-0.434998\pi\)
−0.746633 + 0.665236i \(0.768331\pi\)
\(282\) 0 0
\(283\) −17.2094 9.93588i −1.02300 0.590627i −0.108025 0.994148i \(-0.534453\pi\)
−0.914970 + 0.403522i \(0.867786\pi\)
\(284\) 4.76178 + 2.74922i 0.282560 + 0.163136i
\(285\) 0 0
\(286\) 0.580671 + 0.335250i 0.0343358 + 0.0198238i
\(287\) 0 0
\(288\) 0 0
\(289\) −3.94537 + 6.83358i −0.232081 + 0.401975i
\(290\) −0.670501 −0.0393732
\(291\) 0 0
\(292\) 4.07314i 0.238363i
\(293\) 6.70606 + 11.6152i 0.391772 + 0.678569i 0.992683 0.120747i \(-0.0385289\pi\)
−0.600911 + 0.799316i \(0.705196\pi\)
\(294\) 0 0
\(295\) 1.59964 2.77066i 0.0931348 0.161314i
\(296\) −4.47552 2.58394i −0.260134 0.150189i
\(297\) 0 0
\(298\) 1.41606 + 2.45268i 0.0820299 + 0.142080i
\(299\) 3.85331 + 6.67413i 0.222843 + 0.385975i
\(300\) 0 0
\(301\) 0 0
\(302\) −14.3343 + 8.27592i −0.824847 + 0.476225i
\(303\) 0 0
\(304\) 6.35722i 0.364612i
\(305\) −1.57399 + 0.908744i −0.0901265 + 0.0520346i
\(306\) 0 0
\(307\) 0.653728i 0.0373102i 0.999826 + 0.0186551i \(0.00593845\pi\)
−0.999826 + 0.0186551i \(0.994062\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.31905 0.131713
\(311\) 4.62246 8.00634i 0.262116 0.453998i −0.704688 0.709517i \(-0.748913\pi\)
0.966804 + 0.255519i \(0.0822464\pi\)
\(312\) 0 0
\(313\) −5.33830 + 3.08207i −0.301739 + 0.174209i −0.643224 0.765678i \(-0.722403\pi\)
0.341485 + 0.939887i \(0.389070\pi\)
\(314\) 2.83456 0.159963
\(315\) 0 0
\(316\) −8.35568 −0.470044
\(317\) −17.8876 + 10.3274i −1.00467 + 0.580045i −0.909626 0.415428i \(-0.863632\pi\)
−0.0950420 + 0.995473i \(0.530299\pi\)
\(318\) 0 0
\(319\) 0.612209 1.06038i 0.0342771 0.0593697i
\(320\) −0.366598 −0.0204935
\(321\) 0 0
\(322\) 0 0
\(323\) 31.7166i 1.76476i
\(324\) 0 0
\(325\) −4.22033 + 2.43661i −0.234102 + 0.135159i
\(326\) 24.7281i 1.36956i
\(327\) 0 0
\(328\) −3.73998 + 2.15928i −0.206506 + 0.119226i
\(329\) 0 0
\(330\) 0 0
\(331\) −5.35568 9.27631i −0.294375 0.509872i 0.680464 0.732781i \(-0.261778\pi\)
−0.974839 + 0.222909i \(0.928445\pi\)
\(332\) −8.50712 14.7348i −0.466889 0.808676i
\(333\) 0 0
\(334\) −16.7562 9.67422i −0.916861 0.529350i
\(335\) 1.99626 3.45763i 0.109067 0.188910i
\(336\) 0 0
\(337\) 3.77592 + 6.54008i 0.205687 + 0.356261i 0.950351 0.311179i \(-0.100724\pi\)
−0.744664 + 0.667439i \(0.767390\pi\)
\(338\) 11.9969i 0.652544i
\(339\) 0 0
\(340\) 1.82898 0.0991904
\(341\) −2.11744 + 3.66751i −0.114666 + 0.198607i
\(342\) 0 0
\(343\) 0 0
\(344\) −3.89576 2.24922i −0.210045 0.121270i
\(345\) 0 0
\(346\) −4.18856 2.41827i −0.225179 0.130007i
\(347\) −9.46737 5.46599i −0.508235 0.293430i 0.223873 0.974618i \(-0.428130\pi\)
−0.732108 + 0.681189i \(0.761463\pi\)
\(348\) 0 0
\(349\) −1.02562 0.592145i −0.0549004 0.0316968i 0.472299 0.881439i \(-0.343424\pi\)
−0.527199 + 0.849742i \(0.676758\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.334727 0.579764i 0.0178410 0.0309015i
\(353\) −33.5824 −1.78741 −0.893706 0.448653i \(-0.851904\pi\)
−0.893706 + 0.448653i \(0.851904\pi\)
\(354\) 0 0
\(355\) 2.01572i 0.106983i
\(356\) 5.35566 + 9.27628i 0.283849 + 0.491642i
\(357\) 0 0
\(358\) 1.82898 3.16789i 0.0966646 0.167428i
\(359\) 8.77122 + 5.06407i 0.462927 + 0.267271i 0.713274 0.700885i \(-0.247211\pi\)
−0.250347 + 0.968156i \(0.580545\pi\)
\(360\) 0 0
\(361\) 10.7072 + 18.5453i 0.563534 + 0.976070i
\(362\) 2.83398 + 4.90860i 0.148951 + 0.257990i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.29315 0.746603i 0.0676868 0.0390790i
\(366\) 0 0
\(367\) 18.0021i 0.939701i −0.882746 0.469850i \(-0.844308\pi\)
0.882746 0.469850i \(-0.155692\pi\)
\(368\) 6.66371 3.84729i 0.347370 0.200554i
\(369\) 0 0
\(370\) 1.89454i 0.0984923i
\(371\) 0 0
\(372\) 0 0
\(373\) 16.4090 0.849627 0.424814 0.905281i \(-0.360340\pi\)
0.424814 + 0.905281i \(0.360340\pi\)
\(374\) −1.66997 + 2.89248i −0.0863522 + 0.149566i
\(375\) 0 0
\(376\) 7.21313 4.16450i 0.371989 0.214768i
\(377\) −1.83184 −0.0943447
\(378\) 0 0
\(379\) −2.91372 −0.149668 −0.0748339 0.997196i \(-0.523843\pi\)
−0.0748339 + 0.997196i \(0.523843\pi\)
\(380\) 2.01831 1.16527i 0.103537 0.0597773i
\(381\) 0 0
\(382\) 13.6888 23.7098i 0.700382 1.21310i
\(383\) 8.57443 0.438133 0.219066 0.975710i \(-0.429699\pi\)
0.219066 + 0.975710i \(0.429699\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0283i 0.510425i
\(387\) 0 0
\(388\) 14.9093 8.60787i 0.756903 0.436998i
\(389\) 35.5539i 1.80266i −0.433137 0.901328i \(-0.642594\pi\)
0.433137 0.901328i \(-0.357406\pi\)
\(390\) 0 0
\(391\) −33.2456 + 19.1944i −1.68130 + 0.970702i
\(392\) 0 0
\(393\) 0 0
\(394\) −9.41292 16.3037i −0.474216 0.821367i
\(395\) −1.53159 2.65279i −0.0770626 0.133476i
\(396\) 0 0
\(397\) 3.10066 + 1.79017i 0.155618 + 0.0898460i 0.575787 0.817600i \(-0.304696\pi\)
−0.420169 + 0.907446i \(0.638029\pi\)
\(398\) −2.68203 + 4.64541i −0.134438 + 0.232853i
\(399\) 0 0
\(400\) 2.43280 + 4.21374i 0.121640 + 0.210687i
\(401\) 0.190871i 0.00953167i −0.999989 0.00476583i \(-0.998483\pi\)
0.999989 0.00476583i \(-0.00151702\pi\)
\(402\) 0 0
\(403\) 6.33577 0.315607
\(404\) 7.86586 13.6241i 0.391341 0.677823i
\(405\) 0 0
\(406\) 0 0
\(407\) 2.99615 + 1.72983i 0.148514 + 0.0857445i
\(408\) 0 0
\(409\) −3.00832 1.73685i −0.148752 0.0858819i 0.423777 0.905767i \(-0.360704\pi\)
−0.572529 + 0.819885i \(0.694037\pi\)
\(410\) −1.37107 0.791588i −0.0677124 0.0390938i
\(411\) 0 0
\(412\) 9.91124 + 5.72226i 0.488292 + 0.281915i
\(413\) 0 0
\(414\) 0 0
\(415\) 3.11870 5.40174i 0.153091 0.265161i
\(416\) −1.00156 −0.0491057
\(417\) 0 0
\(418\) 4.25587i 0.208161i
\(419\) 0.703955 + 1.21929i 0.0343905 + 0.0595660i 0.882708 0.469921i \(-0.155718\pi\)
−0.848318 + 0.529487i \(0.822384\pi\)
\(420\) 0 0
\(421\) 15.1930 26.3151i 0.740463 1.28252i −0.211822 0.977308i \(-0.567940\pi\)
0.952285 0.305211i \(-0.0987268\pi\)
\(422\) −1.43584 0.828981i −0.0698954 0.0403541i
\(423\) 0 0
\(424\) 0 0
\(425\) −12.1374 21.0226i −0.588751 1.01975i
\(426\) 0 0
\(427\) 0 0
\(428\) −9.57976 + 5.53088i −0.463055 + 0.267345i
\(429\) 0 0
\(430\) 1.64912i 0.0795275i
\(431\) −23.6206 + 13.6373i −1.13776 + 0.656888i −0.945876 0.324529i \(-0.894794\pi\)
−0.191887 + 0.981417i \(0.561461\pi\)
\(432\) 0 0
\(433\) 8.15047i 0.391686i 0.980635 + 0.195843i \(0.0627444\pi\)
−0.980635 + 0.195843i \(0.937256\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.5633 0.505891
\(437\) −24.4581 + 42.3627i −1.16999 + 2.02648i
\(438\) 0 0
\(439\) 10.6005 6.12020i 0.505934 0.292101i −0.225226 0.974306i \(-0.572312\pi\)
0.731161 + 0.682205i \(0.238979\pi\)
\(440\) 0.245420 0.0117000
\(441\) 0 0
\(442\) 4.99687 0.237677
\(443\) 6.93544 4.00418i 0.329513 0.190244i −0.326112 0.945331i \(-0.605739\pi\)
0.655625 + 0.755087i \(0.272405\pi\)
\(444\) 0 0
\(445\) −1.96337 + 3.40067i −0.0930729 + 0.161207i
\(446\) −17.0372 −0.806735
\(447\) 0 0
\(448\) 0 0
\(449\) 14.5183i 0.685163i 0.939488 + 0.342581i \(0.111301\pi\)
−0.939488 + 0.342581i \(0.888699\pi\)
\(450\) 0 0
\(451\) 2.50374 1.44554i 0.117897 0.0680677i
\(452\) 4.15953i 0.195648i
\(453\) 0 0
\(454\) −4.42560 + 2.55512i −0.207704 + 0.119918i
\(455\) 0 0
\(456\) 0 0
\(457\) −4.97751 8.62130i −0.232838 0.403287i 0.725804 0.687901i \(-0.241468\pi\)
−0.958642 + 0.284614i \(0.908135\pi\)
\(458\) 7.63345 + 13.2215i 0.356688 + 0.617801i
\(459\) 0 0
\(460\) 2.44290 + 1.41041i 0.113901 + 0.0657607i
\(461\) −16.1635 + 27.9960i −0.752810 + 1.30391i 0.193645 + 0.981072i \(0.437969\pi\)
−0.946456 + 0.322834i \(0.895364\pi\)
\(462\) 0 0
\(463\) −4.72516 8.18421i −0.219597 0.380353i 0.735088 0.677972i \(-0.237141\pi\)
−0.954685 + 0.297619i \(0.903807\pi\)
\(464\) 1.82898i 0.0849083i
\(465\) 0 0
\(466\) −10.1930 −0.472183
\(467\) −10.3312 + 17.8941i −0.478069 + 0.828039i −0.999684 0.0251414i \(-0.991996\pi\)
0.521615 + 0.853181i \(0.325330\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2.64432 + 1.52670i 0.121973 + 0.0704214i
\(471\) 0 0
\(472\) −7.55776 4.36348i −0.347874 0.200845i
\(473\) 2.60803 + 1.50575i 0.119917 + 0.0692343i
\(474\) 0 0
\(475\) −26.7877 15.4659i −1.22910 0.709623i
\(476\) 0 0
\(477\) 0 0
\(478\) 9.59076 16.6117i 0.438671 0.759801i
\(479\) 10.1608 0.464261 0.232131 0.972685i \(-0.425430\pi\)
0.232131 + 0.972685i \(0.425430\pi\)
\(480\) 0 0
\(481\) 5.17597i 0.236004i
\(482\) 10.3426 + 17.9140i 0.471094 + 0.815958i
\(483\) 0 0
\(484\) 5.27592 9.13815i 0.239814 0.415371i
\(485\) 5.46571 + 3.15563i 0.248185 + 0.143290i
\(486\) 0 0
\(487\) 15.6148 + 27.0457i 0.707575 + 1.22556i 0.965754 + 0.259459i \(0.0835443\pi\)
−0.258179 + 0.966097i \(0.583122\pi\)
\(488\) 2.47886 + 4.29351i 0.112213 + 0.194358i
\(489\) 0 0
\(490\) 0 0
\(491\) −17.8314 + 10.2950i −0.804720 + 0.464605i −0.845119 0.534578i \(-0.820471\pi\)
0.0403987 + 0.999184i \(0.487137\pi\)
\(492\) 0 0
\(493\) 9.12490i 0.410965i
\(494\) 5.51413 3.18359i 0.248093 0.143236i
\(495\) 0 0
\(496\) 6.32588i 0.284040i
\(497\) 0 0
\(498\) 0 0
\(499\) −25.1533 −1.12601 −0.563007 0.826452i \(-0.690356\pi\)
−0.563007 + 0.826452i \(0.690356\pi\)
\(500\) −1.80836 + 3.13216i −0.0808722 + 0.140075i
\(501\) 0 0
\(502\) −1.56924 + 0.906002i −0.0700387 + 0.0404369i
\(503\) −31.1553 −1.38915 −0.694574 0.719421i \(-0.744407\pi\)
−0.694574 + 0.719421i \(0.744407\pi\)
\(504\) 0 0
\(505\) 5.76722 0.256638
\(506\) −4.46104 + 2.57558i −0.198317 + 0.114499i
\(507\) 0 0
\(508\) −0.834727 + 1.44579i −0.0370350 + 0.0641465i
\(509\) 4.83347 0.214240 0.107120 0.994246i \(-0.465837\pi\)
0.107120 + 0.994246i \(0.465837\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −5.59059 + 3.22773i −0.246590 + 0.142369i
\(515\) 4.19554i 0.184877i
\(516\) 0 0
\(517\) −4.82886 + 2.78794i −0.212373 + 0.122613i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.183586 0.317980i −0.00805077 0.0139443i
\(521\) −8.76611 15.1834i −0.384050 0.665195i 0.607587 0.794253i \(-0.292138\pi\)
−0.991637 + 0.129059i \(0.958804\pi\)
\(522\) 0 0
\(523\) 16.5427 + 9.55094i 0.723362 + 0.417633i 0.815989 0.578068i \(-0.196193\pi\)
−0.0926268 + 0.995701i \(0.529526\pi\)
\(524\) −6.76607 + 11.7192i −0.295577 + 0.511955i
\(525\) 0 0
\(526\) −4.41031 7.63888i −0.192299 0.333071i
\(527\) 31.5602i 1.37478i
\(528\) 0 0
\(529\) −36.2067 −1.57420
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.74584 2.16266i −0.162250 0.0936752i
\(534\) 0 0
\(535\) −3.51192 2.02761i −0.151834 0.0876612i
\(536\) −9.43166 5.44537i −0.407386 0.235204i
\(537\) 0 0
\(538\) −12.3541 7.13267i −0.532625 0.307511i
\(539\) 0 0
\(540\) 0 0
\(541\) −6.83211 + 11.8336i −0.293735 + 0.508765i −0.974690 0.223561i \(-0.928232\pi\)
0.680954 + 0.732326i \(0.261565\pi\)
\(542\) −3.05281 −0.131130
\(543\) 0 0
\(544\) 4.98906i 0.213904i
\(545\) 1.93625 + 3.35368i 0.0829397 + 0.143656i
\(546\) 0 0
\(547\) 4.94380 8.56292i 0.211382 0.366124i −0.740765 0.671764i \(-0.765537\pi\)
0.952147 + 0.305640i \(0.0988703\pi\)
\(548\) 7.78428 + 4.49425i 0.332528 + 0.191985i
\(549\) 0 0
\(550\) −1.62865 2.82090i −0.0694458 0.120284i
\(551\) −5.81362 10.0695i −0.247669 0.428975i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.09609 0.632828i 0.0465684 0.0268863i
\(555\) 0 0
\(556\) 9.29922i 0.394375i
\(557\) −10.8946 + 6.29002i −0.461621 + 0.266517i −0.712725 0.701443i \(-0.752539\pi\)
0.251105 + 0.967960i \(0.419206\pi\)
\(558\) 0 0
\(559\) 4.50547i 0.190561i
\(560\) 0 0
\(561\) 0 0
\(562\) −10.5267 −0.444042
\(563\) 12.1666 21.0732i 0.512763 0.888132i −0.487127 0.873331i \(-0.661955\pi\)
0.999890 0.0148007i \(-0.00471137\pi\)
\(564\) 0 0
\(565\) −1.32058 + 0.762437i −0.0555572 + 0.0320760i
\(566\) −19.8718 −0.835272
\(567\) 0 0
\(568\) 5.49843 0.230709
\(569\) −8.18746 + 4.72703i −0.343236 + 0.198167i −0.661702 0.749767i \(-0.730166\pi\)
0.318466 + 0.947934i \(0.396832\pi\)
\(570\) 0 0
\(571\) 15.7843 27.3392i 0.660551 1.14411i −0.319920 0.947445i \(-0.603656\pi\)
0.980471 0.196664i \(-0.0630108\pi\)
\(572\) 0.670501 0.0280351
\(573\) 0 0
\(574\) 0 0
\(575\) 37.4388i 1.56131i
\(576\) 0 0
\(577\) −29.0806 + 16.7897i −1.21064 + 0.698964i −0.962899 0.269862i \(-0.913022\pi\)
−0.247742 + 0.968826i \(0.579688\pi\)
\(578\) 7.89074i 0.328211i
\(579\) 0 0
\(580\) −0.580671 + 0.335250i −0.0241110 + 0.0139205i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −2.03657 3.52744i −0.0842739 0.145967i
\(585\) 0 0
\(586\) 11.6152 + 6.70606i 0.479821 + 0.277025i
\(587\) −9.65855 + 16.7291i −0.398651 + 0.690484i −0.993560 0.113310i \(-0.963855\pi\)
0.594909 + 0.803793i \(0.297188\pi\)
\(588\) 0 0
\(589\) 20.1075 + 34.8272i 0.828516 + 1.43503i
\(590\) 3.19928i 0.131712i
\(591\) 0 0
\(592\) −5.16789 −0.212399
\(593\) −0.366598 + 0.634967i −0.0150544 + 0.0260750i −0.873454 0.486906i \(-0.838125\pi\)
0.858400 + 0.512981i \(0.171459\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.45268 + 1.41606i 0.100466 + 0.0580039i
\(597\) 0 0
\(598\) 6.67413 + 3.85331i 0.272926 + 0.157574i
\(599\) 26.6548 + 15.3892i 1.08909 + 0.628785i 0.933333 0.359011i \(-0.116886\pi\)
0.155754 + 0.987796i \(0.450219\pi\)
\(600\) 0 0
\(601\) 0.786931 + 0.454335i 0.0320996 + 0.0185327i 0.515964 0.856610i \(-0.327434\pi\)
−0.483864 + 0.875143i \(0.660767\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.27592 + 14.3343i −0.336742 + 0.583255i
\(605\) 3.86828 0.157268
\(606\) 0 0
\(607\) 44.7773i 1.81746i −0.417389 0.908728i \(-0.637055\pi\)
0.417389 0.908728i \(-0.362945\pi\)
\(608\) −3.17861 5.50552i −0.128910 0.223278i
\(609\) 0 0
\(610\) −0.908744 + 1.57399i −0.0367940 + 0.0637290i
\(611\) 7.22442 + 4.17102i 0.292269 + 0.168741i
\(612\) 0 0
\(613\) −9.07402 15.7167i −0.366496 0.634790i 0.622519 0.782605i \(-0.286109\pi\)
−0.989015 + 0.147815i \(0.952776\pi\)
\(614\) 0.326864 + 0.566145i 0.0131912 + 0.0228478i
\(615\) 0 0
\(616\) 0 0
\(617\) 19.7393 11.3965i 0.794674 0.458805i −0.0469315 0.998898i \(-0.514944\pi\)
0.841605 + 0.540093i \(0.181611\pi\)
\(618\) 0 0
\(619\) 44.3668i 1.78325i −0.452772 0.891626i \(-0.649565\pi\)
0.452772 0.891626i \(-0.350435\pi\)
\(620\) 2.00836 1.15953i 0.0806577 0.0465677i
\(621\) 0 0
\(622\) 9.24493i 0.370688i
\(623\) 0 0
\(624\) 0 0
\(625\) 23.0021 0.920086
\(626\) −3.08207 + 5.33830i −0.123184 + 0.213361i
\(627\) 0 0
\(628\) 2.45480 1.41728i 0.0979571 0.0565555i
\(629\) 25.7829 1.02803
\(630\) 0 0
\(631\) −32.5707 −1.29662 −0.648310 0.761377i \(-0.724524\pi\)
−0.648310 + 0.761377i \(0.724524\pi\)
\(632\) −7.23623 + 4.17784i −0.287842 + 0.166186i
\(633\) 0 0
\(634\) −10.3274 + 17.8876i −0.410154 + 0.710408i
\(635\) −0.612018 −0.0242872
\(636\) 0 0
\(637\) 0 0
\(638\) 1.22442i 0.0484751i
\(639\) 0 0
\(640\) −0.317483 + 0.183299i −0.0125496 + 0.00724553i
\(641\) 11.8091i 0.466433i −0.972425 0.233216i \(-0.925075\pi\)
0.972425 0.233216i \(-0.0749250\pi\)
\(642\) 0 0
\(643\) −25.3714 + 14.6482i −1.00055 + 0.577668i −0.908411 0.418078i \(-0.862704\pi\)
−0.0921392 + 0.995746i \(0.529370\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 15.8583 + 27.4674i 0.623936 + 1.08069i
\(647\) 14.0841 + 24.3945i 0.553705 + 0.959045i 0.998003 + 0.0631660i \(0.0201198\pi\)
−0.444298 + 0.895879i \(0.646547\pi\)
\(648\) 0 0
\(649\) 5.05957 + 2.92114i 0.198605 + 0.114665i
\(650\) −2.43661 + 4.22033i −0.0955717 + 0.165535i
\(651\) 0 0
\(652\) 12.3640 + 21.4151i 0.484213 + 0.838682i
\(653\) 45.0974i 1.76480i −0.470502 0.882399i \(-0.655927\pi\)
0.470502 0.882399i \(-0.344073\pi\)
\(654\) 0 0
\(655\) −4.96086 −0.193837
\(656\) −2.15928 + 3.73998i −0.0843057 + 0.146022i
\(657\) 0 0
\(658\) 0 0
\(659\) −27.5435 15.9022i −1.07294 0.619463i −0.143958 0.989584i \(-0.545983\pi\)
−0.928984 + 0.370121i \(0.879316\pi\)
\(660\) 0 0
\(661\) 17.1234 + 9.88619i 0.666022 + 0.384528i 0.794568 0.607175i \(-0.207698\pi\)
−0.128546 + 0.991704i \(0.541031\pi\)
\(662\) −9.27631 5.35568i −0.360534 0.208154i
\(663\) 0 0
\(664\) −14.7348 8.50712i −0.571820 0.330140i
\(665\) 0 0
\(666\) 0 0
\(667\) 7.03663 12.1878i 0.272459 0.471913i
\(668\) −19.3484 −0.748614
\(669\) 0 0
\(670\) 3.99252i 0.154245i
\(671\) −1.65948 2.87430i −0.0640635 0.110961i
\(672\) 0 0
\(673\) −0.945369 + 1.63743i −0.0364413 + 0.0631182i −0.883671 0.468109i \(-0.844936\pi\)
0.847230 + 0.531227i \(0.178269\pi\)
\(674\) 6.54008 + 3.77592i 0.251914 + 0.145443i
\(675\) 0 0
\(676\) 5.99843 + 10.3896i 0.230709 + 0.399600i
\(677\) 10.5661 + 18.3010i 0.406088 + 0.703364i 0.994447 0.105235i \(-0.0335595\pi\)
−0.588360 + 0.808599i \(0.700226\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.58394 0.914490i 0.0607415 0.0350691i
\(681\) 0 0
\(682\) 4.23488i 0.162162i
\(683\) −7.55150 + 4.35986i −0.288950 + 0.166825i −0.637468 0.770477i \(-0.720018\pi\)
0.348518 + 0.937302i \(0.386685\pi\)
\(684\) 0 0
\(685\) 3.29517i 0.125902i
\(686\) 0 0
\(687\) 0 0
\(688\) −4.49843 −0.171501
\(689\) 0 0
\(690\) 0 0
\(691\) −15.7071 + 9.06850i −0.597526 + 0.344982i −0.768068 0.640369i \(-0.778782\pi\)
0.170542 + 0.985350i \(0.445448\pi\)
\(692\) −4.83654 −0.183858
\(693\) 0 0
\(694\) −10.9320 −0.414972
\(695\) 2.95235 1.70454i 0.111989 0.0646568i
\(696\) 0 0
\(697\) 10.7728 18.6590i 0.408048 0.706760i
\(698\) −1.18429 −0.0448260
\(699\) 0 0
\(700\) 0 0
\(701\) 35.6167i 1.34523i 0.739995 + 0.672613i \(0.234828\pi\)
−0.739995 + 0.672613i \(0.765172\pi\)
\(702\) 0 0
\(703\) 28.4519 16.4267i 1.07308 0.619545i
\(704\) 0.669453i 0.0252310i
\(705\) 0 0
\(706\) −29.0832 + 16.7912i −1.09456 + 0.631946i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.80385 + 3.12436i 0.0677449 + 0.117338i 0.897908 0.440183i \(-0.145086\pi\)
−0.830163 + 0.557520i \(0.811753\pi\)
\(710\) 1.00786 + 1.74566i 0.0378242 + 0.0655135i
\(711\) 0 0
\(712\) 9.27628 + 5.35566i 0.347643 + 0.200712i
\(713\) −24.3375 + 42.1538i −0.911447 + 1.57867i
\(714\) 0 0
\(715\) 0.122902 + 0.212873i 0.00459628 + 0.00796099i
\(716\) 3.65796i 0.136704i
\(717\) 0 0
\(718\) 10.1281 0.377978
\(719\) 12.8915 22.3287i 0.480770 0.832718i −0.518986 0.854782i \(-0.673690\pi\)
0.999757 + 0.0220642i \(0.00702381\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 18.5453 + 10.7072i 0.690186 + 0.398479i
\(723\) 0 0
\(724\) 4.90860 + 2.83398i 0.182427 + 0.105324i
\(725\) 7.70685 + 4.44955i 0.286225 + 0.165252i
\(726\) 0 0
\(727\) −1.32423 0.764544i −0.0491129 0.0283554i 0.475242 0.879855i \(-0.342360\pi\)
−0.524355 + 0.851499i \(0.675694\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0.746603 1.29315i 0.0276330 0.0478618i
\(731\) 22.4430 0.830083
\(732\) 0 0
\(733\) 20.7739i 0.767303i 0.923478 + 0.383651i \(0.125334\pi\)
−0.923478 + 0.383651i \(0.874666\pi\)
\(734\) −9.00104 15.5903i −0.332234 0.575447i
\(735\) 0 0
\(736\) 3.84729 6.66371i 0.141813 0.245628i
\(737\) 6.31405 + 3.64542i 0.232581 + 0.134281i
\(738\) 0 0
\(739\) 5.93544 + 10.2805i 0.218339 + 0.378174i 0.954300 0.298850i \(-0.0966029\pi\)
−0.735961 + 0.677023i \(0.763270\pi\)
\(740\) −0.947269 1.64072i −0.0348223 0.0603140i
\(741\) 0 0
\(742\) 0 0
\(743\) 37.5906 21.7029i 1.37907 0.796204i 0.387019 0.922072i \(-0.373505\pi\)
0.992047 + 0.125868i \(0.0401716\pi\)
\(744\) 0 0
\(745\) 1.03825i 0.0380384i
\(746\) 14.2106 8.20451i 0.520288 0.300389i
\(747\) 0 0
\(748\) 3.33994i 0.122120i
\(749\) 0 0
\(750\) 0 0
\(751\) 2.31383 0.0844327 0.0422164 0.999108i \(-0.486558\pi\)
0.0422164 + 0.999108i \(0.486558\pi\)
\(752\) 4.16450 7.21313i 0.151864 0.263036i
\(753\) 0 0
\(754\) −1.58642 + 0.915921i −0.0577741 + 0.0333559i
\(755\) −6.06787 −0.220832
\(756\) 0 0
\(757\) −15.0946 −0.548624 −0.274312 0.961641i \(-0.588450\pi\)
−0.274312 + 0.961641i \(0.588450\pi\)
\(758\) −2.52336 + 1.45686i −0.0916525 + 0.0529156i
\(759\) 0 0
\(760\) 1.16527 2.01831i 0.0422689 0.0732119i
\(761\) −23.3379 −0.845998 −0.422999 0.906130i \(-0.639023\pi\)
−0.422999 + 0.906130i \(0.639023\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 27.3777i 0.990490i
\(765\) 0 0
\(766\) 7.42567 4.28721i 0.268300 0.154903i
\(767\) 8.74061i 0.315605i
\(768\) 0 0
\(769\) 15.8266 9.13748i 0.570721 0.329506i −0.186716 0.982414i \(-0.559784\pi\)
0.757437 + 0.652908i \(0.226451\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.01413 8.68473i −0.180463 0.312570i
\(773\) 0.219254 + 0.379758i 0.00788600 + 0.0136590i 0.869941 0.493155i \(-0.164156\pi\)
−0.862055 + 0.506814i \(0.830823\pi\)
\(774\) 0 0
\(775\) −26.6556 15.3896i −0.957497 0.552811i
\(776\) 8.60787 14.9093i 0.309004 0.535211i
\(777\) 0 0
\(778\) −17.7770 30.7906i −0.637335 1.10390i
\(779\) 27.4541i 0.983644i
\(780\) 0 0
\(781\) −3.68095 −0.131715
\(782\) −19.1944 + 33.2456i −0.686390 + 1.18886i
\(783\) 0 0
\(784\) 0 0
\(785\) 0.899924 + 0.519571i 0.0321197 + 0.0185443i
\(786\) 0 0
\(787\) −33.1317 19.1286i −1.18102 0.681861i −0.224769 0.974412i \(-0.572163\pi\)
−0.956250 + 0.292551i \(0.905496\pi\)
\(788\) −16.3037 9.41292i −0.580794 0.335322i
\(789\) 0 0
\(790\) −2.65279 1.53159i −0.0943820 0.0544915i
\(791\) 0 0
\(792\) 0 0
\(793\) −2.48274 + 4.30022i −0.0881645 + 0.152705i
\(794\) 3.58034 0.127061
\(795\) 0