Properties

Label 2646.2.h.r
Level $2646$
Weight $2$
Character orbit 2646.h
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.31116960000.2
Defining polynomial: \( x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + \beta_{2} q^{4} + (\beta_{4} - \beta_{3}) q^{5} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} - 1) q^{2} + \beta_{2} q^{4} + (\beta_{4} - \beta_{3}) q^{5} + q^{8} + \beta_{3} q^{10} + \beta_{5} q^{11} + ( - 2 \beta_{7} + 2 \beta_1) q^{13} + ( - \beta_{2} - 1) q^{16} + ( - \beta_{7} + 2 \beta_{3} + \beta_1) q^{17} + ( - \beta_{4} - \beta_1) q^{19} - \beta_{4} q^{20} + \beta_{6} q^{22} + (\beta_{5} - 1) q^{23} - \beta_{5} q^{25} - 2 \beta_1 q^{26} + 4 \beta_{2} q^{29} + 2 \beta_1 q^{31} + \beta_{2} q^{32} + ( - 2 \beta_{4} - \beta_1) q^{34} + 6 \beta_{2} q^{37} + (\beta_{7} + \beta_{4} - \beta_{3}) q^{38} + (\beta_{4} - \beta_{3}) q^{40} + ( - \beta_{7} + 2 \beta_{3} + \beta_1) q^{41} + (\beta_{6} + \beta_{5} + 2 \beta_{2}) q^{43} + ( - \beta_{6} - \beta_{5}) q^{44} + (\beta_{6} + \beta_{2} + 1) q^{46} + (4 \beta_{7} - 4 \beta_{3} - 4 \beta_1) q^{47} - \beta_{6} q^{50} + 2 \beta_{7} q^{52} + ( - 4 \beta_{2} - 4) q^{53} + ( - 2 \beta_{7} - 6 \beta_{4} + 6 \beta_{3}) q^{55} + 4 q^{58} + ( - 4 \beta_{4} + 3 \beta_1) q^{59} + ( - 2 \beta_{7} - \beta_{3} + 2 \beta_1) q^{61} - 2 \beta_{7} q^{62} + q^{64} + (4 \beta_{2} + 4) q^{65} + ( - \beta_{6} - \beta_{5}) q^{67} + (\beta_{7} + 2 \beta_{4} - 2 \beta_{3}) q^{68} + ( - \beta_{5} + 5) q^{71} + ( - 3 \beta_{7} + 4 \beta_{3} + 3 \beta_1) q^{73} + 6 q^{74} + ( - \beta_{7} + \beta_{3} + \beta_1) q^{76} + (\beta_{6} - 9 \beta_{2} - 9) q^{79} + \beta_{3} q^{80} + ( - 2 \beta_{4} - \beta_1) q^{82} + ( - 2 \beta_{4} + 2 \beta_1) q^{83} + ( - 2 \beta_{6} - 8 \beta_{2} - 8) q^{85} + ( - \beta_{5} + 2) q^{86} + \beta_{5} q^{88} + (2 \beta_{4} - 4 \beta_1) q^{89} + ( - \beta_{6} - \beta_{5} - \beta_{2}) q^{92} + (4 \beta_{4} + 4 \beta_1) q^{94} + (\beta_{6} + \beta_{5} + 3 \beta_{2}) q^{95} + 5 \beta_1 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} - 4 q^{11} - 4 q^{16} + 2 q^{22} - 12 q^{23} + 4 q^{25} - 16 q^{29} - 4 q^{32} - 24 q^{37} - 10 q^{43} + 2 q^{44} + 6 q^{46} - 2 q^{50} - 16 q^{53} + 32 q^{58} + 8 q^{64} + 16 q^{65} + 2 q^{67} + 44 q^{71} + 48 q^{74} - 34 q^{79} - 36 q^{85} + 20 q^{86} - 4 q^{88} + 6 q^{92} - 14 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{7} + 8\nu^{5} - 64\nu^{3} + 135\nu ) / 216 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} + 8\nu^{4} + 8\nu^{2} - 81 ) / 72 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 8\nu^{5} + 44\nu^{3} + 27\nu ) / 108 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} + 4\nu^{5} + 4\nu^{3} - 15\nu ) / 36 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} + \nu^{4} - 17\nu^{2} ) / 9 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 8\nu^{2} + 17 ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} + 2\nu^{5} + 2\nu^{3} - 15\nu ) / 18 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{7} - \beta_{4} + 2\beta_{3} + 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} - \beta_{5} + \beta_{2} - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} - \beta_{4} + 5\beta_{3} - 4\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{6} + 2\beta_{5} + 25\beta_{2} + 26 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5\beta_{7} + 14\beta_{4} + 5\beta_{3} + 14\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 16\beta_{6} + 8\beta_{5} - 8\beta_{2} - 43 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -31\beta_{7} + 41\beta_{4} - 10\beta_{3} - 10\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(-1 - \beta_{2}\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
1.62968 0.586627i
0.306808 + 1.70466i
−0.306808 1.70466i
−1.62968 + 0.586627i
1.62968 + 0.586627i
0.306808 1.70466i
−0.306808 + 1.70466i
−1.62968 0.586627i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −3.25937 0 0 1.00000 0 1.62968 2.82269i
361.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i −0.613616 0 0 1.00000 0 0.306808 0.531407i
361.3 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.613616 0 0 1.00000 0 −0.306808 + 0.531407i
361.4 −0.500000 + 0.866025i 0 −0.500000 0.866025i 3.25937 0 0 1.00000 0 −1.62968 + 2.82269i
667.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −3.25937 0 0 1.00000 0 1.62968 + 2.82269i
667.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i −0.613616 0 0 1.00000 0 0.306808 + 0.531407i
667.3 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.613616 0 0 1.00000 0 −0.306808 0.531407i
667.4 −0.500000 0.866025i 0 −0.500000 + 0.866025i 3.25937 0 0 1.00000 0 −1.62968 2.82269i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 667.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
63.g even 3 1 inner
63.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.h.r 8
3.b odd 2 1 882.2.h.s 8
7.b odd 2 1 inner 2646.2.h.r 8
7.c even 3 1 2646.2.e.s 8
7.c even 3 1 2646.2.f.p 8
7.d odd 6 1 2646.2.e.s 8
7.d odd 6 1 2646.2.f.p 8
9.c even 3 1 2646.2.e.s 8
9.d odd 6 1 882.2.e.r 8
21.c even 2 1 882.2.h.s 8
21.g even 6 1 882.2.e.r 8
21.g even 6 1 882.2.f.r 8
21.h odd 6 1 882.2.e.r 8
21.h odd 6 1 882.2.f.r 8
63.g even 3 1 inner 2646.2.h.r 8
63.g even 3 1 7938.2.a.cq 4
63.h even 3 1 2646.2.f.p 8
63.i even 6 1 882.2.f.r 8
63.j odd 6 1 882.2.f.r 8
63.k odd 6 1 inner 2646.2.h.r 8
63.k odd 6 1 7938.2.a.cq 4
63.l odd 6 1 2646.2.e.s 8
63.n odd 6 1 882.2.h.s 8
63.n odd 6 1 7938.2.a.ch 4
63.o even 6 1 882.2.e.r 8
63.s even 6 1 882.2.h.s 8
63.s even 6 1 7938.2.a.ch 4
63.t odd 6 1 2646.2.f.p 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
882.2.e.r 8 9.d odd 6 1
882.2.e.r 8 21.g even 6 1
882.2.e.r 8 21.h odd 6 1
882.2.e.r 8 63.o even 6 1
882.2.f.r 8 21.g even 6 1
882.2.f.r 8 21.h odd 6 1
882.2.f.r 8 63.i even 6 1
882.2.f.r 8 63.j odd 6 1
882.2.h.s 8 3.b odd 2 1
882.2.h.s 8 21.c even 2 1
882.2.h.s 8 63.n odd 6 1
882.2.h.s 8 63.s even 6 1
2646.2.e.s 8 7.c even 3 1
2646.2.e.s 8 7.d odd 6 1
2646.2.e.s 8 9.c even 3 1
2646.2.e.s 8 63.l odd 6 1
2646.2.f.p 8 7.c even 3 1
2646.2.f.p 8 7.d odd 6 1
2646.2.f.p 8 63.h even 3 1
2646.2.f.p 8 63.t odd 6 1
2646.2.h.r 8 1.a even 1 1 trivial
2646.2.h.r 8 7.b odd 2 1 inner
2646.2.h.r 8 63.g even 3 1 inner
2646.2.h.r 8 63.k odd 6 1 inner
7938.2.a.ch 4 63.n odd 6 1
7938.2.a.ch 4 63.s even 6 1
7938.2.a.cq 4 63.g even 3 1
7938.2.a.cq 4 63.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2646, [\chi])\):

\( T_{5}^{4} - 11T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} + T_{11} - 26 \) Copy content Toggle raw display
\( T_{13}^{8} + 44T_{13}^{6} + 1872T_{13}^{4} + 2816T_{13}^{2} + 4096 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 11 T^{2} + 4)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{2} + T - 26)^{4} \) Copy content Toggle raw display
$13$ \( T^{8} + 44 T^{6} + 1872 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$17$ \( T^{8} + 39 T^{6} + 1377 T^{4} + \cdots + 20736 \) Copy content Toggle raw display
$19$ \( (T^{4} + 7 T^{2} + 49)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 3 T - 24)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T + 16)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} + 44 T^{6} + 1872 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$37$ \( (T^{2} + 6 T + 36)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} + 39 T^{6} + 1377 T^{4} + \cdots + 20736 \) Copy content Toggle raw display
$43$ \( (T^{4} + 5 T^{3} + 45 T^{2} - 100 T + 400)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 112 T^{2} + 12544)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 4 T + 16)^{4} \) Copy content Toggle raw display
$59$ \( T^{8} + 371 T^{6} + \cdots + 1097199376 \) Copy content Toggle raw display
$61$ \( T^{8} + 71 T^{6} + 4017 T^{4} + \cdots + 1048576 \) Copy content Toggle raw display
$67$ \( (T^{4} - T^{3} + 27 T^{2} + 26 T + 676)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 11 T + 4)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} + 179 T^{6} + \cdots + 45212176 \) Copy content Toggle raw display
$79$ \( (T^{4} + 17 T^{3} + 243 T^{2} + 782 T + 2116)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 60 T^{2} + 3600)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + 284 T^{6} + \cdots + 268435456 \) Copy content Toggle raw display
$97$ \( T^{8} + 275 T^{6} + 73125 T^{4} + \cdots + 6250000 \) Copy content Toggle raw display
show more
show less