Properties

Label 2646.2.h.d
Level $2646$
Weight $2$
Character orbit 2646.h
Analytic conductor $21.128$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + 3 q^{5} + q^{8} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + 3 q^{5} + q^{8} + ( -3 + 3 \zeta_{6} ) q^{10} + 3 q^{11} + ( -1 + \zeta_{6} ) q^{13} + ( -1 + \zeta_{6} ) q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} -7 \zeta_{6} q^{19} -3 \zeta_{6} q^{20} + ( -3 + 3 \zeta_{6} ) q^{22} + 9 q^{23} + 4 q^{25} -\zeta_{6} q^{26} + 3 \zeta_{6} q^{29} + 8 \zeta_{6} q^{31} -\zeta_{6} q^{32} -3 \zeta_{6} q^{34} + \zeta_{6} q^{37} + 7 q^{38} + 3 q^{40} + ( -3 + 3 \zeta_{6} ) q^{41} + \zeta_{6} q^{43} -3 \zeta_{6} q^{44} + ( -9 + 9 \zeta_{6} ) q^{46} + ( -4 + 4 \zeta_{6} ) q^{50} + q^{52} + ( 3 - 3 \zeta_{6} ) q^{53} + 9 q^{55} -3 q^{58} + ( 2 - 2 \zeta_{6} ) q^{61} -8 q^{62} + q^{64} + ( -3 + 3 \zeta_{6} ) q^{65} + 4 \zeta_{6} q^{67} + 3 q^{68} -12 q^{71} + ( 11 - 11 \zeta_{6} ) q^{73} - q^{74} + ( -7 + 7 \zeta_{6} ) q^{76} + ( 16 - 16 \zeta_{6} ) q^{79} + ( -3 + 3 \zeta_{6} ) q^{80} -3 \zeta_{6} q^{82} + 9 \zeta_{6} q^{83} + ( -9 + 9 \zeta_{6} ) q^{85} - q^{86} + 3 q^{88} -3 \zeta_{6} q^{89} -9 \zeta_{6} q^{92} -21 \zeta_{6} q^{95} -\zeta_{6} q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{4} + 6q^{5} + 2q^{8} + O(q^{10}) \) \( 2q - q^{2} - q^{4} + 6q^{5} + 2q^{8} - 3q^{10} + 6q^{11} - q^{13} - q^{16} - 3q^{17} - 7q^{19} - 3q^{20} - 3q^{22} + 18q^{23} + 8q^{25} - q^{26} + 3q^{29} + 8q^{31} - q^{32} - 3q^{34} + q^{37} + 14q^{38} + 6q^{40} - 3q^{41} + q^{43} - 3q^{44} - 9q^{46} - 4q^{50} + 2q^{52} + 3q^{53} + 18q^{55} - 6q^{58} + 2q^{61} - 16q^{62} + 2q^{64} - 3q^{65} + 4q^{67} + 6q^{68} - 24q^{71} + 11q^{73} - 2q^{74} - 7q^{76} + 16q^{79} - 3q^{80} - 3q^{82} + 9q^{83} - 9q^{85} - 2q^{86} + 6q^{88} - 3q^{89} - 9q^{92} - 21q^{95} - q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(-1 + \zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 3.00000 0 0 1.00000 0 −1.50000 + 2.59808i
667.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 3.00000 0 0 1.00000 0 −1.50000 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.h.d 2
3.b odd 2 1 882.2.h.i 2
7.b odd 2 1 378.2.h.a 2
7.c even 3 1 2646.2.e.g 2
7.c even 3 1 2646.2.f.a 2
7.d odd 6 1 378.2.e.b 2
7.d odd 6 1 2646.2.f.d 2
9.c even 3 1 2646.2.e.g 2
9.d odd 6 1 882.2.e.c 2
21.c even 2 1 126.2.h.b yes 2
21.g even 6 1 126.2.e.a 2
21.g even 6 1 882.2.f.i 2
21.h odd 6 1 882.2.e.c 2
21.h odd 6 1 882.2.f.g 2
28.d even 2 1 3024.2.t.a 2
28.f even 6 1 3024.2.q.f 2
63.g even 3 1 inner 2646.2.h.d 2
63.g even 3 1 7938.2.a.be 1
63.h even 3 1 2646.2.f.a 2
63.i even 6 1 882.2.f.i 2
63.i even 6 1 1134.2.g.e 2
63.j odd 6 1 882.2.f.g 2
63.k odd 6 1 378.2.h.a 2
63.k odd 6 1 7938.2.a.t 1
63.l odd 6 1 378.2.e.b 2
63.l odd 6 1 1134.2.g.c 2
63.n odd 6 1 882.2.h.i 2
63.n odd 6 1 7938.2.a.b 1
63.o even 6 1 126.2.e.a 2
63.o even 6 1 1134.2.g.e 2
63.s even 6 1 126.2.h.b yes 2
63.s even 6 1 7938.2.a.m 1
63.t odd 6 1 1134.2.g.c 2
63.t odd 6 1 2646.2.f.d 2
84.h odd 2 1 1008.2.t.f 2
84.j odd 6 1 1008.2.q.a 2
252.n even 6 1 3024.2.t.a 2
252.s odd 6 1 1008.2.q.a 2
252.bi even 6 1 3024.2.q.f 2
252.bn odd 6 1 1008.2.t.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.a 2 21.g even 6 1
126.2.e.a 2 63.o even 6 1
126.2.h.b yes 2 21.c even 2 1
126.2.h.b yes 2 63.s even 6 1
378.2.e.b 2 7.d odd 6 1
378.2.e.b 2 63.l odd 6 1
378.2.h.a 2 7.b odd 2 1
378.2.h.a 2 63.k odd 6 1
882.2.e.c 2 9.d odd 6 1
882.2.e.c 2 21.h odd 6 1
882.2.f.g 2 21.h odd 6 1
882.2.f.g 2 63.j odd 6 1
882.2.f.i 2 21.g even 6 1
882.2.f.i 2 63.i even 6 1
882.2.h.i 2 3.b odd 2 1
882.2.h.i 2 63.n odd 6 1
1008.2.q.a 2 84.j odd 6 1
1008.2.q.a 2 252.s odd 6 1
1008.2.t.f 2 84.h odd 2 1
1008.2.t.f 2 252.bn odd 6 1
1134.2.g.c 2 63.l odd 6 1
1134.2.g.c 2 63.t odd 6 1
1134.2.g.e 2 63.i even 6 1
1134.2.g.e 2 63.o even 6 1
2646.2.e.g 2 7.c even 3 1
2646.2.e.g 2 9.c even 3 1
2646.2.f.a 2 7.c even 3 1
2646.2.f.a 2 63.h even 3 1
2646.2.f.d 2 7.d odd 6 1
2646.2.f.d 2 63.t odd 6 1
2646.2.h.d 2 1.a even 1 1 trivial
2646.2.h.d 2 63.g even 3 1 inner
3024.2.q.f 2 28.f even 6 1
3024.2.q.f 2 252.bi even 6 1
3024.2.t.a 2 28.d even 2 1
3024.2.t.a 2 252.n even 6 1
7938.2.a.b 1 63.n odd 6 1
7938.2.a.m 1 63.s even 6 1
7938.2.a.t 1 63.k odd 6 1
7938.2.a.be 1 63.g even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2646, [\chi])\):

\( T_{5} - 3 \)
\( T_{11} - 3 \)
\( T_{13}^{2} + T_{13} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ 1
$5$ \( ( 1 - 3 T + 5 T^{2} )^{2} \)
$7$ 1
$11$ \( ( 1 - 3 T + 11 T^{2} )^{2} \)
$13$ \( 1 + T - 12 T^{2} + 13 T^{3} + 169 T^{4} \)
$17$ \( 1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4} \)
$19$ \( ( 1 - T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \)
$23$ \( ( 1 - 9 T + 23 T^{2} )^{2} \)
$29$ \( 1 - 3 T - 20 T^{2} - 87 T^{3} + 841 T^{4} \)
$31$ \( 1 - 8 T + 33 T^{2} - 248 T^{3} + 961 T^{4} \)
$37$ \( ( 1 - 11 T + 37 T^{2} )( 1 + 10 T + 37 T^{2} ) \)
$41$ \( 1 + 3 T - 32 T^{2} + 123 T^{3} + 1681 T^{4} \)
$43$ \( 1 - T - 42 T^{2} - 43 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 47 T^{2} + 2209 T^{4} \)
$53$ \( 1 - 3 T - 44 T^{2} - 159 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 59 T^{2} + 3481 T^{4} \)
$61$ \( 1 - 2 T - 57 T^{2} - 122 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 4 T - 51 T^{2} - 268 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 12 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 11 T + 48 T^{2} - 803 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 16 T + 177 T^{2} - 1264 T^{3} + 6241 T^{4} \)
$83$ \( 1 - 9 T - 2 T^{2} - 747 T^{3} + 6889 T^{4} \)
$89$ \( 1 + 3 T - 80 T^{2} + 267 T^{3} + 7921 T^{4} \)
$97$ \( 1 + T - 96 T^{2} + 97 T^{3} + 9409 T^{4} \)
show more
show less