# Properties

 Label 2646.2.h.a Level $2646$ Weight $2$ Character orbit 2646.h Analytic conductor $21.128$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2646,2,Mod(361,2646)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2646, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([2, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2646.361");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2646 = 2 \cdot 3^{3} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2646.h (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$21.1284163748$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 126) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} - 3 q^{5} + q^{8} +O(q^{10})$$ q + (z - 1) * q^2 - z * q^4 - 3 * q^5 + q^8 $$q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} - 3 q^{5} + q^{8} + ( - 3 \zeta_{6} + 3) q^{10} + 6 q^{11} + ( - 2 \zeta_{6} + 2) q^{13} + (\zeta_{6} - 1) q^{16} + (6 \zeta_{6} - 6) q^{17} - 7 \zeta_{6} q^{19} + 3 \zeta_{6} q^{20} + (6 \zeta_{6} - 6) q^{22} - 3 q^{23} + 4 q^{25} + 2 \zeta_{6} q^{26} + 6 \zeta_{6} q^{29} + 2 \zeta_{6} q^{31} - \zeta_{6} q^{32} - 6 \zeta_{6} q^{34} - 2 \zeta_{6} q^{37} + 7 q^{38} - 3 q^{40} - 2 \zeta_{6} q^{43} - 6 \zeta_{6} q^{44} + ( - 3 \zeta_{6} + 3) q^{46} + (4 \zeta_{6} - 4) q^{50} - 2 q^{52} + ( - 6 \zeta_{6} + 6) q^{53} - 18 q^{55} - 6 q^{58} + ( - 5 \zeta_{6} + 5) q^{61} - 2 q^{62} + q^{64} + (6 \zeta_{6} - 6) q^{65} - 8 \zeta_{6} q^{67} + 6 q^{68} - 3 q^{71} + ( - 2 \zeta_{6} + 2) q^{73} + 2 q^{74} + (7 \zeta_{6} - 7) q^{76} + (5 \zeta_{6} - 5) q^{79} + ( - 3 \zeta_{6} + 3) q^{80} - 12 \zeta_{6} q^{83} + ( - 18 \zeta_{6} + 18) q^{85} + 2 q^{86} + 6 q^{88} + 3 \zeta_{6} q^{92} + 21 \zeta_{6} q^{95} + 2 \zeta_{6} q^{97} +O(q^{100})$$ q + (z - 1) * q^2 - z * q^4 - 3 * q^5 + q^8 + (-3*z + 3) * q^10 + 6 * q^11 + (-2*z + 2) * q^13 + (z - 1) * q^16 + (6*z - 6) * q^17 - 7*z * q^19 + 3*z * q^20 + (6*z - 6) * q^22 - 3 * q^23 + 4 * q^25 + 2*z * q^26 + 6*z * q^29 + 2*z * q^31 - z * q^32 - 6*z * q^34 - 2*z * q^37 + 7 * q^38 - 3 * q^40 - 2*z * q^43 - 6*z * q^44 + (-3*z + 3) * q^46 + (4*z - 4) * q^50 - 2 * q^52 + (-6*z + 6) * q^53 - 18 * q^55 - 6 * q^58 + (-5*z + 5) * q^61 - 2 * q^62 + q^64 + (6*z - 6) * q^65 - 8*z * q^67 + 6 * q^68 - 3 * q^71 + (-2*z + 2) * q^73 + 2 * q^74 + (7*z - 7) * q^76 + (5*z - 5) * q^79 + (-3*z + 3) * q^80 - 12*z * q^83 + (-18*z + 18) * q^85 + 2 * q^86 + 6 * q^88 + 3*z * q^92 + 21*z * q^95 + 2*z * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} - q^{4} - 6 q^{5} + 2 q^{8}+O(q^{10})$$ 2 * q - q^2 - q^4 - 6 * q^5 + 2 * q^8 $$2 q - q^{2} - q^{4} - 6 q^{5} + 2 q^{8} + 3 q^{10} + 12 q^{11} + 2 q^{13} - q^{16} - 6 q^{17} - 7 q^{19} + 3 q^{20} - 6 q^{22} - 6 q^{23} + 8 q^{25} + 2 q^{26} + 6 q^{29} + 2 q^{31} - q^{32} - 6 q^{34} - 2 q^{37} + 14 q^{38} - 6 q^{40} - 2 q^{43} - 6 q^{44} + 3 q^{46} - 4 q^{50} - 4 q^{52} + 6 q^{53} - 36 q^{55} - 12 q^{58} + 5 q^{61} - 4 q^{62} + 2 q^{64} - 6 q^{65} - 8 q^{67} + 12 q^{68} - 6 q^{71} + 2 q^{73} + 4 q^{74} - 7 q^{76} - 5 q^{79} + 3 q^{80} - 12 q^{83} + 18 q^{85} + 4 q^{86} + 12 q^{88} + 3 q^{92} + 21 q^{95} + 2 q^{97}+O(q^{100})$$ 2 * q - q^2 - q^4 - 6 * q^5 + 2 * q^8 + 3 * q^10 + 12 * q^11 + 2 * q^13 - q^16 - 6 * q^17 - 7 * q^19 + 3 * q^20 - 6 * q^22 - 6 * q^23 + 8 * q^25 + 2 * q^26 + 6 * q^29 + 2 * q^31 - q^32 - 6 * q^34 - 2 * q^37 + 14 * q^38 - 6 * q^40 - 2 * q^43 - 6 * q^44 + 3 * q^46 - 4 * q^50 - 4 * q^52 + 6 * q^53 - 36 * q^55 - 12 * q^58 + 5 * q^61 - 4 * q^62 + 2 * q^64 - 6 * q^65 - 8 * q^67 + 12 * q^68 - 6 * q^71 + 2 * q^73 + 4 * q^74 - 7 * q^76 - 5 * q^79 + 3 * q^80 - 12 * q^83 + 18 * q^85 + 4 * q^86 + 12 * q^88 + 3 * q^92 + 21 * q^95 + 2 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$\chi(n)$$ $$-1 + \zeta_{6}$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −3.00000 0 0 1.00000 0 1.50000 2.59808i
667.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −3.00000 0 0 1.00000 0 1.50000 + 2.59808i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.h.a 2
3.b odd 2 1 882.2.h.f 2
7.b odd 2 1 2646.2.h.e 2
7.c even 3 1 2646.2.e.j 2
7.c even 3 1 2646.2.f.c 2
7.d odd 6 1 378.2.f.a 2
7.d odd 6 1 2646.2.e.f 2
9.c even 3 1 2646.2.e.j 2
9.d odd 6 1 882.2.e.d 2
21.c even 2 1 882.2.h.j 2
21.g even 6 1 126.2.f.a 2
21.g even 6 1 882.2.e.b 2
21.h odd 6 1 882.2.e.d 2
21.h odd 6 1 882.2.f.h 2
28.f even 6 1 3024.2.r.a 2
63.g even 3 1 inner 2646.2.h.a 2
63.g even 3 1 7938.2.a.u 1
63.h even 3 1 2646.2.f.c 2
63.i even 6 1 126.2.f.a 2
63.j odd 6 1 882.2.f.h 2
63.k odd 6 1 1134.2.a.h 1
63.k odd 6 1 2646.2.h.e 2
63.l odd 6 1 2646.2.e.f 2
63.n odd 6 1 882.2.h.f 2
63.n odd 6 1 7938.2.a.l 1
63.o even 6 1 882.2.e.b 2
63.s even 6 1 882.2.h.j 2
63.s even 6 1 1134.2.a.a 1
63.t odd 6 1 378.2.f.a 2
84.j odd 6 1 1008.2.r.d 2
252.n even 6 1 9072.2.a.w 1
252.r odd 6 1 1008.2.r.d 2
252.bj even 6 1 3024.2.r.a 2
252.bn odd 6 1 9072.2.a.c 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.f.a 2 21.g even 6 1
126.2.f.a 2 63.i even 6 1
378.2.f.a 2 7.d odd 6 1
378.2.f.a 2 63.t odd 6 1
882.2.e.b 2 21.g even 6 1
882.2.e.b 2 63.o even 6 1
882.2.e.d 2 9.d odd 6 1
882.2.e.d 2 21.h odd 6 1
882.2.f.h 2 21.h odd 6 1
882.2.f.h 2 63.j odd 6 1
882.2.h.f 2 3.b odd 2 1
882.2.h.f 2 63.n odd 6 1
882.2.h.j 2 21.c even 2 1
882.2.h.j 2 63.s even 6 1
1008.2.r.d 2 84.j odd 6 1
1008.2.r.d 2 252.r odd 6 1
1134.2.a.a 1 63.s even 6 1
1134.2.a.h 1 63.k odd 6 1
2646.2.e.f 2 7.d odd 6 1
2646.2.e.f 2 63.l odd 6 1
2646.2.e.j 2 7.c even 3 1
2646.2.e.j 2 9.c even 3 1
2646.2.f.c 2 7.c even 3 1
2646.2.f.c 2 63.h even 3 1
2646.2.h.a 2 1.a even 1 1 trivial
2646.2.h.a 2 63.g even 3 1 inner
2646.2.h.e 2 7.b odd 2 1
2646.2.h.e 2 63.k odd 6 1
3024.2.r.a 2 28.f even 6 1
3024.2.r.a 2 252.bj even 6 1
7938.2.a.l 1 63.n odd 6 1
7938.2.a.u 1 63.g even 3 1
9072.2.a.c 1 252.bn odd 6 1
9072.2.a.w 1 252.n even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2646, [\chi])$$:

 $$T_{5} + 3$$ T5 + 3 $$T_{11} - 6$$ T11 - 6 $$T_{13}^{2} - 2T_{13} + 4$$ T13^2 - 2*T13 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + T + 1$$
$3$ $$T^{2}$$
$5$ $$(T + 3)^{2}$$
$7$ $$T^{2}$$
$11$ $$(T - 6)^{2}$$
$13$ $$T^{2} - 2T + 4$$
$17$ $$T^{2} + 6T + 36$$
$19$ $$T^{2} + 7T + 49$$
$23$ $$(T + 3)^{2}$$
$29$ $$T^{2} - 6T + 36$$
$31$ $$T^{2} - 2T + 4$$
$37$ $$T^{2} + 2T + 4$$
$41$ $$T^{2}$$
$43$ $$T^{2} + 2T + 4$$
$47$ $$T^{2}$$
$53$ $$T^{2} - 6T + 36$$
$59$ $$T^{2}$$
$61$ $$T^{2} - 5T + 25$$
$67$ $$T^{2} + 8T + 64$$
$71$ $$(T + 3)^{2}$$
$73$ $$T^{2} - 2T + 4$$
$79$ $$T^{2} + 5T + 25$$
$83$ $$T^{2} + 12T + 144$$
$89$ $$T^{2}$$
$97$ $$T^{2} - 2T + 4$$