Properties

Label 2646.2.f.l.1765.1
Level $2646$
Weight $2$
Character 2646.1765
Analytic conductor $21.128$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(883,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,-3,-1,0,0,6,0,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1765.1
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1765
Dual form 2646.2.f.l.883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.59097 + 2.75564i) q^{5} +1.00000 q^{8} +3.18194 q^{10} +(1.59097 + 2.75564i) q^{11} +(2.85185 - 4.93955i) q^{13} +(-0.500000 - 0.866025i) q^{16} -1.52175 q^{17} +1.28263 q^{19} +(-1.59097 - 2.75564i) q^{20} +(1.59097 - 2.75564i) q^{22} +(1.11956 - 1.93914i) q^{23} +(-2.56238 - 4.43818i) q^{25} -5.70370 q^{26} +(3.54063 + 6.13255i) q^{29} +(4.71053 - 8.15888i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.760877 + 1.31788i) q^{34} -1.00000 q^{37} +(-0.641315 - 1.11079i) q^{38} +(-1.59097 + 2.75564i) q^{40} +(2.80150 - 4.85235i) q^{41} +(3.41423 + 5.91362i) q^{43} -3.18194 q^{44} -2.23912 q^{46} +(-2.91423 - 5.04759i) q^{47} +(-2.56238 + 4.43818i) q^{50} +(2.85185 + 4.93955i) q^{52} +2.05718 q^{53} -10.1248 q^{55} +(3.54063 - 6.13255i) q^{58} +(-0.562382 + 0.974074i) q^{59} +(-1.56238 - 2.70612i) q^{61} -9.42107 q^{62} +1.00000 q^{64} +(9.07442 + 15.7174i) q^{65} +(-5.48345 + 9.49761i) q^{67} +(0.760877 - 1.31788i) q^{68} -8.69002 q^{71} +4.96690 q^{73} +(0.500000 + 0.866025i) q^{74} +(-0.641315 + 1.11079i) q^{76} +(2.06922 + 3.58399i) q^{79} +3.18194 q^{80} -5.60301 q^{82} +(4.03379 + 6.98673i) q^{83} +(2.42107 - 4.19341i) q^{85} +(3.41423 - 5.91362i) q^{86} +(1.59097 + 2.75564i) q^{88} +0.225450 q^{89} +(1.11956 + 1.93914i) q^{92} +(-2.91423 + 5.04759i) q^{94} +(-2.04063 + 3.53447i) q^{95} +(7.42107 + 12.8537i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} - q^{5} + 6 q^{8} + 2 q^{10} + q^{11} + 8 q^{13} - 3 q^{16} - 8 q^{17} + 6 q^{19} - q^{20} + q^{22} + 7 q^{23} + 2 q^{25} - 16 q^{26} + 5 q^{29} + 20 q^{31} - 3 q^{32} + 4 q^{34}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.59097 + 2.75564i −0.711504 + 1.23236i 0.252788 + 0.967522i \(0.418652\pi\)
−0.964292 + 0.264840i \(0.914681\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.18194 1.00622
\(11\) 1.59097 + 2.75564i 0.479696 + 0.830858i 0.999729 0.0232884i \(-0.00741361\pi\)
−0.520033 + 0.854146i \(0.674080\pi\)
\(12\) 0 0
\(13\) 2.85185 4.93955i 0.790960 1.36998i −0.134412 0.990925i \(-0.542915\pi\)
0.925373 0.379058i \(-0.123752\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.52175 −0.369079 −0.184540 0.982825i \(-0.559079\pi\)
−0.184540 + 0.982825i \(0.559079\pi\)
\(18\) 0 0
\(19\) 1.28263 0.294256 0.147128 0.989117i \(-0.452997\pi\)
0.147128 + 0.989117i \(0.452997\pi\)
\(20\) −1.59097 2.75564i −0.355752 0.616181i
\(21\) 0 0
\(22\) 1.59097 2.75564i 0.339196 0.587505i
\(23\) 1.11956 1.93914i 0.233445 0.404338i −0.725375 0.688354i \(-0.758334\pi\)
0.958820 + 0.284016i \(0.0916669\pi\)
\(24\) 0 0
\(25\) −2.56238 4.43818i −0.512476 0.887635i
\(26\) −5.70370 −1.11859
\(27\) 0 0
\(28\) 0 0
\(29\) 3.54063 + 6.13255i 0.657478 + 1.13879i 0.981266 + 0.192656i \(0.0617101\pi\)
−0.323788 + 0.946130i \(0.604957\pi\)
\(30\) 0 0
\(31\) 4.71053 8.15888i 0.846037 1.46538i −0.0386810 0.999252i \(-0.512316\pi\)
0.884718 0.466127i \(-0.154351\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0.760877 + 1.31788i 0.130489 + 0.226014i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) −0.641315 1.11079i −0.104035 0.180194i
\(39\) 0 0
\(40\) −1.59097 + 2.75564i −0.251555 + 0.435706i
\(41\) 2.80150 4.85235i 0.437522 0.757810i −0.559976 0.828509i \(-0.689190\pi\)
0.997498 + 0.0706992i \(0.0225230\pi\)
\(42\) 0 0
\(43\) 3.41423 + 5.91362i 0.520665 + 0.901819i 0.999711 + 0.0240288i \(0.00764935\pi\)
−0.479046 + 0.877790i \(0.659017\pi\)
\(44\) −3.18194 −0.479696
\(45\) 0 0
\(46\) −2.23912 −0.330141
\(47\) −2.91423 5.04759i −0.425084 0.736267i 0.571344 0.820711i \(-0.306422\pi\)
−0.996428 + 0.0844432i \(0.973089\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.56238 + 4.43818i −0.362375 + 0.627653i
\(51\) 0 0
\(52\) 2.85185 + 4.93955i 0.395480 + 0.684992i
\(53\) 2.05718 0.282575 0.141288 0.989969i \(-0.454876\pi\)
0.141288 + 0.989969i \(0.454876\pi\)
\(54\) 0 0
\(55\) −10.1248 −1.36522
\(56\) 0 0
\(57\) 0 0
\(58\) 3.54063 6.13255i 0.464907 0.805243i
\(59\) −0.562382 + 0.974074i −0.0732159 + 0.126814i −0.900309 0.435251i \(-0.856660\pi\)
0.827093 + 0.562065i \(0.189993\pi\)
\(60\) 0 0
\(61\) −1.56238 2.70612i −0.200042 0.346484i 0.748499 0.663135i \(-0.230775\pi\)
−0.948542 + 0.316652i \(0.897441\pi\)
\(62\) −9.42107 −1.19648
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 9.07442 + 15.7174i 1.12554 + 1.94950i
\(66\) 0 0
\(67\) −5.48345 + 9.49761i −0.669910 + 1.16032i 0.308019 + 0.951380i \(0.400334\pi\)
−0.977929 + 0.208938i \(0.932999\pi\)
\(68\) 0.760877 1.31788i 0.0922699 0.159816i
\(69\) 0 0
\(70\) 0 0
\(71\) −8.69002 −1.03132 −0.515658 0.856794i \(-0.672452\pi\)
−0.515658 + 0.856794i \(0.672452\pi\)
\(72\) 0 0
\(73\) 4.96690 0.581331 0.290666 0.956825i \(-0.406123\pi\)
0.290666 + 0.956825i \(0.406123\pi\)
\(74\) 0.500000 + 0.866025i 0.0581238 + 0.100673i
\(75\) 0 0
\(76\) −0.641315 + 1.11079i −0.0735639 + 0.127416i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.06922 + 3.58399i 0.232805 + 0.403231i 0.958633 0.284646i \(-0.0918762\pi\)
−0.725827 + 0.687877i \(0.758543\pi\)
\(80\) 3.18194 0.355752
\(81\) 0 0
\(82\) −5.60301 −0.618749
\(83\) 4.03379 + 6.98673i 0.442766 + 0.766893i 0.997894 0.0648718i \(-0.0206639\pi\)
−0.555127 + 0.831765i \(0.687331\pi\)
\(84\) 0 0
\(85\) 2.42107 4.19341i 0.262602 0.454839i
\(86\) 3.41423 5.91362i 0.368166 0.637682i
\(87\) 0 0
\(88\) 1.59097 + 2.75564i 0.169598 + 0.293753i
\(89\) 0.225450 0.0238977 0.0119488 0.999929i \(-0.496196\pi\)
0.0119488 + 0.999929i \(0.496196\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.11956 + 1.93914i 0.116722 + 0.202169i
\(93\) 0 0
\(94\) −2.91423 + 5.04759i −0.300580 + 0.520620i
\(95\) −2.04063 + 3.53447i −0.209364 + 0.362629i
\(96\) 0 0
\(97\) 7.42107 + 12.8537i 0.753495 + 1.30509i 0.946119 + 0.323819i \(0.104967\pi\)
−0.192624 + 0.981273i \(0.561700\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.12476 0.512476
\(101\) 9.29467 + 16.0988i 0.924854 + 1.60189i 0.791796 + 0.610786i \(0.209146\pi\)
0.133058 + 0.991108i \(0.457520\pi\)
\(102\) 0 0
\(103\) 0.141315 0.244765i 0.0139242 0.0241174i −0.858979 0.512010i \(-0.828901\pi\)
0.872904 + 0.487893i \(0.162234\pi\)
\(104\) 2.85185 4.93955i 0.279647 0.484362i
\(105\) 0 0
\(106\) −1.02859 1.78157i −0.0999055 0.173041i
\(107\) 11.3776 1.09991 0.549955 0.835194i \(-0.314645\pi\)
0.549955 + 0.835194i \(0.314645\pi\)
\(108\) 0 0
\(109\) 4.42107 0.423461 0.211731 0.977328i \(-0.432090\pi\)
0.211731 + 0.977328i \(0.432090\pi\)
\(110\) 5.06238 + 8.76830i 0.482679 + 0.836025i
\(111\) 0 0
\(112\) 0 0
\(113\) 1.60752 2.78431i 0.151223 0.261926i −0.780454 0.625213i \(-0.785012\pi\)
0.931677 + 0.363287i \(0.118345\pi\)
\(114\) 0 0
\(115\) 3.56238 + 6.17023i 0.332194 + 0.575377i
\(116\) −7.08126 −0.657478
\(117\) 0 0
\(118\) 1.12476 0.103543
\(119\) 0 0
\(120\) 0 0
\(121\) 0.437618 0.757977i 0.0397835 0.0689070i
\(122\) −1.56238 + 2.70612i −0.141451 + 0.245001i
\(123\) 0 0
\(124\) 4.71053 + 8.15888i 0.423018 + 0.732689i
\(125\) 0.396990 0.0355079
\(126\) 0 0
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 9.07442 15.7174i 0.795879 1.37850i
\(131\) 3.18194 5.51129i 0.278008 0.481523i −0.692882 0.721051i \(-0.743659\pi\)
0.970890 + 0.239528i \(0.0769926\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.9669 0.947396
\(135\) 0 0
\(136\) −1.52175 −0.130489
\(137\) 1.37072 + 2.37416i 0.117109 + 0.202838i 0.918621 0.395140i \(-0.129304\pi\)
−0.801512 + 0.597979i \(0.795971\pi\)
\(138\) 0 0
\(139\) −3.98345 + 6.89953i −0.337872 + 0.585211i −0.984032 0.177991i \(-0.943040\pi\)
0.646161 + 0.763202i \(0.276374\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.34501 + 7.52578i 0.364625 + 0.631550i
\(143\) 18.1488 1.51768
\(144\) 0 0
\(145\) −22.5322 −1.87119
\(146\) −2.48345 4.30146i −0.205532 0.355991i
\(147\) 0 0
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) −11.6300 + 20.1437i −0.952764 + 1.65024i −0.213360 + 0.976974i \(0.568441\pi\)
−0.739404 + 0.673262i \(0.764893\pi\)
\(150\) 0 0
\(151\) 4.06238 + 7.03625i 0.330592 + 0.572602i 0.982628 0.185586i \(-0.0594183\pi\)
−0.652036 + 0.758188i \(0.726085\pi\)
\(152\) 1.28263 0.104035
\(153\) 0 0
\(154\) 0 0
\(155\) 14.9887 + 25.9611i 1.20392 + 2.08525i
\(156\) 0 0
\(157\) 5.63160 9.75422i 0.449451 0.778471i −0.548900 0.835888i \(-0.684953\pi\)
0.998350 + 0.0574170i \(0.0182864\pi\)
\(158\) 2.06922 3.58399i 0.164618 0.285127i
\(159\) 0 0
\(160\) −1.59097 2.75564i −0.125777 0.217853i
\(161\) 0 0
\(162\) 0 0
\(163\) 3.98057 0.311782 0.155891 0.987774i \(-0.450175\pi\)
0.155891 + 0.987774i \(0.450175\pi\)
\(164\) 2.80150 + 4.85235i 0.218761 + 0.378905i
\(165\) 0 0
\(166\) 4.03379 6.98673i 0.313083 0.542276i
\(167\) −2.61956 + 4.53721i −0.202708 + 0.351100i −0.949400 0.314070i \(-0.898307\pi\)
0.746692 + 0.665170i \(0.231641\pi\)
\(168\) 0 0
\(169\) −9.76608 16.9153i −0.751237 1.30118i
\(170\) −4.84213 −0.371375
\(171\) 0 0
\(172\) −6.82846 −0.520665
\(173\) 1.27579 + 2.20974i 0.0969968 + 0.168003i 0.910440 0.413641i \(-0.135743\pi\)
−0.813443 + 0.581644i \(0.802410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.59097 2.75564i 0.119924 0.207714i
\(177\) 0 0
\(178\) −0.112725 0.195246i −0.00844910 0.0146343i
\(179\) 7.03775 0.526026 0.263013 0.964792i \(-0.415284\pi\)
0.263013 + 0.964792i \(0.415284\pi\)
\(180\) 0 0
\(181\) −12.9669 −0.963822 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.11956 1.93914i 0.0825352 0.142955i
\(185\) 1.59097 2.75564i 0.116971 0.202599i
\(186\) 0 0
\(187\) −2.42107 4.19341i −0.177046 0.306653i
\(188\) 5.82846 0.425084
\(189\) 0 0
\(190\) 4.08126 0.296085
\(191\) 0.990285 + 1.71522i 0.0716545 + 0.124109i 0.899627 0.436660i \(-0.143839\pi\)
−0.827972 + 0.560769i \(0.810505\pi\)
\(192\) 0 0
\(193\) 2.27292 3.93680i 0.163608 0.283377i −0.772552 0.634951i \(-0.781020\pi\)
0.936160 + 0.351574i \(0.114353\pi\)
\(194\) 7.42107 12.8537i 0.532802 0.922839i
\(195\) 0 0
\(196\) 0 0
\(197\) 21.8148 1.55424 0.777120 0.629353i \(-0.216680\pi\)
0.777120 + 0.629353i \(0.216680\pi\)
\(198\) 0 0
\(199\) −12.2826 −0.870693 −0.435346 0.900263i \(-0.643374\pi\)
−0.435346 + 0.900263i \(0.643374\pi\)
\(200\) −2.56238 4.43818i −0.181188 0.313826i
\(201\) 0 0
\(202\) 9.29467 16.0988i 0.653971 1.13271i
\(203\) 0 0
\(204\) 0 0
\(205\) 8.91423 + 15.4399i 0.622597 + 1.07837i
\(206\) −0.282630 −0.0196918
\(207\) 0 0
\(208\) −5.70370 −0.395480
\(209\) 2.04063 + 3.53447i 0.141153 + 0.244485i
\(210\) 0 0
\(211\) −8.32846 + 14.4253i −0.573355 + 0.993080i 0.422863 + 0.906193i \(0.361025\pi\)
−0.996218 + 0.0868863i \(0.972308\pi\)
\(212\) −1.02859 + 1.78157i −0.0706438 + 0.122359i
\(213\) 0 0
\(214\) −5.68878 9.85326i −0.388877 0.673555i
\(215\) −21.7278 −1.48182
\(216\) 0 0
\(217\) 0 0
\(218\) −2.21053 3.82876i −0.149716 0.259316i
\(219\) 0 0
\(220\) 5.06238 8.76830i 0.341306 0.591159i
\(221\) −4.33981 + 7.51677i −0.291927 + 0.505633i
\(222\) 0 0
\(223\) −5.32846 9.22916i −0.356820 0.618031i 0.630608 0.776102i \(-0.282806\pi\)
−0.987428 + 0.158071i \(0.949472\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3.21505 −0.213862
\(227\) −7.25404 12.5644i −0.481468 0.833926i 0.518306 0.855195i \(-0.326563\pi\)
−0.999774 + 0.0212688i \(0.993229\pi\)
\(228\) 0 0
\(229\) −5.12476 + 8.87635i −0.338654 + 0.586566i −0.984180 0.177173i \(-0.943305\pi\)
0.645526 + 0.763738i \(0.276638\pi\)
\(230\) 3.56238 6.17023i 0.234896 0.406853i
\(231\) 0 0
\(232\) 3.54063 + 6.13255i 0.232454 + 0.402622i
\(233\) 1.08126 0.0708355 0.0354177 0.999373i \(-0.488724\pi\)
0.0354177 + 0.999373i \(0.488724\pi\)
\(234\) 0 0
\(235\) 18.5458 1.20980
\(236\) −0.562382 0.974074i −0.0366079 0.0634068i
\(237\) 0 0
\(238\) 0 0
\(239\) 6.16019 10.6698i 0.398470 0.690170i −0.595068 0.803676i \(-0.702875\pi\)
0.993537 + 0.113506i \(0.0362081\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) −0.875237 −0.0562623
\(243\) 0 0
\(244\) 3.12476 0.200042
\(245\) 0 0
\(246\) 0 0
\(247\) 3.65787 6.33561i 0.232744 0.403125i
\(248\) 4.71053 8.15888i 0.299119 0.518090i
\(249\) 0 0
\(250\) −0.198495 0.343803i −0.0125539 0.0217440i
\(251\) −5.11109 −0.322609 −0.161305 0.986905i \(-0.551570\pi\)
−0.161305 + 0.986905i \(0.551570\pi\)
\(252\) 0 0
\(253\) 7.12476 0.447930
\(254\) −10.0527 17.4117i −0.630760 1.09251i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.83009 6.63392i 0.238915 0.413813i −0.721488 0.692427i \(-0.756542\pi\)
0.960403 + 0.278614i \(0.0898750\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −18.1488 −1.12554
\(261\) 0 0
\(262\) −6.36389 −0.393162
\(263\) −1.54746 2.68029i −0.0954208 0.165274i 0.814363 0.580355i \(-0.197086\pi\)
−0.909784 + 0.415082i \(0.863753\pi\)
\(264\) 0 0
\(265\) −3.27292 + 5.66886i −0.201054 + 0.348235i
\(266\) 0 0
\(267\) 0 0
\(268\) −5.48345 9.49761i −0.334955 0.580159i
\(269\) −26.8903 −1.63953 −0.819765 0.572700i \(-0.805896\pi\)
−0.819765 + 0.572700i \(0.805896\pi\)
\(270\) 0 0
\(271\) 22.2164 1.34955 0.674776 0.738023i \(-0.264240\pi\)
0.674776 + 0.738023i \(0.264240\pi\)
\(272\) 0.760877 + 1.31788i 0.0461349 + 0.0799080i
\(273\) 0 0
\(274\) 1.37072 2.37416i 0.0828084 0.143428i
\(275\) 8.15335 14.1220i 0.491666 0.851590i
\(276\) 0 0
\(277\) 7.31875 + 12.6764i 0.439741 + 0.761653i 0.997669 0.0682357i \(-0.0217370\pi\)
−0.557928 + 0.829889i \(0.688404\pi\)
\(278\) 7.96690 0.477823
\(279\) 0 0
\(280\) 0 0
\(281\) −11.6992 20.2636i −0.697915 1.20882i −0.969188 0.246322i \(-0.920778\pi\)
0.271273 0.962502i \(-0.412555\pi\)
\(282\) 0 0
\(283\) 13.0624 22.6247i 0.776478 1.34490i −0.157482 0.987522i \(-0.550338\pi\)
0.933960 0.357377i \(-0.116329\pi\)
\(284\) 4.34501 7.52578i 0.257829 0.446573i
\(285\) 0 0
\(286\) −9.07442 15.7174i −0.536582 0.929387i
\(287\) 0 0
\(288\) 0 0
\(289\) −14.6843 −0.863780
\(290\) 11.2661 + 19.5134i 0.661567 + 1.14587i
\(291\) 0 0
\(292\) −2.48345 + 4.30146i −0.145333 + 0.251724i
\(293\) −12.9315 + 22.3980i −0.755465 + 1.30850i 0.189678 + 0.981846i \(0.439255\pi\)
−0.945143 + 0.326657i \(0.894078\pi\)
\(294\) 0 0
\(295\) −1.78947 3.09945i −0.104187 0.180457i
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 23.2599 1.34741
\(299\) −6.38564 11.0603i −0.369291 0.639631i
\(300\) 0 0
\(301\) 0 0
\(302\) 4.06238 7.03625i 0.233764 0.404891i
\(303\) 0 0
\(304\) −0.641315 1.11079i −0.0367819 0.0637082i
\(305\) 9.94282 0.569324
\(306\) 0 0
\(307\) 3.53216 0.201591 0.100795 0.994907i \(-0.467861\pi\)
0.100795 + 0.994907i \(0.467861\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 14.9887 25.9611i 0.851298 1.47449i
\(311\) 0.851848 1.47544i 0.0483039 0.0836648i −0.840863 0.541249i \(-0.817952\pi\)
0.889166 + 0.457584i \(0.151285\pi\)
\(312\) 0 0
\(313\) 1.42107 + 2.46136i 0.0803234 + 0.139124i 0.903389 0.428822i \(-0.141071\pi\)
−0.823065 + 0.567947i \(0.807738\pi\)
\(314\) −11.2632 −0.635619
\(315\) 0 0
\(316\) −4.13844 −0.232805
\(317\) −12.4601 21.5815i −0.699827 1.21214i −0.968526 0.248911i \(-0.919927\pi\)
0.268700 0.963224i \(-0.413406\pi\)
\(318\) 0 0
\(319\) −11.2661 + 19.5134i −0.630779 + 1.09254i
\(320\) −1.59097 + 2.75564i −0.0889380 + 0.154045i
\(321\) 0 0
\(322\) 0 0
\(323\) −1.95185 −0.108604
\(324\) 0 0
\(325\) −29.2301 −1.62139
\(326\) −1.99028 3.44727i −0.110232 0.190927i
\(327\) 0 0
\(328\) 2.80150 4.85235i 0.154687 0.267926i
\(329\) 0 0
\(330\) 0 0
\(331\) 3.58577 + 6.21074i 0.197092 + 0.341373i 0.947584 0.319506i \(-0.103517\pi\)
−0.750492 + 0.660879i \(0.770184\pi\)
\(332\) −8.06758 −0.442766
\(333\) 0 0
\(334\) 5.23912 0.286672
\(335\) −17.4480 30.2209i −0.953287 1.65114i
\(336\) 0 0
\(337\) −10.9211 + 18.9158i −0.594908 + 1.03041i 0.398651 + 0.917103i \(0.369478\pi\)
−0.993560 + 0.113309i \(0.963855\pi\)
\(338\) −9.76608 + 16.9153i −0.531205 + 0.920073i
\(339\) 0 0
\(340\) 2.42107 + 4.19341i 0.131301 + 0.227420i
\(341\) 29.9773 1.62336
\(342\) 0 0
\(343\) 0 0
\(344\) 3.41423 + 5.91362i 0.184083 + 0.318841i
\(345\) 0 0
\(346\) 1.27579 2.20974i 0.0685871 0.118796i
\(347\) −1.05555 + 1.82826i −0.0566646 + 0.0981460i −0.892966 0.450124i \(-0.851380\pi\)
0.836302 + 0.548270i \(0.184713\pi\)
\(348\) 0 0
\(349\) 18.1082 + 31.3643i 0.969310 + 1.67889i 0.697559 + 0.716527i \(0.254269\pi\)
0.271751 + 0.962368i \(0.412397\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.18194 −0.169598
\(353\) −5.24433 9.08344i −0.279127 0.483463i 0.692041 0.721858i \(-0.256712\pi\)
−0.971168 + 0.238396i \(0.923378\pi\)
\(354\) 0 0
\(355\) 13.8256 23.9466i 0.733786 1.27095i
\(356\) −0.112725 + 0.195246i −0.00597442 + 0.0103480i
\(357\) 0 0
\(358\) −3.51887 6.09487i −0.185978 0.322124i
\(359\) 32.4419 1.71222 0.856108 0.516796i \(-0.172876\pi\)
0.856108 + 0.516796i \(0.172876\pi\)
\(360\) 0 0
\(361\) −17.3549 −0.913414
\(362\) 6.48345 + 11.2297i 0.340762 + 0.590218i
\(363\) 0 0
\(364\) 0 0
\(365\) −7.90219 + 13.6870i −0.413620 + 0.716410i
\(366\) 0 0
\(367\) 9.05555 + 15.6847i 0.472696 + 0.818733i 0.999512 0.0312465i \(-0.00994768\pi\)
−0.526816 + 0.849979i \(0.676614\pi\)
\(368\) −2.23912 −0.116722
\(369\) 0 0
\(370\) −3.18194 −0.165421
\(371\) 0 0
\(372\) 0 0
\(373\) 5.83530 10.1070i 0.302140 0.523322i −0.674480 0.738293i \(-0.735632\pi\)
0.976621 + 0.214971i \(0.0689656\pi\)
\(374\) −2.42107 + 4.19341i −0.125190 + 0.216836i
\(375\) 0 0
\(376\) −2.91423 5.04759i −0.150290 0.260310i
\(377\) 40.3893 2.08016
\(378\) 0 0
\(379\) 14.2690 0.732947 0.366474 0.930428i \(-0.380565\pi\)
0.366474 + 0.930428i \(0.380565\pi\)
\(380\) −2.04063 3.53447i −0.104682 0.181315i
\(381\) 0 0
\(382\) 0.990285 1.71522i 0.0506674 0.0877585i
\(383\) −0.824893 + 1.42876i −0.0421501 + 0.0730061i −0.886331 0.463053i \(-0.846754\pi\)
0.844181 + 0.536059i \(0.180087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.54583 −0.231377
\(387\) 0 0
\(388\) −14.8421 −0.753495
\(389\) −16.0338 27.7713i −0.812946 1.40806i −0.910794 0.412862i \(-0.864529\pi\)
0.0978483 0.995201i \(-0.468804\pi\)
\(390\) 0 0
\(391\) −1.70370 + 2.95089i −0.0861596 + 0.149233i
\(392\) 0 0
\(393\) 0 0
\(394\) −10.9074 18.8922i −0.549507 0.951773i
\(395\) −13.1683 −0.662568
\(396\) 0 0
\(397\) 37.9338 1.90384 0.951921 0.306343i \(-0.0991054\pi\)
0.951921 + 0.306343i \(0.0991054\pi\)
\(398\) 6.14132 + 10.6371i 0.307836 + 0.533188i
\(399\) 0 0
\(400\) −2.56238 + 4.43818i −0.128119 + 0.221909i
\(401\) 5.30959 9.19647i 0.265148 0.459250i −0.702454 0.711729i \(-0.747913\pi\)
0.967602 + 0.252479i \(0.0812458\pi\)
\(402\) 0 0
\(403\) −26.8675 46.5358i −1.33836 2.31811i
\(404\) −18.5893 −0.924854
\(405\) 0 0
\(406\) 0 0
\(407\) −1.59097 2.75564i −0.0788615 0.136592i
\(408\) 0 0
\(409\) −2.77292 + 4.80283i −0.137112 + 0.237485i −0.926402 0.376535i \(-0.877115\pi\)
0.789290 + 0.614020i \(0.210449\pi\)
\(410\) 8.91423 15.4399i 0.440242 0.762522i
\(411\) 0 0
\(412\) 0.141315 + 0.244765i 0.00696209 + 0.0120587i
\(413\) 0 0
\(414\) 0 0
\(415\) −25.6706 −1.26012
\(416\) 2.85185 + 4.93955i 0.139823 + 0.242181i
\(417\) 0 0
\(418\) 2.04063 3.53447i 0.0998104 0.172877i
\(419\) −2.77455 + 4.80566i −0.135546 + 0.234772i −0.925806 0.378000i \(-0.876612\pi\)
0.790260 + 0.612772i \(0.209945\pi\)
\(420\) 0 0
\(421\) −3.42107 5.92546i −0.166733 0.288789i 0.770537 0.637396i \(-0.219988\pi\)
−0.937269 + 0.348606i \(0.886655\pi\)
\(422\) 16.6569 0.810846
\(423\) 0 0
\(424\) 2.05718 0.0999055
\(425\) 3.89931 + 6.75381i 0.189144 + 0.327608i
\(426\) 0 0
\(427\) 0 0
\(428\) −5.68878 + 9.85326i −0.274978 + 0.476275i
\(429\) 0 0
\(430\) 10.8639 + 18.8168i 0.523903 + 0.907427i
\(431\) 33.1078 1.59475 0.797374 0.603486i \(-0.206222\pi\)
0.797374 + 0.603486i \(0.206222\pi\)
\(432\) 0 0
\(433\) −12.1111 −0.582022 −0.291011 0.956720i \(-0.593992\pi\)
−0.291011 + 0.956720i \(0.593992\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.21053 + 3.82876i −0.105865 + 0.183364i
\(437\) 1.43598 2.48720i 0.0686924 0.118979i
\(438\) 0 0
\(439\) 4.41711 + 7.65066i 0.210817 + 0.365146i 0.951970 0.306190i \(-0.0990542\pi\)
−0.741153 + 0.671336i \(0.765721\pi\)
\(440\) −10.1248 −0.482679
\(441\) 0 0
\(442\) 8.67962 0.412847
\(443\) 8.75924 + 15.1715i 0.416164 + 0.720817i 0.995550 0.0942360i \(-0.0300408\pi\)
−0.579386 + 0.815053i \(0.696708\pi\)
\(444\) 0 0
\(445\) −0.358685 + 0.621261i −0.0170033 + 0.0294506i
\(446\) −5.32846 + 9.22916i −0.252310 + 0.437014i
\(447\) 0 0
\(448\) 0 0
\(449\) −31.2301 −1.47384 −0.736920 0.675980i \(-0.763720\pi\)
−0.736920 + 0.675980i \(0.763720\pi\)
\(450\) 0 0
\(451\) 17.8285 0.839509
\(452\) 1.60752 + 2.78431i 0.0756115 + 0.130963i
\(453\) 0 0
\(454\) −7.25404 + 12.5644i −0.340449 + 0.589675i
\(455\) 0 0
\(456\) 0 0
\(457\) 16.0624 + 27.8209i 0.751367 + 1.30140i 0.947161 + 0.320760i \(0.103938\pi\)
−0.195794 + 0.980645i \(0.562728\pi\)
\(458\) 10.2495 0.478929
\(459\) 0 0
\(460\) −7.12476 −0.332194
\(461\) −1.23229 2.13438i −0.0573933 0.0994081i 0.835901 0.548880i \(-0.184946\pi\)
−0.893295 + 0.449472i \(0.851612\pi\)
\(462\) 0 0
\(463\) 15.1735 26.2812i 0.705171 1.22139i −0.261459 0.965215i \(-0.584204\pi\)
0.966630 0.256177i \(-0.0824631\pi\)
\(464\) 3.54063 6.13255i 0.164370 0.284696i
\(465\) 0 0
\(466\) −0.540628 0.936396i −0.0250441 0.0433777i
\(467\) −15.9636 −0.738709 −0.369354 0.929289i \(-0.620421\pi\)
−0.369354 + 0.929289i \(0.620421\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −9.27292 16.0612i −0.427728 0.740846i
\(471\) 0 0
\(472\) −0.562382 + 0.974074i −0.0258857 + 0.0448354i
\(473\) −10.8639 + 18.8168i −0.499522 + 0.865198i
\(474\) 0 0
\(475\) −3.28659 5.69254i −0.150799 0.261192i
\(476\) 0 0
\(477\) 0 0
\(478\) −12.3204 −0.563521
\(479\) −11.5865 20.0683i −0.529399 0.916946i −0.999412 0.0342863i \(-0.989084\pi\)
0.470013 0.882659i \(-0.344249\pi\)
\(480\) 0 0
\(481\) −2.85185 + 4.93955i −0.130033 + 0.225224i
\(482\) 6.50000 11.2583i 0.296067 0.512803i
\(483\) 0 0
\(484\) 0.437618 + 0.757977i 0.0198917 + 0.0344535i
\(485\) −47.2268 −2.14446
\(486\) 0 0
\(487\) −3.41315 −0.154665 −0.0773323 0.997005i \(-0.524640\pi\)
−0.0773323 + 0.997005i \(0.524640\pi\)
\(488\) −1.56238 2.70612i −0.0707257 0.122500i
\(489\) 0 0
\(490\) 0 0
\(491\) 9.58414 16.6002i 0.432526 0.749157i −0.564564 0.825389i \(-0.690956\pi\)
0.997090 + 0.0762323i \(0.0242890\pi\)
\(492\) 0 0
\(493\) −5.38796 9.33223i −0.242662 0.420302i
\(494\) −7.31573 −0.329150
\(495\) 0 0
\(496\) −9.42107 −0.423018
\(497\) 0 0
\(498\) 0 0
\(499\) −20.5848 + 35.6540i −0.921503 + 1.59609i −0.124413 + 0.992231i \(0.539705\pi\)
−0.797090 + 0.603860i \(0.793629\pi\)
\(500\) −0.198495 + 0.343803i −0.00887697 + 0.0153754i
\(501\) 0 0
\(502\) 2.55555 + 4.42633i 0.114060 + 0.197557i
\(503\) 26.4542 1.17953 0.589767 0.807574i \(-0.299220\pi\)
0.589767 + 0.807574i \(0.299220\pi\)
\(504\) 0 0
\(505\) −59.1502 −2.63215
\(506\) −3.56238 6.17023i −0.158367 0.274300i
\(507\) 0 0
\(508\) −10.0527 + 17.4117i −0.446015 + 0.772521i
\(509\) 6.38564 11.0603i 0.283039 0.490237i −0.689093 0.724673i \(-0.741991\pi\)
0.972132 + 0.234436i \(0.0753242\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −7.66019 −0.337876
\(515\) 0.449657 + 0.778828i 0.0198142 + 0.0343193i
\(516\) 0 0
\(517\) 9.27292 16.0612i 0.407822 0.706369i
\(518\) 0 0
\(519\) 0 0
\(520\) 9.07442 + 15.7174i 0.397940 + 0.689252i
\(521\) −6.81230 −0.298452 −0.149226 0.988803i \(-0.547678\pi\)
−0.149226 + 0.988803i \(0.547678\pi\)
\(522\) 0 0
\(523\) −29.5070 −1.29025 −0.645125 0.764077i \(-0.723195\pi\)
−0.645125 + 0.764077i \(0.723195\pi\)
\(524\) 3.18194 + 5.51129i 0.139004 + 0.240762i
\(525\) 0 0
\(526\) −1.54746 + 2.68029i −0.0674727 + 0.116866i
\(527\) −7.16827 + 12.4158i −0.312255 + 0.540841i
\(528\) 0 0
\(529\) 8.99316 + 15.5766i 0.391007 + 0.677244i
\(530\) 6.54583 0.284333
\(531\) 0 0
\(532\) 0 0
\(533\) −15.9789 27.6763i −0.692125 1.19879i
\(534\) 0 0
\(535\) −18.1014 + 31.3525i −0.782591 + 1.35549i
\(536\) −5.48345 + 9.49761i −0.236849 + 0.410234i
\(537\) 0 0
\(538\) 13.4451 + 23.2877i 0.579661 + 1.00400i
\(539\) 0 0
\(540\) 0 0
\(541\) −29.4016 −1.26408 −0.632038 0.774938i \(-0.717781\pi\)
−0.632038 + 0.774938i \(0.717781\pi\)
\(542\) −11.1082 19.2400i −0.477139 0.826428i
\(543\) 0 0
\(544\) 0.760877 1.31788i 0.0326223 0.0565035i
\(545\) −7.03379 + 12.1829i −0.301295 + 0.521857i
\(546\) 0 0
\(547\) 17.6150 + 30.5102i 0.753165 + 1.30452i 0.946281 + 0.323344i \(0.104807\pi\)
−0.193116 + 0.981176i \(0.561859\pi\)
\(548\) −2.74145 −0.117109
\(549\) 0 0
\(550\) −16.3067 −0.695320
\(551\) 4.54132 + 7.86579i 0.193467 + 0.335094i
\(552\) 0 0
\(553\) 0 0
\(554\) 7.31875 12.6764i 0.310944 0.538570i
\(555\) 0 0
\(556\) −3.98345 6.89953i −0.168936 0.292605i
\(557\) −6.73818 −0.285506 −0.142753 0.989758i \(-0.545595\pi\)
−0.142753 + 0.989758i \(0.545595\pi\)
\(558\) 0 0
\(559\) 38.9475 1.64730
\(560\) 0 0
\(561\) 0 0
\(562\) −11.6992 + 20.2636i −0.493500 + 0.854768i
\(563\) −0.729964 + 1.26433i −0.0307643 + 0.0532853i −0.880998 0.473121i \(-0.843127\pi\)
0.850233 + 0.526406i \(0.176461\pi\)
\(564\) 0 0
\(565\) 5.11505 + 8.85952i 0.215192 + 0.372723i
\(566\) −26.1248 −1.09811
\(567\) 0 0
\(568\) −8.69002 −0.364625
\(569\) 9.78263 + 16.9440i 0.410109 + 0.710330i 0.994901 0.100853i \(-0.0321573\pi\)
−0.584792 + 0.811183i \(0.698824\pi\)
\(570\) 0 0
\(571\) 10.9629 18.9884i 0.458785 0.794638i −0.540112 0.841593i \(-0.681618\pi\)
0.998897 + 0.0469545i \(0.0149516\pi\)
\(572\) −9.07442 + 15.7174i −0.379421 + 0.657176i
\(573\) 0 0
\(574\) 0 0
\(575\) −11.4750 −0.478540
\(576\) 0 0
\(577\) −24.7310 −1.02957 −0.514783 0.857320i \(-0.672128\pi\)
−0.514783 + 0.857320i \(0.672128\pi\)
\(578\) 7.34213 + 12.7169i 0.305392 + 0.528955i
\(579\) 0 0
\(580\) 11.2661 19.5134i 0.467798 0.810251i
\(581\) 0 0
\(582\) 0 0
\(583\) 3.27292 + 5.66886i 0.135550 + 0.234780i
\(584\) 4.96690 0.205532
\(585\) 0 0
\(586\) 25.8629 1.06839
\(587\) 18.0796 + 31.3148i 0.746226 + 1.29250i 0.949620 + 0.313404i \(0.101469\pi\)
−0.203394 + 0.979097i \(0.565197\pi\)
\(588\) 0 0
\(589\) 6.04187 10.4648i 0.248951 0.431196i
\(590\) −1.78947 + 3.09945i −0.0736712 + 0.127602i
\(591\) 0 0
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) −15.1078 −0.620404 −0.310202 0.950671i \(-0.600397\pi\)
−0.310202 + 0.950671i \(0.600397\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −11.6300 20.1437i −0.476382 0.825118i
\(597\) 0 0
\(598\) −6.38564 + 11.0603i −0.261128 + 0.452287i
\(599\) −2.72708 + 4.72345i −0.111426 + 0.192995i −0.916345 0.400389i \(-0.868875\pi\)
0.804920 + 0.593384i \(0.202208\pi\)
\(600\) 0 0
\(601\) −3.36840 5.83424i −0.137400 0.237984i 0.789112 0.614250i \(-0.210541\pi\)
−0.926512 + 0.376266i \(0.877208\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.12476 −0.330592
\(605\) 1.39248 + 2.41184i 0.0566122 + 0.0980553i
\(606\) 0 0
\(607\) −3.33530 + 5.77690i −0.135376 + 0.234477i −0.925741 0.378159i \(-0.876557\pi\)
0.790365 + 0.612636i \(0.209891\pi\)
\(608\) −0.641315 + 1.11079i −0.0260088 + 0.0450485i
\(609\) 0 0
\(610\) −4.97141 8.61073i −0.201287 0.348638i
\(611\) −33.2438 −1.34490
\(612\) 0 0
\(613\) −1.30998 −0.0529094 −0.0264547 0.999650i \(-0.508422\pi\)
−0.0264547 + 0.999650i \(0.508422\pi\)
\(614\) −1.76608 3.05894i −0.0712731 0.123449i
\(615\) 0 0
\(616\) 0 0
\(617\) −17.2483 + 29.8749i −0.694390 + 1.20272i 0.275996 + 0.961159i \(0.410992\pi\)
−0.970386 + 0.241560i \(0.922341\pi\)
\(618\) 0 0
\(619\) 8.22421 + 14.2447i 0.330559 + 0.572545i 0.982622 0.185620i \(-0.0594295\pi\)
−0.652063 + 0.758165i \(0.726096\pi\)
\(620\) −29.9773 −1.20392
\(621\) 0 0
\(622\) −1.70370 −0.0683120
\(623\) 0 0
\(624\) 0 0
\(625\) 12.1803 21.0969i 0.487212 0.843877i
\(626\) 1.42107 2.46136i 0.0567972 0.0983757i
\(627\) 0 0
\(628\) 5.63160 + 9.75422i 0.224725 + 0.389236i
\(629\) 1.52175 0.0606763
\(630\) 0 0
\(631\) −30.0118 −1.19475 −0.597375 0.801962i \(-0.703790\pi\)
−0.597375 + 0.801962i \(0.703790\pi\)
\(632\) 2.06922 + 3.58399i 0.0823091 + 0.142564i
\(633\) 0 0
\(634\) −12.4601 + 21.5815i −0.494852 + 0.857109i
\(635\) −31.9870 + 55.4031i −1.26937 + 2.19861i
\(636\) 0 0
\(637\) 0 0
\(638\) 22.5322 0.892057
\(639\) 0 0
\(640\) 3.18194 0.125777
\(641\) 13.9497 + 24.1615i 0.550978 + 0.954322i 0.998204 + 0.0599014i \(0.0190786\pi\)
−0.447226 + 0.894421i \(0.647588\pi\)
\(642\) 0 0
\(643\) 14.2524 24.6859i 0.562060 0.973516i −0.435257 0.900306i \(-0.643342\pi\)
0.997317 0.0732100i \(-0.0233243\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.975923 + 1.69035i 0.0383972 + 0.0665059i
\(647\) 16.7141 0.657099 0.328550 0.944487i \(-0.393440\pi\)
0.328550 + 0.944487i \(0.393440\pi\)
\(648\) 0 0
\(649\) −3.57893 −0.140485
\(650\) 14.6150 + 25.3140i 0.573249 + 0.992897i
\(651\) 0 0
\(652\) −1.99028 + 3.44727i −0.0779456 + 0.135006i
\(653\) 19.0825 33.0519i 0.746756 1.29342i −0.202614 0.979259i \(-0.564944\pi\)
0.949370 0.314161i \(-0.101723\pi\)
\(654\) 0 0
\(655\) 10.1248 + 17.5366i 0.395607 + 0.685212i
\(656\) −5.60301 −0.218761
\(657\) 0 0
\(658\) 0 0
\(659\) −4.37072 7.57031i −0.170259 0.294898i 0.768251 0.640148i \(-0.221127\pi\)
−0.938510 + 0.345251i \(0.887794\pi\)
\(660\) 0 0
\(661\) 10.0419 17.3930i 0.390584 0.676511i −0.601943 0.798539i \(-0.705607\pi\)
0.992527 + 0.122028i \(0.0389399\pi\)
\(662\) 3.58577 6.21074i 0.139365 0.241387i
\(663\) 0 0
\(664\) 4.03379 + 6.98673i 0.156541 + 0.271138i
\(665\) 0 0
\(666\) 0 0
\(667\) 15.8558 0.613939
\(668\) −2.61956 4.53721i −0.101354 0.175550i
\(669\) 0 0
\(670\) −17.4480 + 30.2209i −0.674076 + 1.16753i
\(671\) 4.97141 8.61073i 0.191919 0.332414i
\(672\) 0 0
\(673\) −17.0264 29.4906i −0.656319 1.13678i −0.981561 0.191148i \(-0.938779\pi\)
0.325242 0.945631i \(-0.394554\pi\)
\(674\) 21.8421 0.841328
\(675\) 0 0
\(676\) 19.5322 0.751237
\(677\) −0.358685 0.621261i −0.0137854 0.0238770i 0.859050 0.511891i \(-0.171055\pi\)
−0.872836 + 0.488014i \(0.837721\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 2.42107 4.19341i 0.0928437 0.160810i
\(681\) 0 0
\(682\) −14.9887 25.9611i −0.573945 0.994102i
\(683\) −21.0539 −0.805605 −0.402803 0.915287i \(-0.631964\pi\)
−0.402803 + 0.915287i \(0.631964\pi\)
\(684\) 0 0
\(685\) −8.72313 −0.333294
\(686\) 0 0
\(687\) 0 0
\(688\) 3.41423 5.91362i 0.130166 0.225455i
\(689\) 5.86677 10.1615i 0.223506 0.387124i
\(690\) 0 0
\(691\) −2.92395 5.06442i −0.111232 0.192660i 0.805035 0.593227i \(-0.202146\pi\)
−0.916267 + 0.400567i \(0.868813\pi\)
\(692\) −2.55159 −0.0969968
\(693\) 0 0
\(694\) 2.11109 0.0801359
\(695\) −12.6751 21.9539i −0.480794 0.832760i
\(696\) 0 0
\(697\) −4.26320 + 7.38408i −0.161480 + 0.279692i
\(698\) 18.1082 31.3643i 0.685406 1.18716i
\(699\) 0 0
\(700\) 0 0
\(701\) −10.2711 −0.387935 −0.193967 0.981008i \(-0.562136\pi\)
−0.193967 + 0.981008i \(0.562136\pi\)
\(702\) 0 0
\(703\) −1.28263 −0.0483753
\(704\) 1.59097 + 2.75564i 0.0599620 + 0.103857i
\(705\) 0 0
\(706\) −5.24433 + 9.08344i −0.197373 + 0.341860i
\(707\) 0 0
\(708\) 0 0
\(709\) −21.7427 37.6594i −0.816564 1.41433i −0.908200 0.418538i \(-0.862543\pi\)
0.0916356 0.995793i \(-0.470790\pi\)
\(710\) −27.6512 −1.03773
\(711\) 0 0
\(712\) 0.225450 0.00844910
\(713\) −10.5475 18.2687i −0.395006 0.684170i
\(714\) 0 0
\(715\) −28.8743 + 50.0117i −1.07984 + 1.87033i
\(716\) −3.51887 + 6.09487i −0.131507 + 0.227776i
\(717\) 0 0
\(718\) −16.2209 28.0955i −0.605360 1.04851i
\(719\) 50.8824 1.89759 0.948796 0.315889i \(-0.102303\pi\)
0.948796 + 0.315889i \(0.102303\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 8.67743 + 15.0297i 0.322941 + 0.559349i
\(723\) 0 0
\(724\) 6.48345 11.2297i 0.240955 0.417347i
\(725\) 18.1449 31.4279i 0.673884 1.16720i
\(726\) 0 0
\(727\) 6.07210 + 10.5172i 0.225202 + 0.390061i 0.956380 0.292126i \(-0.0943626\pi\)
−0.731178 + 0.682186i \(0.761029\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 15.8044 0.584946
\(731\) −5.19562 8.99907i −0.192167 0.332843i
\(732\) 0 0
\(733\) 23.0848 39.9841i 0.852657 1.47685i −0.0261440 0.999658i \(-0.508323\pi\)
0.878801 0.477188i \(-0.158344\pi\)
\(734\) 9.05555 15.6847i 0.334246 0.578932i
\(735\) 0 0
\(736\) 1.11956 + 1.93914i 0.0412676 + 0.0714776i
\(737\) −34.8960 −1.28541
\(738\) 0 0
\(739\) 4.99208 0.183637 0.0918184 0.995776i \(-0.470732\pi\)
0.0918184 + 0.995776i \(0.470732\pi\)
\(740\) 1.59097 + 2.75564i 0.0584853 + 0.101299i
\(741\) 0 0
\(742\) 0 0
\(743\) 15.7060 27.2036i 0.576198 0.998004i −0.419712 0.907657i \(-0.637869\pi\)
0.995910 0.0903470i \(-0.0287976\pi\)
\(744\) 0 0
\(745\) −37.0059 64.0961i −1.35579 2.34830i
\(746\) −11.6706 −0.427291
\(747\) 0 0
\(748\) 4.84213 0.177046
\(749\) 0 0
\(750\) 0 0
\(751\) −1.64815 + 2.85468i −0.0601419 + 0.104169i −0.894529 0.447010i \(-0.852489\pi\)
0.834387 + 0.551179i \(0.185822\pi\)
\(752\) −2.91423 + 5.04759i −0.106271 + 0.184067i
\(753\) 0 0
\(754\) −20.1947 34.9782i −0.735447 1.27383i
\(755\) −25.8525 −0.940870
\(756\) 0 0
\(757\) −10.1384 −0.368488 −0.184244 0.982881i \(-0.558984\pi\)
−0.184244 + 0.982881i \(0.558984\pi\)
\(758\) −7.13448 12.3573i −0.259136 0.448837i
\(759\) 0 0
\(760\) −2.04063 + 3.53447i −0.0740214 + 0.128209i
\(761\) 7.03379 12.1829i 0.254975 0.441629i −0.709914 0.704288i \(-0.751266\pi\)
0.964889 + 0.262659i \(0.0845995\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.98057 −0.0716545
\(765\) 0 0
\(766\) 1.64979 0.0596092
\(767\) 3.20765 + 5.55582i 0.115822 + 0.200609i
\(768\) 0 0
\(769\) 11.3461 19.6520i 0.409151 0.708669i −0.585644 0.810568i \(-0.699158\pi\)
0.994795 + 0.101899i \(0.0324918\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.27292 + 3.93680i 0.0818040 + 0.141689i
\(773\) 0.655544 0.0235783 0.0117891 0.999931i \(-0.496247\pi\)
0.0117891 + 0.999931i \(0.496247\pi\)
\(774\) 0 0
\(775\) −48.2807 −1.73430
\(776\) 7.42107 + 12.8537i 0.266401 + 0.461420i
\(777\) 0 0
\(778\) −16.0338 + 27.7713i −0.574839 + 0.995651i
\(779\) 3.59329 6.22377i 0.128743 0.222990i
\(780\) 0 0
\(781\) −13.8256 23.9466i −0.494718 0.856877i
\(782\) 3.40739 0.121848
\(783\) 0 0
\(784\) 0 0
\(785\) 17.9194 + 31.0374i 0.639572 + 1.10777i
\(786\) 0 0
\(787\) −0.270036 + 0.467717i −0.00962576 + 0.0166723i −0.870798 0.491641i \(-0.836397\pi\)
0.861172 + 0.508313i \(0.169731\pi\)
\(788\) −10.9074 + 18.8922i −0.388560 + 0.673005i
\(789\) 0 0
\(790\) 6.58414 + 11.4041i 0.234253 + 0.405738i
\(791\) 0 0
\(792\) 0 0
\(793\) −17.8227 −0.632903
\(794\) −18.9669 32.8516i −0.673110 1.16586i
\(795\) 0 0
\(796\) 6.14132 10.6371i 0.217673 0.377021i
\(797\) 12.5550 21.7459i 0.444721 0.770279i −0.553312 0.832974i \(-0.686636\pi\)
0.998033 + 0.0626954i \(0.0199697\pi\)
\(798\) 0 0
\(799\) 4.43474 + 7.68119i 0.156890 + 0.271741i
\(800\) 5.12476 0.181188
\(801\) 0 0
\(802\) −10.6192 −0.374976
\(803\) 7.90219 + 13.6870i 0.278862 + 0.483004i
\(804\) 0 0
\(805\) 0 0
\(806\) −26.8675 + 46.5358i −0.946366 + 1.63915i
\(807\) 0 0
\(808\) 9.29467 + 16.0988i 0.326985 + 0.566355i
\(809\) −29.1729 −1.02567 −0.512833 0.858489i \(-0.671404\pi\)
−0.512833 + 0.858489i \(0.671404\pi\)
\(810\) 0 0
\(811\) −15.4290 −0.541785 −0.270892 0.962610i \(-0.587319\pi\)
−0.270892 + 0.962610i \(0.587319\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.59097 + 2.75564i −0.0557635 + 0.0965853i
\(815\) −6.33297 + 10.9690i −0.221834 + 0.384228i
\(816\) 0 0
\(817\) 4.37919 + 7.58499i 0.153209 + 0.265365i
\(818\) 5.54583 0.193905
\(819\) 0 0
\(820\) −17.8285 −0.622597
\(821\) 4.24364 + 7.35019i 0.148104 + 0.256524i 0.930527 0.366224i \(-0.119350\pi\)
−0.782423 + 0.622748i \(0.786016\pi\)
\(822\) 0 0
\(823\) −14.5487 + 25.1991i −0.507136 + 0.878385i 0.492830 + 0.870126i \(0.335963\pi\)
−0.999966 + 0.00825976i \(0.997371\pi\)
\(824\) 0.141315 0.244765i 0.00492294 0.00852679i
\(825\) 0 0
\(826\) 0 0
\(827\) 25.9396 0.902007 0.451003 0.892522i \(-0.351066\pi\)
0.451003 + 0.892522i \(0.351066\pi\)
\(828\) 0 0
\(829\) −6.21642 −0.215905 −0.107953 0.994156i \(-0.534429\pi\)
−0.107953 + 0.994156i \(0.534429\pi\)
\(830\) 12.8353 + 22.2314i 0.445520 + 0.771663i
\(831\) 0 0
\(832\) 2.85185 4.93955i 0.0988701 0.171248i
\(833\) 0 0
\(834\) 0 0
\(835\) −8.33530 14.4372i −0.288455 0.499618i
\(836\) −4.08126 −0.141153
\(837\) 0 0
\(838\) 5.54910 0.191690
\(839\) −21.2947 36.8834i −0.735174 1.27336i −0.954647 0.297740i \(-0.903767\pi\)
0.219474 0.975618i \(-0.429566\pi\)
\(840\) 0 0
\(841\) −10.5721 + 18.3114i −0.364555 + 0.631428i
\(842\) −3.42107 + 5.92546i −0.117898 + 0.204205i
\(843\) 0 0
\(844\) −8.32846 14.4253i −0.286677 0.496540i
\(845\) 62.1502 2.13803
\(846\) 0 0
\(847\) 0 0
\(848\) −1.02859 1.78157i −0.0353219 0.0611794i
\(849\) 0 0
\(850\) 3.89931 6.75381i 0.133745 0.231654i
\(851\) −1.11956 + 1.93914i −0.0383781 + 0.0664728i
\(852\) 0 0
\(853\) −10.6969 18.5275i −0.366254 0.634370i 0.622723 0.782442i \(-0.286026\pi\)
−0.988976 + 0.148073i \(0.952693\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 11.3776 0.388877
\(857\) −18.4218 31.9074i −0.629275 1.08994i −0.987697 0.156377i \(-0.950019\pi\)
0.358422 0.933560i \(-0.383315\pi\)
\(858\) 0 0
\(859\) 8.81875 15.2745i 0.300892 0.521160i −0.675446 0.737409i \(-0.736049\pi\)
0.976338 + 0.216249i \(0.0693824\pi\)
\(860\) 10.8639 18.8168i 0.370455 0.641648i
\(861\) 0 0
\(862\) −16.5539 28.6722i −0.563828 0.976579i
\(863\) −0.760877 −0.0259005 −0.0129503 0.999916i \(-0.504122\pi\)
−0.0129503 + 0.999916i \(0.504122\pi\)
\(864\) 0 0
\(865\) −8.11901 −0.276054
\(866\) 6.05555 + 10.4885i 0.205776 + 0.356414i
\(867\) 0 0
\(868\) 0 0
\(869\) −6.58414 + 11.4041i −0.223351 + 0.386856i
\(870\) 0 0
\(871\) 31.2759 + 54.1715i 1.05974 + 1.83553i
\(872\) 4.42107 0.149716
\(873\) 0 0
\(874\) −2.87197 −0.0971457
\(875\) 0 0
\(876\) 0 0
\(877\) 20.7495 35.9392i 0.700662 1.21358i −0.267573 0.963538i \(-0.586222\pi\)
0.968234 0.250044i \(-0.0804451\pi\)
\(878\) 4.41711 7.65066i 0.149070 0.258197i
\(879\) 0 0
\(880\) 5.06238 + 8.76830i 0.170653 + 0.295579i
\(881\) −8.35486 −0.281482 −0.140741 0.990046i \(-0.544949\pi\)
−0.140741 + 0.990046i \(0.544949\pi\)
\(882\) 0 0
\(883\) 35.6181 1.19864 0.599322 0.800508i \(-0.295437\pi\)
0.599322 + 0.800508i \(0.295437\pi\)
\(884\) −4.33981 7.51677i −0.145964 0.252816i
\(885\) 0 0
\(886\) 8.75924 15.1715i 0.294272 0.509695i
\(887\) −18.5550 + 32.1382i −0.623016 + 1.07909i 0.365905 + 0.930652i \(0.380759\pi\)
−0.988921 + 0.148443i \(0.952574\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.717370 0.0240463
\(891\) 0 0
\(892\) 10.6569 0.356820
\(893\) −3.73788 6.47420i −0.125083 0.216651i
\(894\) 0 0
\(895\) −11.1969 + 19.3935i −0.374270 + 0.648254i
\(896\) 0 0
\(897\) 0 0
\(898\) 15.6150 + 27.0461i 0.521081 + 0.902539i
\(899\) 66.7130 2.22500
\(900\) 0 0
\(901\) −3.13052 −0.104293
\(902\) −8.91423 15.4399i −0.296811 0.514092i
\(903\) 0 0
\(904\) 1.60752 2.78431i 0.0534654 0.0926048i
\(905\) 20.6300 35.7321i 0.685763 1.18778i
\(906\) 0 0
\(907\) 24.0751 + 41.6993i 0.799401 + 1.38460i 0.920007 + 0.391902i \(0.128183\pi\)
−0.120606 + 0.992700i \(0.538484\pi\)
\(908\) 14.5081 0.481468
\(909\) 0 0
\(910\) 0 0
\(911\) −17.4428 30.2119i −0.577906 1.00096i −0.995719 0.0924301i \(-0.970537\pi\)
0.417813 0.908533i \(-0.362797\pi\)
\(912\) 0 0
\(913\) −12.8353 + 22.2314i −0.424786 + 0.735751i
\(914\) 16.0624 27.8209i 0.531296 0.920232i
\(915\) 0 0
\(916\) −5.12476 8.87635i −0.169327 0.293283i
\(917\) 0 0
\(918\) 0 0
\(919\) 51.7349 1.70658 0.853289 0.521439i \(-0.174605\pi\)
0.853289 + 0.521439i \(0.174605\pi\)
\(920\) 3.56238 + 6.17023i 0.117448 + 0.203426i
\(921\) 0 0
\(922\) −1.23229 + 2.13438i −0.0405832 + 0.0702922i
\(923\) −24.7826 + 42.9248i −0.815730 + 1.41289i
\(924\) 0 0
\(925\) 2.56238 + 4.43818i 0.0842506 + 0.145926i
\(926\) −30.3469 −0.997262
\(927\) 0 0
\(928\) −7.08126 −0.232454
\(929\) −25.4142 44.0187i −0.833814 1.44421i −0.894993 0.446081i \(-0.852819\pi\)
0.0611787 0.998127i \(-0.480514\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.540628 + 0.936396i −0.0177089 + 0.0306727i
\(933\) 0 0
\(934\) 7.98181 + 13.8249i 0.261173 + 0.452365i
\(935\) 15.4074 0.503876
\(936\) 0 0
\(937\) 2.54583 0.0831686 0.0415843 0.999135i \(-0.486759\pi\)
0.0415843 + 0.999135i \(0.486759\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −9.27292 + 16.0612i −0.302449 + 0.523857i
\(941\) 0.578933 1.00274i 0.0188727 0.0326885i −0.856435 0.516255i \(-0.827326\pi\)
0.875308 + 0.483567i \(0.160659\pi\)
\(942\) 0 0
\(943\) −6.27292 10.8650i −0.204274 0.353813i
\(944\) 1.12476 0.0366079
\(945\) 0 0
\(946\) 21.7278 0.706431
\(947\) 4.90739 + 8.49985i 0.159469 + 0.276208i 0.934677 0.355497i \(-0.115689\pi\)
−0.775208 + 0.631706i \(0.782355\pi\)
\(948\) 0 0
\(949\) 14.1648 24.5342i 0.459810 0.796414i
\(950\) −3.28659 + 5.69254i −0.106631 + 0.184690i
\(951\) 0 0
\(952\) 0 0
\(953\) −6.53791 −0.211784 −0.105892 0.994378i \(-0.533770\pi\)
−0.105892 + 0.994378i \(0.533770\pi\)
\(954\) 0 0
\(955\) −6.30206 −0.203930
\(956\) 6.16019 + 10.6698i 0.199235 + 0.345085i
\(957\) 0 0
\(958\) −11.5865 + 20.0683i −0.374341 + 0.648378i
\(959\) 0 0
\(960\) 0 0
\(961\) −28.8782 50.0186i −0.931556 1.61350i
\(962\) 5.70370 0.183895
\(963\) 0 0
\(964\) −13.0000 −0.418702
\(965\) 7.23229 + 12.5267i 0.232816 + 0.403248i
\(966\) 0 0
\(967\) 14.4445 25.0185i 0.464502 0.804542i −0.534677 0.845057i \(-0.679567\pi\)
0.999179 + 0.0405151i \(0.0128999\pi\)
\(968\) 0.437618 0.757977i 0.0140656 0.0243623i
\(969\) 0 0
\(970\) 23.6134 + 40.8996i 0.758181 + 1.31321i
\(971\) 5.33654 0.171258 0.0856289 0.996327i \(-0.472710\pi\)
0.0856289 + 0.996327i \(0.472710\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.70658 + 2.95588i 0.0546822 + 0.0947124i
\(975\) 0 0
\(976\) −1.56238 + 2.70612i −0.0500106 + 0.0866209i
\(977\) −24.0361 + 41.6318i −0.768983 + 1.33192i 0.169131 + 0.985594i \(0.445904\pi\)
−0.938115 + 0.346325i \(0.887429\pi\)
\(978\) 0 0
\(979\) 0.358685 + 0.621261i 0.0114636 + 0.0198556i
\(980\) 0 0
\(981\) 0 0
\(982\) −19.1683 −0.611684
\(983\) 14.7313 + 25.5154i 0.469857 + 0.813816i 0.999406 0.0344634i \(-0.0109722\pi\)
−0.529549 + 0.848279i \(0.677639\pi\)
\(984\) 0 0
\(985\) −34.7067 + 60.1138i −1.10585 + 1.91538i
\(986\) −5.38796 + 9.33223i −0.171588 + 0.297199i
\(987\) 0 0
\(988\) 3.65787 + 6.33561i 0.116372 + 0.201563i
\(989\) 15.2898 0.486186
\(990\) 0 0
\(991\) −30.8285 −0.979298 −0.489649 0.871920i \(-0.662875\pi\)
−0.489649 + 0.871920i \(0.662875\pi\)
\(992\) 4.71053 + 8.15888i 0.149560 + 0.259045i
\(993\) 0 0
\(994\) 0 0
\(995\) 19.5413 33.8466i 0.619501 1.07301i
\(996\) 0 0
\(997\) −2.77292 4.80283i −0.0878191 0.152107i 0.818770 0.574122i \(-0.194656\pi\)
−0.906589 + 0.422015i \(0.861323\pi\)
\(998\) 41.1696 1.30320
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.l.1765.1 6
3.2 odd 2 882.2.f.n.589.2 6
7.2 even 3 378.2.h.c.361.3 6
7.3 odd 6 2646.2.e.p.1549.3 6
7.4 even 3 378.2.e.d.37.1 6
7.5 odd 6 2646.2.h.o.361.1 6
7.6 odd 2 2646.2.f.m.1765.3 6
9.2 odd 6 882.2.f.n.295.2 6
9.4 even 3 7938.2.a.ca.1.3 3
9.5 odd 6 7938.2.a.bv.1.1 3
9.7 even 3 inner 2646.2.f.l.883.1 6
21.2 odd 6 126.2.h.d.67.1 yes 6
21.5 even 6 882.2.h.p.67.3 6
21.11 odd 6 126.2.e.c.121.3 yes 6
21.17 even 6 882.2.e.o.373.1 6
21.20 even 2 882.2.f.o.589.2 6
28.11 odd 6 3024.2.q.g.2305.1 6
28.23 odd 6 3024.2.t.h.1873.3 6
63.2 odd 6 126.2.e.c.25.3 6
63.4 even 3 1134.2.g.l.163.1 6
63.11 odd 6 126.2.h.d.79.1 yes 6
63.13 odd 6 7938.2.a.bz.1.1 3
63.16 even 3 378.2.e.d.235.1 6
63.20 even 6 882.2.f.o.295.2 6
63.23 odd 6 1134.2.g.m.487.3 6
63.25 even 3 378.2.h.c.289.3 6
63.32 odd 6 1134.2.g.m.163.3 6
63.34 odd 6 2646.2.f.m.883.3 6
63.38 even 6 882.2.h.p.79.3 6
63.41 even 6 7938.2.a.bw.1.3 3
63.47 even 6 882.2.e.o.655.1 6
63.52 odd 6 2646.2.h.o.667.1 6
63.58 even 3 1134.2.g.l.487.1 6
63.61 odd 6 2646.2.e.p.2125.3 6
84.11 even 6 1008.2.q.g.625.1 6
84.23 even 6 1008.2.t.h.193.3 6
252.11 even 6 1008.2.t.h.961.3 6
252.79 odd 6 3024.2.q.g.2881.1 6
252.151 odd 6 3024.2.t.h.289.3 6
252.191 even 6 1008.2.q.g.529.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.3 6 63.2 odd 6
126.2.e.c.121.3 yes 6 21.11 odd 6
126.2.h.d.67.1 yes 6 21.2 odd 6
126.2.h.d.79.1 yes 6 63.11 odd 6
378.2.e.d.37.1 6 7.4 even 3
378.2.e.d.235.1 6 63.16 even 3
378.2.h.c.289.3 6 63.25 even 3
378.2.h.c.361.3 6 7.2 even 3
882.2.e.o.373.1 6 21.17 even 6
882.2.e.o.655.1 6 63.47 even 6
882.2.f.n.295.2 6 9.2 odd 6
882.2.f.n.589.2 6 3.2 odd 2
882.2.f.o.295.2 6 63.20 even 6
882.2.f.o.589.2 6 21.20 even 2
882.2.h.p.67.3 6 21.5 even 6
882.2.h.p.79.3 6 63.38 even 6
1008.2.q.g.529.1 6 252.191 even 6
1008.2.q.g.625.1 6 84.11 even 6
1008.2.t.h.193.3 6 84.23 even 6
1008.2.t.h.961.3 6 252.11 even 6
1134.2.g.l.163.1 6 63.4 even 3
1134.2.g.l.487.1 6 63.58 even 3
1134.2.g.m.163.3 6 63.32 odd 6
1134.2.g.m.487.3 6 63.23 odd 6
2646.2.e.p.1549.3 6 7.3 odd 6
2646.2.e.p.2125.3 6 63.61 odd 6
2646.2.f.l.883.1 6 9.7 even 3 inner
2646.2.f.l.1765.1 6 1.1 even 1 trivial
2646.2.f.m.883.3 6 63.34 odd 6
2646.2.f.m.1765.3 6 7.6 odd 2
2646.2.h.o.361.1 6 7.5 odd 6
2646.2.h.o.667.1 6 63.52 odd 6
3024.2.q.g.2305.1 6 28.11 odd 6
3024.2.q.g.2881.1 6 252.79 odd 6
3024.2.t.h.289.3 6 252.151 odd 6
3024.2.t.h.1873.3 6 28.23 odd 6
7938.2.a.bv.1.1 3 9.5 odd 6
7938.2.a.bw.1.3 3 63.41 even 6
7938.2.a.bz.1.1 3 63.13 odd 6
7938.2.a.ca.1.3 3 9.4 even 3