Properties

Label 2646.2.f.k
Level $2646$
Weight $2$
Character orbit 2646.f
Analytic conductor $21.128$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \beta_{1} ) q^{2} -\beta_{1} q^{4} + ( -\beta_{1} + \beta_{2} ) q^{5} - q^{8} +O(q^{10})\) \( q + ( 1 - \beta_{1} ) q^{2} -\beta_{1} q^{4} + ( -\beta_{1} + \beta_{2} ) q^{5} - q^{8} + ( -1 + \beta_{3} ) q^{10} + ( 2 - 2 \beta_{1} ) q^{11} + 2 \beta_{2} q^{13} + ( -1 + \beta_{1} ) q^{16} + 2 q^{17} + ( -5 + \beta_{3} ) q^{19} + ( -1 + \beta_{1} - \beta_{2} + \beta_{3} ) q^{20} -2 \beta_{1} q^{22} -\beta_{1} q^{23} + ( -2 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{25} + 2 \beta_{3} q^{26} + ( -2 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{29} + 6 \beta_{1} q^{31} + \beta_{1} q^{32} + ( 2 - 2 \beta_{1} ) q^{34} + ( 2 + 4 \beta_{3} ) q^{37} + ( -5 + 5 \beta_{1} - \beta_{2} + \beta_{3} ) q^{38} + ( \beta_{1} - \beta_{2} ) q^{40} -4 \beta_{2} q^{41} + ( -2 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{43} -2 q^{44} - q^{46} + ( 4 \beta_{2} - 4 \beta_{3} ) q^{47} + ( 2 \beta_{1} - 2 \beta_{2} ) q^{50} + ( -2 \beta_{2} + 2 \beta_{3} ) q^{52} + ( 6 + 2 \beta_{3} ) q^{53} + ( -2 + 2 \beta_{3} ) q^{55} + ( 2 \beta_{1} + 2 \beta_{2} ) q^{58} + 2 \beta_{1} q^{59} + ( 9 - 9 \beta_{1} + \beta_{2} - \beta_{3} ) q^{61} + 6 q^{62} + q^{64} + ( -12 + 12 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{65} + ( 8 \beta_{1} + 2 \beta_{2} ) q^{67} -2 \beta_{1} q^{68} + ( -5 + 2 \beta_{3} ) q^{71} + ( 2 + 2 \beta_{3} ) q^{73} + ( 2 - 2 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{74} + ( 5 \beta_{1} - \beta_{2} ) q^{76} + ( -3 + 3 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{79} + ( 1 - \beta_{3} ) q^{80} -4 \beta_{3} q^{82} + ( -2 + 2 \beta_{1} ) q^{83} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{85} + ( 2 \beta_{1} + 2 \beta_{2} ) q^{86} + ( -2 + 2 \beta_{1} ) q^{88} + ( -12 - 2 \beta_{3} ) q^{89} + ( -1 + \beta_{1} ) q^{92} + 4 \beta_{2} q^{94} + ( 11 \beta_{1} - 6 \beta_{2} ) q^{95} + ( -2 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8} + O(q^{10}) \) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8} - 4 q^{10} + 4 q^{11} - 2 q^{16} + 8 q^{17} - 20 q^{19} - 2 q^{20} - 4 q^{22} - 2 q^{23} - 4 q^{25} - 4 q^{29} + 12 q^{31} + 2 q^{32} + 4 q^{34} + 8 q^{37} - 10 q^{38} + 2 q^{40} - 4 q^{43} - 8 q^{44} - 4 q^{46} + 4 q^{50} + 24 q^{53} - 8 q^{55} + 4 q^{58} + 4 q^{59} + 18 q^{61} + 24 q^{62} + 4 q^{64} - 24 q^{65} + 16 q^{67} - 4 q^{68} - 20 q^{71} + 8 q^{73} + 4 q^{74} + 10 q^{76} - 6 q^{79} + 4 q^{80} - 4 q^{83} - 4 q^{85} + 4 q^{86} - 4 q^{88} - 48 q^{89} - 2 q^{92} + 22 q^{95} - 4 q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 2 \nu \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{3} + 4 \nu \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{2}\)\()/3\)
\(\nu^{2}\)\(=\)\(2 \beta_{1}\)
\(\nu^{3}\)\(=\)\((\)\(-2 \beta_{3} + 4 \beta_{2}\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(-\beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i
1.22474 0.707107i
0.500000 0.866025i 0 −0.500000 0.866025i −1.72474 2.98735i 0 0 −1.00000 0 −3.44949
883.2 0.500000 0.866025i 0 −0.500000 0.866025i 0.724745 + 1.25529i 0 0 −1.00000 0 1.44949
1765.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.72474 + 2.98735i 0 0 −1.00000 0 −3.44949
1765.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.724745 1.25529i 0 0 −1.00000 0 1.44949
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.f.k 4
3.b odd 2 1 882.2.f.j 4
7.b odd 2 1 378.2.f.d 4
7.c even 3 1 2646.2.e.k 4
7.c even 3 1 2646.2.h.n 4
7.d odd 6 1 2646.2.e.l 4
7.d odd 6 1 2646.2.h.m 4
9.c even 3 1 inner 2646.2.f.k 4
9.c even 3 1 7938.2.a.bm 2
9.d odd 6 1 882.2.f.j 4
9.d odd 6 1 7938.2.a.bn 2
21.c even 2 1 126.2.f.c 4
21.g even 6 1 882.2.e.m 4
21.g even 6 1 882.2.h.k 4
21.h odd 6 1 882.2.e.n 4
21.h odd 6 1 882.2.h.l 4
28.d even 2 1 3024.2.r.e 4
63.g even 3 1 2646.2.e.k 4
63.h even 3 1 2646.2.h.n 4
63.i even 6 1 882.2.h.k 4
63.j odd 6 1 882.2.h.l 4
63.k odd 6 1 2646.2.e.l 4
63.l odd 6 1 378.2.f.d 4
63.l odd 6 1 1134.2.a.i 2
63.n odd 6 1 882.2.e.n 4
63.o even 6 1 126.2.f.c 4
63.o even 6 1 1134.2.a.p 2
63.s even 6 1 882.2.e.m 4
63.t odd 6 1 2646.2.h.m 4
84.h odd 2 1 1008.2.r.e 4
252.s odd 6 1 1008.2.r.e 4
252.s odd 6 1 9072.2.a.bk 2
252.bi even 6 1 3024.2.r.e 4
252.bi even 6 1 9072.2.a.bd 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.f.c 4 21.c even 2 1
126.2.f.c 4 63.o even 6 1
378.2.f.d 4 7.b odd 2 1
378.2.f.d 4 63.l odd 6 1
882.2.e.m 4 21.g even 6 1
882.2.e.m 4 63.s even 6 1
882.2.e.n 4 21.h odd 6 1
882.2.e.n 4 63.n odd 6 1
882.2.f.j 4 3.b odd 2 1
882.2.f.j 4 9.d odd 6 1
882.2.h.k 4 21.g even 6 1
882.2.h.k 4 63.i even 6 1
882.2.h.l 4 21.h odd 6 1
882.2.h.l 4 63.j odd 6 1
1008.2.r.e 4 84.h odd 2 1
1008.2.r.e 4 252.s odd 6 1
1134.2.a.i 2 63.l odd 6 1
1134.2.a.p 2 63.o even 6 1
2646.2.e.k 4 7.c even 3 1
2646.2.e.k 4 63.g even 3 1
2646.2.e.l 4 7.d odd 6 1
2646.2.e.l 4 63.k odd 6 1
2646.2.f.k 4 1.a even 1 1 trivial
2646.2.f.k 4 9.c even 3 1 inner
2646.2.h.m 4 7.d odd 6 1
2646.2.h.m 4 63.t odd 6 1
2646.2.h.n 4 7.c even 3 1
2646.2.h.n 4 63.h even 3 1
3024.2.r.e 4 28.d even 2 1
3024.2.r.e 4 252.bi even 6 1
7938.2.a.bm 2 9.c even 3 1
7938.2.a.bn 2 9.d odd 6 1
9072.2.a.bd 2 252.bi even 6 1
9072.2.a.bk 2 252.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2646, [\chi])\):

\( T_{5}^{4} + 2 T_{5}^{3} + 9 T_{5}^{2} - 10 T_{5} + 25 \)
\( T_{11}^{2} - 2 T_{11} + 4 \)
\( T_{13}^{4} + 24 T_{13}^{2} + 576 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T + T^{2} )^{2} \)
$3$ \( T^{4} \)
$5$ \( 25 - 10 T + 9 T^{2} + 2 T^{3} + T^{4} \)
$7$ \( T^{4} \)
$11$ \( ( 4 - 2 T + T^{2} )^{2} \)
$13$ \( 576 + 24 T^{2} + T^{4} \)
$17$ \( ( -2 + T )^{4} \)
$19$ \( ( 19 + 10 T + T^{2} )^{2} \)
$23$ \( ( 1 + T + T^{2} )^{2} \)
$29$ \( 400 - 80 T + 36 T^{2} + 4 T^{3} + T^{4} \)
$31$ \( ( 36 - 6 T + T^{2} )^{2} \)
$37$ \( ( -92 - 4 T + T^{2} )^{2} \)
$41$ \( 9216 + 96 T^{2} + T^{4} \)
$43$ \( 400 - 80 T + 36 T^{2} + 4 T^{3} + T^{4} \)
$47$ \( 9216 + 96 T^{2} + T^{4} \)
$53$ \( ( 12 - 12 T + T^{2} )^{2} \)
$59$ \( ( 4 - 2 T + T^{2} )^{2} \)
$61$ \( 5625 - 1350 T + 249 T^{2} - 18 T^{3} + T^{4} \)
$67$ \( 1600 - 640 T + 216 T^{2} - 16 T^{3} + T^{4} \)
$71$ \( ( 1 + 10 T + T^{2} )^{2} \)
$73$ \( ( -20 - 4 T + T^{2} )^{2} \)
$79$ \( 225 - 90 T + 51 T^{2} + 6 T^{3} + T^{4} \)
$83$ \( ( 4 + 2 T + T^{2} )^{2} \)
$89$ \( ( 120 + 24 T + T^{2} )^{2} \)
$97$ \( 400 - 80 T + 36 T^{2} + 4 T^{3} + T^{4} \)
show more
show less