Properties

Label 2646.2.f.i
Level 2646
Weight 2
Character orbit 2646.f
Analytic conductor 21.128
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + 3 \zeta_{6} q^{5} - q^{8} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} + 3 \zeta_{6} q^{5} - q^{8} + 3 q^{10} + ( -3 + 3 \zeta_{6} ) q^{11} + 5 \zeta_{6} q^{13} + ( -1 + \zeta_{6} ) q^{16} + 3 q^{17} -5 q^{19} + ( 3 - 3 \zeta_{6} ) q^{20} + 3 \zeta_{6} q^{22} -3 \zeta_{6} q^{23} + ( -4 + 4 \zeta_{6} ) q^{25} + 5 q^{26} + ( -3 + 3 \zeta_{6} ) q^{29} -4 \zeta_{6} q^{31} + \zeta_{6} q^{32} + ( 3 - 3 \zeta_{6} ) q^{34} -7 q^{37} + ( -5 + 5 \zeta_{6} ) q^{38} -3 \zeta_{6} q^{40} + 9 \zeta_{6} q^{41} + ( -11 + 11 \zeta_{6} ) q^{43} + 3 q^{44} -3 q^{46} + 4 \zeta_{6} q^{50} + ( 5 - 5 \zeta_{6} ) q^{52} + 3 q^{53} -9 q^{55} + 3 \zeta_{6} q^{58} -12 \zeta_{6} q^{59} + ( 2 - 2 \zeta_{6} ) q^{61} -4 q^{62} + q^{64} + ( -15 + 15 \zeta_{6} ) q^{65} + 4 \zeta_{6} q^{67} -3 \zeta_{6} q^{68} -11 q^{73} + ( -7 + 7 \zeta_{6} ) q^{74} + 5 \zeta_{6} q^{76} + ( -8 + 8 \zeta_{6} ) q^{79} -3 q^{80} + 9 q^{82} + ( -3 + 3 \zeta_{6} ) q^{83} + 9 \zeta_{6} q^{85} + 11 \zeta_{6} q^{86} + ( 3 - 3 \zeta_{6} ) q^{88} + 15 q^{89} + ( -3 + 3 \zeta_{6} ) q^{92} -15 \zeta_{6} q^{95} + ( -1 + \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - q^{4} + 3q^{5} - 2q^{8} + O(q^{10}) \) \( 2q + q^{2} - q^{4} + 3q^{5} - 2q^{8} + 6q^{10} - 3q^{11} + 5q^{13} - q^{16} + 6q^{17} - 10q^{19} + 3q^{20} + 3q^{22} - 3q^{23} - 4q^{25} + 10q^{26} - 3q^{29} - 4q^{31} + q^{32} + 3q^{34} - 14q^{37} - 5q^{38} - 3q^{40} + 9q^{41} - 11q^{43} + 6q^{44} - 6q^{46} + 4q^{50} + 5q^{52} + 6q^{53} - 18q^{55} + 3q^{58} - 12q^{59} + 2q^{61} - 8q^{62} + 2q^{64} - 15q^{65} + 4q^{67} - 3q^{68} - 22q^{73} - 7q^{74} + 5q^{76} - 8q^{79} - 6q^{80} + 18q^{82} - 3q^{83} + 9q^{85} + 11q^{86} + 3q^{88} + 30q^{89} - 3q^{92} - 15q^{95} - q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 1.50000 + 2.59808i 0 0 −1.00000 0 3.00000
1765.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 1.50000 2.59808i 0 0 −1.00000 0 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.f.i 2
3.b odd 2 1 882.2.f.a 2
7.b odd 2 1 2646.2.f.e 2
7.c even 3 1 2646.2.e.e 2
7.c even 3 1 2646.2.h.f 2
7.d odd 6 1 378.2.e.a 2
7.d odd 6 1 378.2.h.b 2
9.c even 3 1 inner 2646.2.f.i 2
9.c even 3 1 7938.2.a.c 1
9.d odd 6 1 882.2.f.a 2
9.d odd 6 1 7938.2.a.bd 1
21.c even 2 1 882.2.f.e 2
21.g even 6 1 126.2.e.b 2
21.g even 6 1 126.2.h.a yes 2
21.h odd 6 1 882.2.e.h 2
21.h odd 6 1 882.2.h.e 2
28.f even 6 1 3024.2.q.a 2
28.f even 6 1 3024.2.t.f 2
63.g even 3 1 2646.2.e.e 2
63.h even 3 1 2646.2.h.f 2
63.i even 6 1 126.2.h.a yes 2
63.i even 6 1 1134.2.g.d 2
63.j odd 6 1 882.2.h.e 2
63.k odd 6 1 378.2.e.a 2
63.k odd 6 1 1134.2.g.f 2
63.l odd 6 1 2646.2.f.e 2
63.l odd 6 1 7938.2.a.o 1
63.n odd 6 1 882.2.e.h 2
63.o even 6 1 882.2.f.e 2
63.o even 6 1 7938.2.a.r 1
63.s even 6 1 126.2.e.b 2
63.s even 6 1 1134.2.g.d 2
63.t odd 6 1 378.2.h.b 2
63.t odd 6 1 1134.2.g.f 2
84.j odd 6 1 1008.2.q.e 2
84.j odd 6 1 1008.2.t.c 2
252.n even 6 1 3024.2.q.a 2
252.r odd 6 1 1008.2.t.c 2
252.bj even 6 1 3024.2.t.f 2
252.bn odd 6 1 1008.2.q.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.b 2 21.g even 6 1
126.2.e.b 2 63.s even 6 1
126.2.h.a yes 2 21.g even 6 1
126.2.h.a yes 2 63.i even 6 1
378.2.e.a 2 7.d odd 6 1
378.2.e.a 2 63.k odd 6 1
378.2.h.b 2 7.d odd 6 1
378.2.h.b 2 63.t odd 6 1
882.2.e.h 2 21.h odd 6 1
882.2.e.h 2 63.n odd 6 1
882.2.f.a 2 3.b odd 2 1
882.2.f.a 2 9.d odd 6 1
882.2.f.e 2 21.c even 2 1
882.2.f.e 2 63.o even 6 1
882.2.h.e 2 21.h odd 6 1
882.2.h.e 2 63.j odd 6 1
1008.2.q.e 2 84.j odd 6 1
1008.2.q.e 2 252.bn odd 6 1
1008.2.t.c 2 84.j odd 6 1
1008.2.t.c 2 252.r odd 6 1
1134.2.g.d 2 63.i even 6 1
1134.2.g.d 2 63.s even 6 1
1134.2.g.f 2 63.k odd 6 1
1134.2.g.f 2 63.t odd 6 1
2646.2.e.e 2 7.c even 3 1
2646.2.e.e 2 63.g even 3 1
2646.2.f.e 2 7.b odd 2 1
2646.2.f.e 2 63.l odd 6 1
2646.2.f.i 2 1.a even 1 1 trivial
2646.2.f.i 2 9.c even 3 1 inner
2646.2.h.f 2 7.c even 3 1
2646.2.h.f 2 63.h even 3 1
3024.2.q.a 2 28.f even 6 1
3024.2.q.a 2 252.n even 6 1
3024.2.t.f 2 28.f even 6 1
3024.2.t.f 2 252.bj even 6 1
7938.2.a.c 1 9.c even 3 1
7938.2.a.o 1 63.l odd 6 1
7938.2.a.r 1 63.o even 6 1
7938.2.a.bd 1 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2646, [\chi])\):

\( T_{5}^{2} - 3 T_{5} + 9 \)
\( T_{11}^{2} + 3 T_{11} + 9 \)
\( T_{13}^{2} - 5 T_{13} + 25 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ 1
$5$ \( 1 - 3 T + 4 T^{2} - 15 T^{3} + 25 T^{4} \)
$7$ 1
$11$ \( 1 + 3 T - 2 T^{2} + 33 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 7 T + 13 T^{2} )( 1 + 2 T + 13 T^{2} ) \)
$17$ \( ( 1 - 3 T + 17 T^{2} )^{2} \)
$19$ \( ( 1 + 5 T + 19 T^{2} )^{2} \)
$23$ \( 1 + 3 T - 14 T^{2} + 69 T^{3} + 529 T^{4} \)
$29$ \( 1 + 3 T - 20 T^{2} + 87 T^{3} + 841 T^{4} \)
$31$ \( ( 1 - 7 T + 31 T^{2} )( 1 + 11 T + 31 T^{2} ) \)
$37$ \( ( 1 + 7 T + 37 T^{2} )^{2} \)
$41$ \( 1 - 9 T + 40 T^{2} - 369 T^{3} + 1681 T^{4} \)
$43$ \( 1 + 11 T + 78 T^{2} + 473 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 47 T^{2} + 2209 T^{4} \)
$53$ \( ( 1 - 3 T + 53 T^{2} )^{2} \)
$59$ \( 1 + 12 T + 85 T^{2} + 708 T^{3} + 3481 T^{4} \)
$61$ \( 1 - 2 T - 57 T^{2} - 122 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 4 T - 51 T^{2} - 268 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( ( 1 + 11 T + 73 T^{2} )^{2} \)
$79$ \( 1 + 8 T - 15 T^{2} + 632 T^{3} + 6241 T^{4} \)
$83$ \( 1 + 3 T - 74 T^{2} + 249 T^{3} + 6889 T^{4} \)
$89$ \( ( 1 - 15 T + 89 T^{2} )^{2} \)
$97$ \( 1 + T - 96 T^{2} + 97 T^{3} + 9409 T^{4} \)
show more
show less