Properties

Label 2646.2.f.g
Level $2646$
Weight $2$
Character orbit 2646.f
Analytic conductor $21.128$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} - q^{8} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{4} - q^{8} + ( -3 + 3 \zeta_{6} ) q^{11} + 2 \zeta_{6} q^{13} + ( -1 + \zeta_{6} ) q^{16} -3 q^{17} + q^{19} + 3 \zeta_{6} q^{22} -6 \zeta_{6} q^{23} + ( 5 - 5 \zeta_{6} ) q^{25} + 2 q^{26} + ( 6 - 6 \zeta_{6} ) q^{29} -4 \zeta_{6} q^{31} + \zeta_{6} q^{32} + ( -3 + 3 \zeta_{6} ) q^{34} -4 q^{37} + ( 1 - \zeta_{6} ) q^{38} -9 \zeta_{6} q^{41} + ( 1 - \zeta_{6} ) q^{43} + 3 q^{44} -6 q^{46} + ( 6 - 6 \zeta_{6} ) q^{47} -5 \zeta_{6} q^{50} + ( 2 - 2 \zeta_{6} ) q^{52} -12 q^{53} -6 \zeta_{6} q^{58} -3 \zeta_{6} q^{59} + ( 8 - 8 \zeta_{6} ) q^{61} -4 q^{62} + q^{64} -5 \zeta_{6} q^{67} + 3 \zeta_{6} q^{68} + 12 q^{71} -11 q^{73} + ( -4 + 4 \zeta_{6} ) q^{74} -\zeta_{6} q^{76} + ( 4 - 4 \zeta_{6} ) q^{79} -9 q^{82} + ( -12 + 12 \zeta_{6} ) q^{83} -\zeta_{6} q^{86} + ( 3 - 3 \zeta_{6} ) q^{88} + 6 q^{89} + ( -6 + 6 \zeta_{6} ) q^{92} -6 \zeta_{6} q^{94} + ( 5 - 5 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - q^{4} - 2q^{8} + O(q^{10}) \) \( 2q + q^{2} - q^{4} - 2q^{8} - 3q^{11} + 2q^{13} - q^{16} - 6q^{17} + 2q^{19} + 3q^{22} - 6q^{23} + 5q^{25} + 4q^{26} + 6q^{29} - 4q^{31} + q^{32} - 3q^{34} - 8q^{37} + q^{38} - 9q^{41} + q^{43} + 6q^{44} - 12q^{46} + 6q^{47} - 5q^{50} + 2q^{52} - 24q^{53} - 6q^{58} - 3q^{59} + 8q^{61} - 8q^{62} + 2q^{64} - 5q^{67} + 3q^{68} + 24q^{71} - 22q^{73} - 4q^{74} - q^{76} + 4q^{79} - 18q^{82} - 12q^{83} - q^{86} + 3q^{88} + 12q^{89} - 6q^{92} - 6q^{94} + 5q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 0 0 0 −1.00000 0 0
1765.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 0 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.f.g 2
3.b odd 2 1 882.2.f.d 2
7.b odd 2 1 54.2.c.a 2
7.c even 3 1 2646.2.e.c 2
7.c even 3 1 2646.2.h.i 2
7.d odd 6 1 2646.2.e.b 2
7.d odd 6 1 2646.2.h.h 2
9.c even 3 1 inner 2646.2.f.g 2
9.c even 3 1 7938.2.a.i 1
9.d odd 6 1 882.2.f.d 2
9.d odd 6 1 7938.2.a.x 1
21.c even 2 1 18.2.c.a 2
21.g even 6 1 882.2.e.i 2
21.g even 6 1 882.2.h.c 2
21.h odd 6 1 882.2.e.g 2
21.h odd 6 1 882.2.h.b 2
28.d even 2 1 432.2.i.b 2
35.c odd 2 1 1350.2.e.c 2
35.f even 4 2 1350.2.j.a 4
56.e even 2 1 1728.2.i.f 2
56.h odd 2 1 1728.2.i.e 2
63.g even 3 1 2646.2.e.c 2
63.h even 3 1 2646.2.h.i 2
63.i even 6 1 882.2.h.c 2
63.j odd 6 1 882.2.h.b 2
63.k odd 6 1 2646.2.e.b 2
63.l odd 6 1 54.2.c.a 2
63.l odd 6 1 162.2.a.b 1
63.n odd 6 1 882.2.e.g 2
63.o even 6 1 18.2.c.a 2
63.o even 6 1 162.2.a.c 1
63.s even 6 1 882.2.e.i 2
63.t odd 6 1 2646.2.h.h 2
84.h odd 2 1 144.2.i.c 2
105.g even 2 1 450.2.e.i 2
105.k odd 4 2 450.2.j.e 4
168.e odd 2 1 576.2.i.a 2
168.i even 2 1 576.2.i.g 2
252.s odd 6 1 144.2.i.c 2
252.s odd 6 1 1296.2.a.g 1
252.bi even 6 1 432.2.i.b 2
252.bi even 6 1 1296.2.a.f 1
315.z even 6 1 450.2.e.i 2
315.z even 6 1 4050.2.a.c 1
315.bg odd 6 1 1350.2.e.c 2
315.bg odd 6 1 4050.2.a.v 1
315.cb even 12 2 1350.2.j.a 4
315.cb even 12 2 4050.2.c.r 2
315.cf odd 12 2 450.2.j.e 4
315.cf odd 12 2 4050.2.c.c 2
504.be even 6 1 1728.2.i.f 2
504.be even 6 1 5184.2.a.p 1
504.bn odd 6 1 1728.2.i.e 2
504.bn odd 6 1 5184.2.a.q 1
504.cc even 6 1 576.2.i.g 2
504.cc even 6 1 5184.2.a.r 1
504.co odd 6 1 576.2.i.a 2
504.co odd 6 1 5184.2.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.2.c.a 2 21.c even 2 1
18.2.c.a 2 63.o even 6 1
54.2.c.a 2 7.b odd 2 1
54.2.c.a 2 63.l odd 6 1
144.2.i.c 2 84.h odd 2 1
144.2.i.c 2 252.s odd 6 1
162.2.a.b 1 63.l odd 6 1
162.2.a.c 1 63.o even 6 1
432.2.i.b 2 28.d even 2 1
432.2.i.b 2 252.bi even 6 1
450.2.e.i 2 105.g even 2 1
450.2.e.i 2 315.z even 6 1
450.2.j.e 4 105.k odd 4 2
450.2.j.e 4 315.cf odd 12 2
576.2.i.a 2 168.e odd 2 1
576.2.i.a 2 504.co odd 6 1
576.2.i.g 2 168.i even 2 1
576.2.i.g 2 504.cc even 6 1
882.2.e.g 2 21.h odd 6 1
882.2.e.g 2 63.n odd 6 1
882.2.e.i 2 21.g even 6 1
882.2.e.i 2 63.s even 6 1
882.2.f.d 2 3.b odd 2 1
882.2.f.d 2 9.d odd 6 1
882.2.h.b 2 21.h odd 6 1
882.2.h.b 2 63.j odd 6 1
882.2.h.c 2 21.g even 6 1
882.2.h.c 2 63.i even 6 1
1296.2.a.f 1 252.bi even 6 1
1296.2.a.g 1 252.s odd 6 1
1350.2.e.c 2 35.c odd 2 1
1350.2.e.c 2 315.bg odd 6 1
1350.2.j.a 4 35.f even 4 2
1350.2.j.a 4 315.cb even 12 2
1728.2.i.e 2 56.h odd 2 1
1728.2.i.e 2 504.bn odd 6 1
1728.2.i.f 2 56.e even 2 1
1728.2.i.f 2 504.be even 6 1
2646.2.e.b 2 7.d odd 6 1
2646.2.e.b 2 63.k odd 6 1
2646.2.e.c 2 7.c even 3 1
2646.2.e.c 2 63.g even 3 1
2646.2.f.g 2 1.a even 1 1 trivial
2646.2.f.g 2 9.c even 3 1 inner
2646.2.h.h 2 7.d odd 6 1
2646.2.h.h 2 63.t odd 6 1
2646.2.h.i 2 7.c even 3 1
2646.2.h.i 2 63.h even 3 1
4050.2.a.c 1 315.z even 6 1
4050.2.a.v 1 315.bg odd 6 1
4050.2.c.c 2 315.cf odd 12 2
4050.2.c.r 2 315.cb even 12 2
5184.2.a.o 1 504.co odd 6 1
5184.2.a.p 1 504.be even 6 1
5184.2.a.q 1 504.bn odd 6 1
5184.2.a.r 1 504.cc even 6 1
7938.2.a.i 1 9.c even 3 1
7938.2.a.x 1 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2646, [\chi])\):

\( T_{5} \)
\( T_{11}^{2} + 3 T_{11} + 9 \)
\( T_{13}^{2} - 2 T_{13} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( 9 + 3 T + T^{2} \)
$13$ \( 4 - 2 T + T^{2} \)
$17$ \( ( 3 + T )^{2} \)
$19$ \( ( -1 + T )^{2} \)
$23$ \( 36 + 6 T + T^{2} \)
$29$ \( 36 - 6 T + T^{2} \)
$31$ \( 16 + 4 T + T^{2} \)
$37$ \( ( 4 + T )^{2} \)
$41$ \( 81 + 9 T + T^{2} \)
$43$ \( 1 - T + T^{2} \)
$47$ \( 36 - 6 T + T^{2} \)
$53$ \( ( 12 + T )^{2} \)
$59$ \( 9 + 3 T + T^{2} \)
$61$ \( 64 - 8 T + T^{2} \)
$67$ \( 25 + 5 T + T^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( ( 11 + T )^{2} \)
$79$ \( 16 - 4 T + T^{2} \)
$83$ \( 144 + 12 T + T^{2} \)
$89$ \( ( -6 + T )^{2} \)
$97$ \( 25 - 5 T + T^{2} \)
show more
show less